
Soundness in negotiations∗

Javier Esparza1, Denis Kuperberg1, Anca Muscholl2, and Igor
Walukiewicz3

1 Technical University of Munich
2 Technical University of Munich, IAS & CNRS†

3 University of Bordeaux, CNRS, LaBRI

Abstract
Negotiations are a formalism for describing multiparty distributed cooperation. Alternatively,
they can be seen as a model of concurrency with synchronized choice as communication primitive.
Well-designed negotiations must be sound, meaning that, whatever its current state, the nego-
tiation can still be completed. In a former paper, Esparza and Desel have shown that deciding
soundness of a negotiation is PSPACE-complete, and in PTIME if the negotiation is determin-
istic. They have also provided an algorithm for an intermediate class of acyclic, non-deterministic
negotiations, but left the complexity of the soundness problem open.

In the first part of this paper we study two further analysis problems for sound acyclic determ-
inistic negotiations, called the race and the omission problem, and give polynomial algorithms.
We use these results to provide the first polynomial algorithm for some analysis problems of
workflow nets with data previously studied by Trcka, van der Aalst, and Sidorova.

In the second part we solve the open question of Esparza and Desel’s paper. We show that
soundness of acyclic, weakly non-deterministic negotiations is in PTIME, and that checking
soundness is already NP-complete for slightly more general classes.

1998 ACM Subject Classification D.1.3, D.3.2, D.2.2, F.2.0, H.4.1

Keywords and phrases Negotiations, workflows, soundness, verification, concurrency.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.12

1 Introduction

A multiparty atomic negotiation is an event in which several processes (agents) synchron-
ize in order to select one out of a number of possible outcomes. In [3] Esparza and Desel
introduced negotiations, a model of concurrency with multiparty atomic negotiation as in-
teraction primitive. The model describes a workflow of “atomic” negotiations. After an
atomic negotiation concludes with the selection of an outcome, the workflow determines the
set of atomic negotiations each agent is ready to engage next.

The negotiation model has been studied in [3, 4, 5], and in [6] the results have been
applied to the analysis of industrial business processes modeled as workflow Petri nets, a very
successful formal backend for graphical notations like BPMN (Business Process Modeling
Notation), EPC (Event-driven Process Chain), or UML Activity Diagrams (see e.g. [15, 14]).
As shown in [1], deterministic negotiations are very closely related to free-choice workflow
nets, a class that is expressive enough to model many business processes (for example, 70%

∗ This work was partially supported by the DFG Project “Negotiations: A Model for Tractable Concur-
rency”
† On leave from the University of Bordeaux.

© Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 12; pp. 12:1–12:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


12:2 Soundness in negotiations

of the almost 2000 workflow nets from the suite of industrial models studied in [16, 7, 6] are
free-choice).

The most prominent analysis problem for the negotiation model is soundness. Loosely
speaking, a negotiation is sound if for every reachable configuration there is an execution
leading to proper termination of the negotiation. In [3] it is shown that the soundness prob-
lem is Pspace-complete for non-deterministic negotiations and coNP-complete for acyclic
non-deterministic negotiations1. For this reason, and in search of a tractable class, [3] in-
troduces the class of deterministic negotiations. In deterministic negotiations all agents are
deterministic, meaning that they are never ready to engage in more than one atomic negoti-
ation per outcome (in the same way that in a deterministic automaton, for each action the
automaton is only ready to move to one state). The main results of [3] are a polynomial
time reduction algorithm for checking soundness of acyclic deterministic negotiations, and
an extension of the algorithm to the more expressive class of acyclic, weakly deterministic2
negotiations. The runtime of this second algorithm was however left open, as well as the
more general question of determining the complexity of checking soundness for other classes
of acyclic negotiations. In [4] the polynomial result for acyclic deterministic negotiations is
extended to the cyclic case.

While unsound negotiations are clearly faulty, sound negotiations are not automatically
correct, they must satisfy other properties. In the first contribution of this paper, we study
two other analysis problems for sound acyclic deterministic negotiations: the race problem
and the omission problem. The race problem is to determine if there is an execution in which
two given atomic negotiations are concurrently enabled. The omission problem asks for given
sets of atomic negotiations P and B if there exists a run that visits all elements of P and
omits all of B. We show that for sound negotiations the race problem is polynomial, as well
as the omission problem for P of bounded size. We then apply these polynomial algorithms
to analysis problems for negotiations with global data studied in [13, 11] in the context of
workflow Petri nets. In this model atomic negotiations can manipulate global variables,
so classical analysis questions are raised, for instance whether every value written into a
variable is guaranteed to be read, or whether a variable can be allocated and deallocated
by two atomic negotiations taking place in parallel. While the algorithms of [13, 11] are
exponential, our solutions for acyclic sound deterministic negotiations take polynomial time.

Our second contribution is the study of the complexity of soundness for classes beyond
deterministic negotiations. We propose to analyze this problem through properties of the
graph of a negotiation. The first indication of the usefulness of this approach is a short
argument giving an Nlogspace algorithm for deciding soundness of acyclic deterministic
negotiations. Next, we settle the question left open in [3], and prove that the soundness
problem can be solved in polynomial time for acyclic, weakly non-deterministic negotiations,
a class even more general than the one defined in [3]. We then show that if we leave out
one of the two assumptions, acyclicity or weak non-determinism, then the problem becomes
coNP-complete3. These results set a limit to the class of negotiations with a polynomial
soundness problems, but also admit a positive interpretation. Indeed, if all processes are
allowed to be cyclic and non-deterministic, then the soundness problem is Pspace-complete,
while for the class above it belongs to coNP.

