
Distributed Games

Swarup Mohalik1 and Igor Walukiewicz2

Abstract

We propose a notion of distributed games as a framework to formalize

and solve distributed synthesis problems. In general the problem of

solving distributed games is undecidable. We give two theorems allowing

to simplify, and possibly to solve, some distributed games. We show how

several approaches to distributed synthesis found in the literature can

be formalized and solved in the proposed setting.

1 Introduction

Consider a system consisting of a process, an environment and possible ways
of interaction between them. The synthesis problem is stated as follows: given
a specification S, find a finite state program P for the process such that the
overall behaviour of the system satisfies S, no matter how the environment
behaves.

In a distributed system, in general, one can have multiple processes. The
system specifies possible interactions between the processes and the environ-
ment and also the interactions among the processes themselves. The synthesis
problem here is to find a program for each of the processes such that the overall
behaviour of the system satisfies a given specification. We call this distributed
synthesis problem (DSP).

In this paper we study DSP in a setting where there is a fixed set of pro-
cesses with no interaction among themselves; they interact only with the en-
vironment. Thus, any communication among processes in the system must be
channeled through the environment. This is the typical scenario, for example,
in any communication network where processes are peer protocols and the en-
vironment is the stack of lower layers (including the communication medium)
below them. Typical metaphors of communication and synchronization like
channels, rendezvous, handshakes can be easily presented in our model.

1Sasken Communication Technologies Ltd., Bangalore
2LaBRI, CNRS, 351, cours de la Libration, 33405 Talence Cedex, France, igw@labri.fr

1

Earlier approaches. The distributed synthesis problem have been considered
by Pnueli and Rosner in the setting of an architecture with fixed channels
of communication among processes [27]. They have shown that distributed
synthesis is undecidable for most classes of architectures. They have obtained
decidability for a special class of hierarchical architectures called pipelines.
It must be noted that the basic undecidability and lower bounds (in case
of decidability) follow from much earlier results on the multi-player games
of Peterson and Reif [25]. After the work of Pnueli and Rosner, the results
has been extended to branching time specifications over two-way pipelines
and one-way rings [13]. These are essentially the only architectures for which
the problem is decidable. Madhusudan and Thiagarajan [17] considered local
specifications, i.e., a conjunction of specifications for each of the process. For
such specifications the class of decidable architectures is slightly larger and
includes doubly-flanked pipelines.

The other approach to distributed synthesis, initiated roughly at the same
time as the work of Pnueli and Rosner, comes from control theory of discrete
event systems [28, 15, 30]. The system is given as a plant (deterministic tran-
sition system) and the distributed synthesis problem is to synthesize a number
of controllers, each being able to observe and control only a specific subset of
events of the plant. While the original problem refers only to safety properties,
an extension to the µ-calculus specifications has been also considered [4]. Ex-
cept for some special cases, the problem turns out to be undecidable ([4, 32]).
It is one of the important goals of the area of decentralized control synthesis to
identify conditions on a plant and a specification such that DSP is decidable.

A different approach was suggested in [18]. The authors consider a set-
ting were processes communicate via handshaking, i.e., common actions. This
setting can easily encode undecidable architectures from Pnueli and Rosner
setting so the synthesis problem, even for local specifications, is undecidable.
To get decidability results the authors propose to restrict the class of allowed
controllers.

Our approach. Game theory provides an approach to solving the (centralized)
synthesis problem. An interaction of a process with its environment can be
viewed as a game between two players [1, 26, 31]. Then the synthesis problem
reduces to finding a finite-state winning strategy for the process. The winning
strategy can then be implemented as the required program. This approach
does not extend to DSP because there we have more than two parties.

In this paper, we suggest an approach to DSP by directly encoding the
problem game-theoretically. We extend the notion of games to n players play-
ing a game against a single hostile environment. We call this model distributed
games. In this model, there are no explicit means of interaction among pro-
cesses. Any such interaction must take place through the environment. More-
over, each player has only a local view of the global state of the system. Hence,
a local strategy for a player is a function of its local history (of player’s own
states and the partial view of the environment’s states). A distributed strategy

2

is a collection of local strategies; one for each of the players. The environment
in distributed games, on the other hand, has access to the global history. Any
play in a distributed game consists of alternating sequence of moves of (some
of) the players and of the environment.