1 In [3] the notion of soundness has one more requirement, which makes the soundness problem for acyclic
negotiations coNP-hard and in DP.

2 The class considered [3] was called “weakly deterministic”. In this paper we refer to it as “very weakly
non-deterministic”.

3 We show that coNP-hardness holds even for a very mild relaxation of acyclicity.



Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:3

Related formalisms and related work. The connection between negotiations and Petri
nets is studied in detail in [1]. Every negotiation can be transformed into an exponentially
larger 1-safe workflow Petri net with an isomorphic reachability graph. Every deterministic
negotiation is equivalent to a 1-safe workflow free-choice net with a linear blow-up. Con-
versely, every sound workflow free-choice net can be transformed into a sound deterministic
negotiation with a linear blow-up. Recent papers on free-choice workflow Petri nets are [8, 6].
In [8] soundness is characterized in terms of anti-patterns, which can be used to explain why
a given workflow net is unsound. Our work provides an anti-pattern characterization for
acyclic weakly non-deterministic negotiations, which goes beyond the free-choice case. In
[6] a polynomial reduction algorithm for free-choice workflow Petri nets is presented. Our
results show that soundness is also polynomial for workflow Petri nets coming from acyclic
weakly deterministic negotiations.

As a process-based concurrent model, negotiations can be compared with another well-
studied model for distributed computation, namely Zielonka automata [17, 2, 10]. Such
an automaton is a parallel composition of finite transition systems with synchronization
on common actions. The important point is that a synchronization involves exchange of
information between states of agents: the result of the synchronization depends on the states
of all the components taking part in it. Zielonka automata have the same expressive power as
arbitrary, possibly nondeterministic negotiations. Deterministic negotiations correspond to
a subclass that does not seem to have been studied yet, and for which verification becomes
considerably easier. For example, the question whether some local state occurs in some
execution is Pspace-complete for “sound” Zielonka automata, while it can be answered in
polynomial time for sound deterministic negotiations.

A somewhat similar graphical formalism are message sequence charts/graphs, used to
describe asynchronous communication. Questions like non-emptiness of intersection are in
general undecidable for this model, even assuming that communication buffers are bounded.
Subclasses of message sequence graphs with decidable model-checking problem were pro-
posed, but the complexity is Pspace-complete [9].

Overview. Section 2 introduces definitions and notations, then Section 3 reconsiders
soundness for acyclic, deterministic negotiations. In Section 4 we provide an Nlogspace
algorithm for the race problem. Section 5 solves the omitting problem, that is used in Sec-
tion 6 for analyzing properties of workflows described by acyclic, deterministic negotiations,
and later in Section 7 to decide soundness for acyclic weakly non-deterministic negotiations
in Ptime. Finally, Section 8 establishes the coNP complexity bounds.

2 Negotiations

A negotiation N is a tuple 〈Proc, N, dom, R, δ〉, where Proc is a finite set of processes (or
agents) that can participate in negotiations, and N is a finite set of nodes (or atomic nego-
tiations) where the processes can synchronize. The function dom : N → P(Proc) associates
to every atomic negotiation n ∈ N the (non-empty) set dom(n) of processes participating
in it. Nodes are denoted as m or n, and processes as p or q; possibly with indices.

The set of possible outcomes of atomic negotiations is denoted R, and we use a, b, . . .
to range over its elements. The control flow in a negotiation is determined by a partial
transition function δ : N×R×Proc ·−→ P(N), telling that after the outcome a of an atomic
negotiation n, process p ∈ dom(n) is ready to participate in any of the negotiations from
the set δ(n, a, p). So for every n′ ∈ δ(n, a, p) we have p ∈ dom(n′) ∩ dom(n). Every atomic
negotiation n ∈ N has its set of possible outcomes out(n), and for every n, a ∈ out(n) and

CONCUR 2016



12:4 Soundness in negotiations

p ∈ dom(n) the result δ(n, a, p) has to be defined. So all processes involved in an atomic
negotiation should be ready for all its possible outcomes. Observe that atomic negotiations
may have one single participant process, and/or have one single outcome.

������������

����������

����������

�����
�����
�����
�����

������������������������������

������������ ����������

n0 n1 n7

n3

Process p

Process q
a a a a

a a a a

a

n2

n6n4 n5 b
b

b

Figure 1 A negotiation. Atomic negotiation n1 involves processes p, q, and has two possible
outcomes a and b. The arrows show next negotiations in which respective processes are willing to
engage.

Negotiations admit a graphical representation. Figure 1 shows a negotiation with Proc =
{p, q}, N = {n0, . . . , n7} and R = {a, b}. For example, we have dom(n1) = {p, q},
δ(n1, b, p) = {n3} and δ(n1, b, q) = {n6}. More details can be found in [3].

A configuration of a negotiation is a function C : Proc → P(N) mapping each process p
to the set of atomic negotiations in which p is ready to engage. An atomic negotiation n is
enabled in a configuration C if n ∈ C(p) for every p ∈ dom(n), that is, if all processes that
participate in n are ready to proceed with it. A configuration is a deadlock if no atomic
negotiation is enabled in it. If an atomic negotiation n is enabled in C, and a is an outcome
of n, then we say that (n, a) can be executed, and its execution produces a new configuration
C ′ given by C ′(p) = δ(n, a, p) for p ∈ dom(n) and C ′(p) = C(p) for p 6∈ dom(n). We denote
this by C (n,a)−→ C ′. For example, in Figure 1 we have C (n1,a)−→ C ′ for C(p) = {n1} = C(q)
and C ′(p) = {n2}, C(q) = {n4}.

A run of a negotiation N from a configuration C1 is a finite or infinite sequence w =
(n1, a1)(n2, a2) . . . such that there are configurations C2, C3, . . . with

C1
(n1,a1)−→ C2

(n2,a2)−→ C3 . . .

We denote this by C1
w−→, or C1

w−→ Ck if the sequence is finite and finishes with Ck. In
the latter case we say that Ck is reachable from C1 on w. We simply call it reachable if w
is irrelevant, and write C1

∗−→ Ck.
Negotiations come equipped with two distinguished initial and final atomic negotiations

ninit and nfin in which all processes in Proc participate. The initial and final configurations
Cinit , Cfin are given by Cinit(p) = {ninit} and Cfin(p) = {nfin} for all p ∈ Proc. A run is
successful if it starts in Cinit and ends in Cfin. We assume that every atomic negotiation
(except possibly for nfin) has at least one outcome. In Figure 1, ninit = n0 and nfin = n7.

2.1 Main definitions
A negotiation N is sound if every partial run starting at Cinit can be completed to a
successful run. If a negotiation has no infinite runs, then it is sound iff it has no reachable
deadlock configuration.

Process p is deterministic in a negotiation N if for every n ∈ N , and a ∈ R, the set
of possible next negotiations, δ(n, a, p), is a singleton or the empty set. A negotiation is



Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:5

deterministic if every process p ∈ Proc is deterministic. The negotiation of Figure 1 is
deterministic.

A negotiation is weakly non-deterministic if for every n ∈ N at least one of the processes
in dom(n) is deterministic. A negotiation is very weakly non-deterministic4 if for every
n ∈ N , a ∈ R, and p ∈ Proc, there is a deterministic process q such that q ∈ dom(n′) for all
n′ ∈ δ(n, a, p).

Examples of weakly non-deterministic negotiations can be found in [3]. In particular,
weakly non-deterministic negotiations allow to model deterministic negotiations with global
resources (see Section 6). The resource (say, a piece of data) can be modeled as an additional
process, which participates in the atomic negotiations that use the resource. The outcome of
a negotiation can change the state of the resource (say, from “confidential” to “public”), and
at each state the resource may be ready to engage in a different set of atomic negotiations.

The graph of a negotiation has atomic negotiations, N , as set of nodes; the edges are
n

p,a−→ n′ if n′ ∈ δ(n, a, p). Observe that p ∈ dom(n) ∩ dom(n′).
A negotiation is acyclic if its graph is so. Acyclic negotiations cannot have infinite

runs, so as mentioned above, soundness is equivalent to deadlock-freedom. For an acyclic
negotiation N we fix a linear order 4N on its nodes that is a topological order on the graph
of N . This means that if there is an edge from m to n in the graph of N then m 4N n.

The restriction of a negotiation N to a subset of its processes Proc′ is the negotiation
〈Proc′, N ′, dom′, R, δ′〉 where N ′ is the set of those n ∈ N for which dom(n) ∩ Proc′ 6=
∅, dom′(n) = dom(n) ∩ Proc′, and δ′(n, r, p) = δ(n, r, p) ∩ N ′. The restriction of N to
deterministic processes is denoted as ND throughout the paper.

A negotiation N is det-acyclic if ND is acyclic. It follows easily from the definitions that
a weakly non-deterministic, det-acyclic negotiation does not have any infinite run.

3 Soundness of acyclic deterministic negotiations

The main objective of this section is to provide some tools that we will use later. We show
how some properties of negotiations can be determined by patterns in their graphs. As an
example of an application of our techniques we revisit the soundness problem for acyclic,
deterministic negotiations. We provide an alternative polynomial-time algorithm that is
actually in Nlogspace, in contrast with the algorithm of [3] that is based on rewriting.

Fix a negotiation N . A local path is a path n0
p0,a0−→ n1

p1,a1−→ . . .
pk−1,ak−1−→ nk in the graph

of N . The path is realizable from some configuration C, if there is a run C w−→ with w of the
form (n0, a0)w1(n1, a1) · · ·wk−1(nk−1, ak−1), such that pi /∈ dom(wi+1), for all i. Here we
use dom(v) to denote the set of all processes involved in some atomic negotiation appearing
in sequence v: dom(v) =

⋃
{dom(n) : for some a, (n, a) appears in v}.

For what follows Lemma 1 is particularly useful as it gives a simple criterion when an
atomic negotiation is a part of some successful run.

I Lemma 1. Let n0
p0,a0−→ n1

p1,a1−→ . . .
pk−1,ak−1−→ nk be a local path in the graph of a sound

deterministic negotiation N . If C is a reachable configuration of N and n0 is enabled in C
then the path is realizable from C.