Distributed synthesis in this model amounts to finding a distributed win-
ning strategy. This means finding a collection of local strategies that can win
against the global environment. A side effect of the requirement that the play-
ers need to win together is that they need to implicitly communicate when
they make their moves. The card game of bridge is a good example of the kind
of implicit communication we have in mind. When n = 1, distributed games
reduce to the usual two-party games.

The main technical contribution of the paper are two theorems allowing
simplification of distributed games. In general it is not decidable to check
whether there is a distributed winning strategy in a finite distributed game.
The simplification theorems allow to reduce the number of players and to
reduce nondeterminism in the game. In some cases, by repetitively applying
these theorems we can simplify the game to a game with only one player against
the environment (where the existence of a winning strategy is decidable). The
other possibility is that after simplification we get a game where environment
has no choice of moves. We show that in this case the existence of a distributed
strategy is also decidable. These two theorems are enough to solve all decidable
cases of distributed control problems mentioned above.

Related works. Readers may find the model of distributed games very close
to the models of distributed systems in [11]. The closeness is not accidental:
the model was partly motivated by this and the later works of Halpern et
al. [12, 10] which explore the issue of knowledge in distributed systems.

Distributed multi-player games have been studied extensively in classical
game theory, both in the settings of cooperation and non-cooperation among
the players ([22, 20]). There have been attempts to model and logically reason
about cooperation as in [23, 24]. Distributed games can be seen as a special
type of concurrent processes – the models of Alternating Temporal Logic – with
incomplete information ([2]), and the distributed systems model of Bradfield [7]
(which generalizes ATL and integrates incomplete information). We consider
our proposal as being something between these models and concrete synthesis
problems, like the one for pipeline architectures. Our model is less general but
this permits us to obtain stronger results that allow to solve concrete synthesis
problems.

Amroszkiewicz and Penczek [3] study a class of games, also called dis-
tributed games, but the framework, questions and approaches are closer to
classical game theory and different from ours.

Organization of the paper We start with a definition of games and distributed
games. We give some simple properties of our model. In Sections 4 and 5 we
formulate the two main theorems allowing to simplify distributed games. In

3

the rest of the paper we give four example applications. In Section 6 we solve
the synthesis problem for pipelines. Then, we consider doubly-flanked pipelines
with local specifications. Next, we apply our setting to the synthesis problem
for communicating state machines of Madhusudan and Thiagarajan [18]. Fi-
nally, we consider decentralized control synthesis of Rudie and Wonham [30].
We give these examples in order to show that the framework of distributed
games is rich enough to model different synthesis problems proposed in the
literature.

2 Games

A game G is a tuple 〈P, E, T ⊆ V × V,Acc ⊆ V ω〉 where 〈P, E, T 〉 is a graph
with the vertices V = P ∪ E and Acc ⊆ V ω is a set defining the winning
condition. We say that a vertex x′ is a successor of a vertex x if T (x, x′) holds.
We call P the set of player vertices and E the set of environment vertices.

A play between player and environment from some vertex v ∈ V proceeds
as follows: if v ∈ P then player makes a choice of a successor otherwise envi-
ronment chooses a successor, from this successor the same rule applies and the
play goes on forever unless one of the parties cannot make a move. If a player
cannot make a move he loses; similarly for the environment. The result of an
infinite play is an infinite path v0v1v2 . . . This path is winning for player if the
sequence belongs to Acc. Otherwise environment is the winner.

A strategy σ for player is a function assigning to every sequence of vertices
~v ending in a vertex v from P a vertex σ(~v) which is a successor of v. The
strategy is memoryless iff σ(~v) = σ(~w) whenever ~v and ~w end in the same
vertex.

A play respecting σ is a sequence v0v1 . . . such that vi+1 = σ(vi) for all i

with vi ∈ P . The strategy σ is winning from a vertex v iff all the plays starting
in v and respecting σ are winning. A vertex is winning if there exists a strategy
winning from it. The strategies for the environment are defined similarly.

In this paper all acceptance conditions Acc ⊆ V ω will be regular: that is,
there will be a colouring λ : V → Colours of the set of vertices with a finite
set of colours and a regular language L ⊆ Coloursω, such that

Acc = {v0v1 . . . ∈ V ω : λ(v0)λ(v1) . . . ∈ L}

An important type of regular winning condition is a parity condition. It is
a condition determined by a function Ω : V → {0, . . . , d} in the following way:

Acc = {v0v1 . . . ∈ V ω : lim inf
i→∞

Ω(vi) is even}

Hence, in this case, the colours are natural numbers and we require that the
smallest among those appearing infinitely often is even. The main results
about games that we need are summarized in the following theorem.