Proof. Let C be such that C(p) = n0 for every p ∈ dom(n0). By induction on i we show
that there is a run C

∗−→ Ci realizing n0
p0,a0−→ n1

p1,a1−→ . . .
pi−1,ai−1−→ ni and such that ni is

enabled in Ci.

4 This class was called weakly deterministic in [3].

CONCUR 2016



12:6 Soundness in negotiations

For i = 0, we simply take Ci = C. For the induction step we assume the existence of Ci
in which ni is enabled. Let C ′i+1 be the result of executing (ni, ai) from Ci. Observe that
C ′i+1(pi) = ni+1 (recall that N is deterministic). Since N is sound, and C ′i+1 is reachable,
there is a run from C ′i+1 to Cfin. We set then Ci+1 to be the first configuration on this run
when ni+1 is enabled. J

Lemma 1 says that there is a run containing the atomic negotiation m iff there is a local
path from ninit to m. If dom(m) ∩ dom(n) 6= ∅ then the lemma also provides an easy test
for knowing whether there is a run containing both m,n: it suffices to check the existence
of a local path ninit

∗−→ m
∗−→ n, or with m,n interchanged. The next lemma takes care of

the opposite situation.

I Lemma 2. Let m,n be two atomic negotiations in a sound deterministic negotiation N ,
and assume that dom(m) ∩ dom(n) = ∅.

There exists some run of N containing both m,n iff there is an atomic negotiation m′

such that
there is a local path from ninit to m′,
δ(m′, p, a) = m0, δ(m′, q, a) = n0 for some p, q ∈ dom(m′), a ∈ out(m′),
there are two disjoint local paths in N , one from m0 to m, the other from n0 to n.

Soundness can be characterized by excluding a special variant of the pattern from the
above lemma. Consider two processes p 6= q of an acyclic negotiation N . A (p, q)-pair is a
pair of disjoint local paths of N :

m0
p,a0−→ . . .

p,ak−1−→ mk and n0
q,b0−→ . . .

q,bl−1−→ nl

such that mk 4N nl and q ∈ dom(mk).

I Lemma 3. Let N be an acyclic deterministic negotiation. Then N is not sound if and
only if there exist an atomic negotiation m′ and two processes p, q such that:

there is a local path from ninit to m′,
δ(m′, p, a) = m0, δ(m′, q, a) = n0 for some a ∈ out(m′),
there is a (p, q)-pair as above.

I Theorem 4. Soundness of acyclic deterministic negotiations is Nlogspace-complete.

Proof. Clearly the problem is Nlogspace-hard since graph reachability is a special instance
of it. The Nlogspace algorithm for deciding soundness establishes the existence of the
pattern from the previous lemma. Note that the topological order 4N we use is arbitrary,
so we can simply replace the condition mk 4N nl by asking that there is no path from nl
to mk.

J

4 Races

For a given pair of atomic negotiations m,n ∈ N of a deterministic negotiation N =
〈Proc, N, dom, R, δ〉, we want to determine if there is a reachable configuration at which
m,n are concurrently enabled. In other words, we are asking whether a race between m and
n is possible. This is a standard question for concurrent systems, that is difficult to answer
when working with linearizations. In this section we show a simple linear time algorithm
answering the above question for acyclic, sound negotiations. Our algorithm reduces it to



Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:7

graph reachability questions, and can be implemented in logarithmic space. In the long ver-
sion of our paper we also give a polynomial-time algorithm for possibly cyclic (and sound)
negotiations.

We will write m ‖ n when there is a reachable configuration C of N where both m and
n are enabled. Our goal is to decide if m ‖ n holds for given m, n.

We say below that a run w ∈ (N ×R)∗ can be reordered into another run w′ if w′ can be
obtained from w by repeatedly exchanging adjacent (m, a)(n, b) into (n, b)(m, a) whenever
dom(m) ∩ dom(n) = ∅.

I Lemma 5. Let N be an acyclic, deterministic, sound negotiation, and let m,n be two
atomic negotiations in N . Then m ‖ n iff every run w from ninit containing both m and n
can be reordered into a run w′ such that w′ = Cinit

∗−→ C
∗−→ C ′ for some configuration C

where both m and n are enabled.

Proof. It suffices to show the implication from left to right. So assume that there exists
some reachable configuration C where both m and n are enabled. In particular, dom(m) ∩
dom(n) = ∅. By way of contradiction, let us suppose that there exists some run containing
both m and n, but this run cannot be reordered as claimed. We claim that there must be
some local path fromm to n in N . To see this, assume the contrary and consider a run of the
form w = w1(m, a)w2(n, b)w3. The run w defines a partial order (actually a Mazurkiewicz
trace) tr(w) with nodes corresponding to positions in w, and edges from (m′, c) to (n′, d)
if dom(m′) ∩ dom(n′) 6= ∅ and (m′, c) precedes (n′, d) in w. Since there is no path from m

to n in N , nodes (m, a) and (n, b) are unordered in tr(w). So we can choose a topological
order w′ of tr(w) of the form w′ = w′1(m, a)(n, b)w′2. This shows the claim.

So let π be a path in N from m,n1, . . . , nk, n. Let p be some process such that nk
p,a′−→ n

for some outcome a′.
Let us go back to C. Since bothm and n are enabled in C, we have a transition C n,b−→ C1,

for some b ∈ out(n). Note that m is still enabled in C1, since dom(m)∩ dom(n) = ∅. So we
can apply Lemma 1 to C1 and π (because N is sound), obtaining a configuration C2 where
C2(p) = n. But since n was executed before C1, this violates the acyclicity of N . J

The next step is to convert the condition from Lemma 5 to a condition on the graph of
a negotiation.

I Proposition 6. Let N be an acyclic, deterministic, sound negotiation, and let m,n be two
atomic negotiations in N . Then m ‖ n iff there exists a run containing both m,n, and there
is neither a local path from m to n nor a local path from n to m.

Observe that dom(m)∩ dom(n) = ∅ is a necessary condition for m ‖ n. Thus, from Propos-
ition 6 and Lemma 2 we immediately obtain:

I Theorem 7. For any acyclic, deterministic, sound negotiation N we can decide in linear
time whether two atomic negotiations m,n of N satisfy m ‖ n. The above problem is
Nlogspace-complete.

5 Omitting problem

In this section we will be interested in determining the existence of some special successful
runs of a deterministic negotiation N . Let B ⊆ N be a set of nodes of a negotiation N . We
say that a run (n1, a1)(n2, a2) . . . omits B if it does not contain any nodes from B, that is,

CONCUR 2016



12:8 Soundness in negotiations

ni 6∈ B for all i. Let P ⊆ N × R be a set of positive requirements. We say that a run as
above includes P and omits B if it omits B and contains all the pairs from P .

We are interested in deciding if for a given N together with P and B there is a successful
run of N including P and omitting B. We will consider only N that are sound, acyclic, and
deterministic.

As a first step we define a game G(N , B) that is intended to produce runs that omit B
(see e.g. [12] for an introduction to games):

the positions of Eve are N \B,
the positions of Adam are N ×R,
from n, Eve can go to any (n, a) with a ∈ out(n),
from (n, a), Adam can choose any process p ∈ Proc and go to n′ = δ(n, a, p),
the initial position is ninit ,
Adam wins if the play reaches a node in B, Eve wins if the play reaches nfin.

Observe that since N is acyclic, the winning condition for Eve is actually a safety condition:
every maximal play avoiding B is winning for Eve. So if Eve can win then she wins with a
positional strategy. A deterministic positional strategy for Eve is a function σ : N → R, it
indicates that at position n Eve should go to position (n, σ(n)). Since G(N , B) is a safety
game for Eve, there is a biggest non-deterministic winning strategy for Eve, i.e., a strategy
of type σmax : N → P(R). The strategy σmax is obtained by computing the set WE of all
winning positions for Eve in G(N , B), and then setting for every n ∈ N :

σmax(n) = {a ∈ out(n) : ∀p ∈ dom(n). δ(n, a, p) ∈WE}

I Lemma 8. If N has a run omitting B then Eve has a winning strategy in G(N , B).

I Lemma 9. Suppose N is sound. Let σ : N → R be a winning strategy for Eve in G(N , B).
Consider the set S of nodes that are reachable on a play from ninit respecting σ. There is a
successful run of N containing precisely the nodes S.

Proof. Consider an enumeration n1, n2, ..., nk of the nodes in S ⊆ (N \B) according to the
topological order 4N . Let wi = (n1, σ(n1)) . . . (ni, σ(ni)). By induction on i ∈ {1, . . . , k}
we prove that there is a configuration Ci such that Cinit

wi−→ Ci is a run of N . This will
show that wk is a successful run containing precisely the nodes of S.

For i = 1, n1 = ninit , in Cinit all processes are ready to do n1, so C1 is the result of
performing (n1, σ(n1)).

For the inductive step, we assume that we have a run Cinit
wi−→ Ci, and we want to

extend it by Ci
(ni+1,σ(ni+1))−→ Ci+1. Consider a play respecting σ and reaching ni+1. The

last step in this play is (nj , σ(nj)) → ni+1, for some j ≤ i and nj in S. This means that
δ(nj , σ(nj), p) = ni+1 for some process p. Since j ≤ i and (nj , σ(nj)) occurred in wi (but
not ni+1), we have Ci(p) = ni+1. If we show that Ci(q) = {ni+1} for all q ∈ dom(ni+1) then
we obtain that ni+1 is enabled in Ci and we get the required Ci+1. Suppose by contradiction
that Ci(q) = {nl} for some l 6= i + 1. We must have l > i + 1, since otherwise nl already
occurred in wi. By definition of our indexing ni+1 ≺N nl. But then no execution from Ci
can bring process q to a state where it is ready to participate in negotiation ni+1, and p will
stay forever in ni+1. This contradicts the fact that the negotiation is sound. J

I Corollary 10. For a sound negotiation N : Eve wins in G(N , B) iff N has a successful
run omitting B.



Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:9

I Theorem 11. Let K be a constant. It can be decided in Ptime if for a given deterministic,
acyclic, and sound negotiation N and two sets B ⊆ N , and P ⊆ N ×R, with the size of P
at most K, there is a successful run of N containing P and omitting B.

Proof. If for some atomic negotiation m, we have (m, a) ∈ P and (m, b) ∈ P for a 6= b

then the answer is negative as N is acyclic. So let us suppose that it is not the case. By
Lemmas 8 and 9 our problem is equivalent to determining the existence of a deterministic
strategy σ for Eve in the game G(N , B) such that σ(m) = a for all (m, a) ∈ P , and all these
(m, a) are reachable on a play respecting σ.

To decide this we calculate σmax, the biggest non-deterministic winning strategy for
Eve in G(N , B). This can be done in Ptime as the size of G(N , B) is proportional to the
size of the negotiation. Strategy σmax defines a graph G(σmax) whose nodes are atomic
negotiations, and edges are (m, a,m′) if (m, a) ∈ σmax and m′ = δ(m, a, p) for some process
p. The size of this graph is proportional to the size of the negotiation. In this graph we look
for a subgraph H such that:

for every node m in H there is at most one a such that (m, a,m′) is an edge of H for
some m′;
for every (m, a) ∈ P there is an edge (m, a,m′) in H for some m′, and moreover m is
reachable from ninit in H.

We show that such a graph H exists iff there is a strategy σ with the required properties.
Suppose there is a deterministic winning strategy σ such that σ(m) = a for all (m, a) ∈ P ,

and all these (m, a) are reachable on a play respecting σ. We now define H by putting an
edge (m, a,m′) in H if σ(m) = a and and m′ = δ(m, a, p) for some process p. As σ is
deterministic and winning, this definition guarantees that H satisfies the first item above.
The second item is guaranteed by the reachability property that σ satisfies.

For the other direction, given such a graph H we define a deterministic strategy σH . We
put σH(m) = a if (m, a,m′) is an edge of H. If m is not a node in H, or has no outgoing
edges in H then we put σH(m) = b for some arbitrary b ∈ σmax(m). It should be clear that
σH is winning since every play respecting σH stays in winning nodes for Eve. By definition
σH(m) = a for all (m, a) ∈ P , and all these (m, a) are reachable on a play respecting σH .

So we have reduced the problem stated in the theorem to finding a subgraph H of
G(σmax) as described above. If there is such a subgraph H then there is one in form of a
tree, where the edges leading to leaves are of the form (m, a,m′) with (m, a) ∈ P . Moreover,
there is such a tree with at most |P | nodes with more than one child. So finding such a tree
can be done by guessing the |P | branching nodes and solving |P |+ 1 reachability problems
in G(σmax). This can be done in Ptime since the size of P is bounded by K. J

6 Workflows and deterministic negotiations with data

We show how our algorithms from the previous sections can be used to check functional prop-
erties of deterministic negotiations, like those studied for workflow systems with data [15].
We take some of the functional properties of [15], and give polynomial algorithms for veri-
fying them over deterministic, acyclic, sound negotiations.

In this section we consider acyclic, deterministic negotiations with shared variables over
a finite domain, that can be updated by the outcomes of the negotiation. More precisely,
each outcome (n, a) ∈ N ×R comes with a set Σ of operations on these shared variables. In
our examples this set Σ is composed of alloc(x), read(x), write(x), and dealloc(x).

Formally, a negotiation with data is a negotiation with one additional component: N =
〈Proc, N, dom, R, δ, `〉 where ` : (N × R) → P(Σ×X) maps every outcome to a (possibly

CONCUR 2016



12:10 Soundness in negotiations

empty) set of data operations on variables from X. We assume that for each (n, a) ∈ N ×R
and for each variable x ∈ X the label `(n, a) contains at most one operation on x, that is,
at most one element of Σ× {x}.

As an example, we enrich the negotiation of Figure 1 with data, as shown in Table 1.
(This example is taken from [13]). The variables are X = {x1, . . . , x10}. The table gives
for each outcome and for each operation the set of (indices of the) variables to which the
outcome applies this operation.

atom. neg. n0 n1 n2 n3 n4 n5 n6 n7

outcome a a b a a a a b a a

alloc 1, . . . , 10
read 1 1 1, 8 5 2, 7, 9 6, 8, 9
write 3, 5, 6 3 1, 4, 8 9, 10 2, 7, 10 7 9 6, 8
dealloc 4 2 5, 6, 7

Table 1 Data for the negotiation of Figure 1 (adapted from [13]).

In [13] some examples of data specifications for workflows are considered. They are
presented in the form of anti-patterns, that is, patterns that the negotiation should avoid.
(1) Inconsistent data: an atomic negotiation reads or writes a variable x while another atomic

negotiation is writing, allocating, or deallocating it in parallel.
In our example there is an execution in which (n2, a) and (n6, a) write to x8 in parallel.

(2) Weakly redundant data: there is an execution in which a variable is written and never
read before it is deallocated or the execution ends.
In the example, there is an execution in which x10 is written by (n4, a), and never read
again.

(3) Never destroyed: there is an execution in which a variable is allocated and then never
deallocated before the execution ends.
In the example, the execution taking (n5, b) never deallocates x2.
It is easy to give algorithms for these properties that are polynomial in the size of the

reachability graph. We give the first algorithms that check these properties in polynomial
time in the size of the negotiation, which can be exponentially smaller than its reachability
graph.

For the first property we can directly use the algorithm of the previous section: It
suffices to check if the negotiation has two outcomes (m, a), (n, b) such that m and n can be
concurrently enabled, and there is variable x such that `(a) ∩ {read(x),write(x)} 6= ∅ and
`(b) ∩ {write(x), alloc(x), dealloc(x)} 6= ∅.

In the rest of the section we present a polynomial algorithm for the following ab-
stract problem, which has the problems (2) and (3) above as special instances. Given
sets O1,O2,O ⊆ N ×R such that O1 ∪O2 ⊆ O, we say that the negotiation N violates the
specification (O1,O2,O) if there is a run w = (n1, a1) · · · (nk, ak) with indices 0 ≤ i < j ≤ k
such that (ni, ai) ∈ O1, (nj , aj) ∈ O2, and (nl, al) /∈ O for all i < l < j. In this case we also
say that (O1,O2,O) is violated at (ni, ai), (nj , aj). Otherwise N complies with (O1,O2,O).
I Example 12. Observe that variable x is weakly redundant (specification of type (2)) iff
N violates (O1,O2,O), where O1 = {(n, a) ∈ N × R : write(x) ∈ `(n, a)}, O2 = {(n, b) ∈
N ×R : n = nfin ∨ dealloc(x) ∈ `(n, b)} and O = {(n, c) : `(n, c) ∩ (Σ× {x}) 6= ∅}.

Variable x is never destroyed (specification of type (3)) iff N violates (O1,O2,O), where
O1 = {(n, a) ∈ N × R : alloc(x) ∈ `(n, a)}, O2 = {nfin}, O = {(n, c) : n = nfin ∨ `(n, c) ∩
{alloc(x), dealloc(x)} 6= ∅}.



Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:11

For the next proposition it is convenient to use the notation m +−→ n, whenever there is
a (non-empty) local path in N from the atomic negotiation m to the atomic negotiation n.

I Proposition 13. Let N be an acyclic, deterministic, sound negotiation with data, and
(O1,O2,O) a specification. Let (m, a) ∈ O1, (n, b) ∈ O2. Then N violates (O1,O2,O) at
(m, a), (n, b) iff either m ‖ n, or m +−→ n and N has a run from ninit containing P =
{(m, a), (n, b)}, and omitting the set B = {m′ ∈ O : m +−→ m′

+−→ n}.

Putting together Proposition 13 and Theorem 11 we obtain:

I Corollary 14. Given an acyclic, deterministic, sound negotiation with data N , and a
specification (O1,O2,O), it can be checked in polynomial time whether N complies with
(O1,O2,O).

7 Soundness of acyclic weakly non-deterministic negotiations is in
Ptime

In previous sections we have presented algorithms for analysis of sound negotiations. Here
we show that our techniques also allow to find a bigger class of negotiations for which we can
decide soundness in Ptime. The class we consider is that of acyclic, weakly non-deterministic
negotiations, c.f. page 5. That is, we allow some processes to be non-deterministic, but every
atomic negotiation should involve at least one deterministic process.

Recall that ND is the restriction of N to deterministic processes. Since N is weakly non-
deterministic, every atomic negotiation involves a deterministic process, so ND = N . Recall
also that for an acyclic negotiation N we fixed some linear order 4N that is a topological
order of the graph of N .

The first lemma gives a necessary condition for the soundness of N that is easy to check.
It is proved by showing that ND cannot have much more behaviours than N .

I Lemma 15. If N is a sound, acyclic, weakly non-deterministic negotiation then ND is
sound.

We then first consider the case of a negotiation with only one non-deterministic process.
The next lemma reduces (un)soundness of N to some pattern in ND.

I Lemma 16. Let N be an acyclic, weakly non-deterministic negotiation with only one
non-deterministic process p. Then N is not sound, if and only if, either:
ND is not sound, or
ND is sound, and it has two nodes m 4N n with outcomes a ∈ out(m), b ∈ out(n) such
that:
p ∈ dom(m) ∩ dom(n), n 6∈ Sp = δ(m, a, p), and
there is a successful run of ND containing P = {(m, a), (n, b)} and omitting B =
{n′ ∈ Sp : m ≺N n′ ≺N n}.

The next lemma deals with the case when there is more than one non-deterministic
process.

I Lemma 17. An acyclic weak non-deterministic negotiation N is not sound if and only if:
1. either its restriction ND to deterministic processes is not sound,
2. or, for some non-deterministic process p, its restriction N p to p and the deterministic

processes is not sound.

CONCUR 2016



12:12 Soundness in negotiations

I Theorem 18. Soundness can be decided in Ptime for acyclic, weakly non-deterministic
negotiations.

Proof. By Lemma 17 we can restrict to negotiations N with one non-deterministic process.
For every m 4N n, a and b we check the conditions described in Lemma 16. The existence
of a run of ND can be checked in Ptime thanks to Theorem 11 and the fact that the size
of P is constant.

J

8 Beyond acyclic weakly non-deterministic negotiations

In this section we show that the polynomial-time result for acyclic, weakly non-deterministic
negotiations from Section 7 requires both acyclicity and weak non-determinism. We prove
that if we remove one of the two assumptions then the problem becomes coNP-complete. In-
deed, even a very mild extension of acyclicity makes the soundness problem coNP-complete.

It is not very surprising that deciding soundness for acyclic, non-deterministic negoti-
ations is coNP-complete. The problem is in coNP since all runs are of polynomial size, so
it suffices to guess a run and check if the reached configuration is a deadlock. The hardness
is by a simple reduction of SAT to the complement of the soundness problem. It strongly
relies on non-determinism.

I Proposition 19. Soundness of acyclic non-deterministic negotiations is coNP-complete.

In view of the above proposition, the other possibility is to keep weak non-determinism
and relax the notion of acyclicity. We consider a very mild relaxation: deterministic processes
still need to be acyclic. This condition implies that all the runs are of polynomial size. We
show that even for very weakly non-deterministic negotiations (c.f. page 5) the problem is
already coNP-complete.

I Theorem 20. Non-soundness of det-acyclic, very weakly non-deterministic negotiations
is NP-complete.

9 Conclusions

Analysis of concurrent systems is very often Pspace-hard because of the state explosion
problem. One way to address this problem is to look for restricted classes of concurrent
systems which are non-trivial, and yet are algorithmically easier to analyze. We argue
in this paper that negotiations are well adapted for this task. Processes in a negotiation
are stateless, at every moment their state is the set of negotiations they are willing to
engage. When processes are non-deterministic this mechanism can simulate states, so that
the interesting cases occur when non-determinism is limited. These limitations are still
relevant as show examples from workflow nets. In short, the negotiation model offers a simple
way to formulate restrictions that are sufficiently expressive and algorithmically relevant.

We have shown that a number of verification problems for sound deterministic acyclic
negotiations can be solved in Ptime or even in Nlogspace. In our application to workflow
Petri nets, acyclicity and determinism (equivalent to free-choiceness) are quite common:
about 70% of the industrial workflow nets of [16, 7, 6] are free-choice, and about 60% are
both acyclic and free-choice (see e.g. the table at the end of [6]).

Open problems. It would be interesting to have a better understanding what verification
problems for deterministic, acyclic, sound negotiations can be solved in Ptime. The coNP



Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:13

result for weakly-deterministic negotiations shows that one should proceed carefully here:
allowing arbitrary products with finite automata would not work.

References
1 Jörg Desel and Javier Esparza. Negotiations and Petri nets. In Int. Workshop on Petri

Nets and Software Engineering (PNSE’15), volume 1372 of CEUR Workshop Proceedings,
pages 41–57. CEUR-WS.org, 2015.

2 Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

3 Javier Esparza and Jörg Desel. On negotiation as concurrency primitive. In CONCUR,
pages 440–454, 2013. Extended version in CoRR abs/1307.2145.

4 Javier Esparza and Jörg Desel. On negotiation as concurrency primitive II: Determin-
istic cyclic negotiations. In FoSSaCS, pages 258–273, 2014. Extended version in CoRR
abs/1403.4958.

5 Javier Esparza and Jörg Desel. Negotiation programs. In Application and Theory of Petri
Nets and Concurrency, volume 9115 of LNCS, pages 157–178. Springer, 2015.

6 Javier Esparza and Philipp Hoffmann. Reduction rules for colored workflow nets. In FASE,
volume 9633 of LNCS, pages 342–358. Springer, 2016.

7 Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann, Hagen
Völzer, and Karsten Wolf. Instantaneous soundness checking of industrial business process
models. In Business Process Management, pages 278–293. Springer, 2009.

8 Cédric Favre, Hagen Völzer, and Peter Müller. Diagnostic information for control-flow
analysis of workflow graphs (a.k.a. free-choice workflow nets). In TACAS 2016, volume
9636 of LNCS, pages 463–479. Springer, 2016.

9 Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf.& Comput., 204(6):920–
956, 2006.

10 Anca Muscholl. Automated synthesis of distributed controllers. In ICALP 2015, volume
9135 of LNCS, pages 11–27. Springer, 2015.

11 Natalia Sidorova, Christian Stahl, and Nikola Trcka. Soundness verification for conceptual
workflow nets with data: Early detection of errors with the most precision possible. Inf.
Syst., 36(7):1026–1043, 2011.

12 Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of LNCS, pages 635–655. Springer, 2008.

13 Nikola Trcka, Wil M. P. van der Aalst, and Natalia Sidorova. Data-flow anti-patterns:
Discovering data-flow errors in workflows. In Advanced Information Systems Engineering
(CAiSE), volume 5565 of LNCS, pages 425–439. Springer, 2009.

14 Wil M. P. van der Aalst. Business process management as the “Killer App” for Petri nets.
Software & Systems Modeling, 14(2):685–691, 2015.

15 Wil M.P. van der Aalst. The application of Petri nets to workflow management. J. Circuits,
Syst. and Comput., 08(01):21–66, 1998.

16 B. van Dongen, M. Jansen-Vullers, H.M.W. Verbeek, and Wil M. P. van der Aalst. Verifica-
tion of the SAP reference models using EPC reduction, state-space analysis, and invariants.
Computers in Industry, 58(6):578–601, 2007.

17 W. Zielonka. Notes on finite asynchronous automata. RAIRO–Theoretical Informatics and
Applications, 21:99–135, 1987.

CONCUR 2016


	Introduction
	Negotiations
	Main definitions

	Soundness of acyclic deterministic negotiations
	Races
	Omitting problem
	Workflows and deterministic negotiations with data
	Soundness of acyclic weakly non-deterministic negotiations is in Ptime
	Beyond acyclic weakly non-deterministic negotiations
	Conclusions