4

Theorem 1 ([19, 9, 21])
Every game with regular winning conditions is determined, i.e., every vertex is
winning for the player or for the environment. In a parity game a player has a
memoryless winning strategy from each of his winning vertices. Similarly for
the environment. It is decidable to check if a given vertex of a finite game with
a regular winning condition is winning for the player.

3 Distributed games

A local game is any game G = 〈P, E, T 〉 as above but without a winning
condition and with the restriction that it is bipartite, i.e., a successor of a
player move is always an environment move and vice versa.

Let Gi = 〈Pi, Ei, Ti〉, for i = 1, . . . , n, be local games. A distributed game
constructed from G1, . . . , Gn is G = 〈P, E, T, Acc ⊆ (E ∪ P)ω〉 where:

1. E = E1 × · · · × En.

2. P = (P1 ∪ E1)× . . . (Pn ∪ En) \ E.

3. From a player’s position, we have (x1, . . . , xn) → (x′1, . . . , x
′
n) ∈ T if and

only if xi → x′i ∈ Ti for all xi ∈ Pi and xi = x′i for all xi ∈ Ei.

4. From environment’s position, if we have (x1, . . . , xn) → (x′1, . . . , x
′
n) ∈ T

then for every xi, either xi = x′i or xi → x′i ∈ Ti .

5. Acc is any winning condition.

Observe that a distributed game is a bipartite game. Notice that there is an
asymmetry in the definition of environment’s and player’s moves. In a move
from player’s to environment’s position, all components which are players’
positions must change. In the move from environment’s to player’s position, all
components are environment’s positions but only some of them need to change.
The other difference is that the set of moves from the environment’s position
need not be a free product of local moves, i.e., some moves of the environment
in local games may be blocked in the global game (cf. the following subsection
with examples). Because of this, it is not necessary to specify moves from
environment’s to player’s positions in local games. We can always assume that
in local games environment can move to any player’s position, then we can put
restrictions in the definition of the global game.

We interpret a distributed game as a game of n players against environment.
This intuition will become clear when we will define the notions of views and
local strategies.

For an n-tuple η and l = 1, . . . , n, let η[l] denote the l’th component of η.
Similarly, for a sequence ~v = η1η2 . . . of n-tuples, let ~v[l] = η1[l]η2[l] . . . denote
the projection of the sequence on the l’th component.

From the definition of the moves it is easy to observe that given a play
~v in a distributed game G, the projection of ~v to the positions of the i-local

5

game, ~v[i], is of the form e+
0 p0e

+
1 p1 . . . Note that the players’ positions do not

repeat since as soon as the local game moves to a player position, it reacts
immediately with an environment position.

Definition 2 Consider a play ~v and let e+
0 p0e

+
1 p1 . . . be the projection of ~v

on i-th component. The view of process i of ~v is view i(~v) = e0p0e1p1 . . .

• An i-local strategy is a strategy in the game Gi.

• A distributed strategy σ is a tuple of local strategies 〈σ1, . . . , σn〉. It
defines a strategy in G by σ(~v(x1, . . . , xn)) = (e1, . . . , en) where ei = xi if
xi ∈ Ei and ei = σi(view i(~v ·xi)) otherwise. We call σ the global strategy
associated with the given distributed strategy.

Remark: It is important to note that thanks to the definition of distributed
game any tuple of local strategies indeed defines a (global) strategy, i.e, it
always suggests a valid move.

Examples and easy observations. Consider the two games, where players’ po-
sitions are marked by squares and environments’ positions by circles:

e1 e′

1

p1 p′

1

e2 e′

2

p2 p′

2

G1 = G2 =

The difference between the two games is that in the second the moves of the
player are restricted. Consider a distributed game build from G1 and G2:

e1, e
′

2

e′

1
, e′

2

p′

1
, p′

2

e1, e2

e′

1
, e2

p1, p2

Observe that in this game environment has less possibilities than it would
have in the free product of G1 and G2. For example, from the position e′1 in
G1 environment can move to p1, similarly from e′2 in G2 it can move to p′2; but
there is no move from (e′1, e

′
2) to (p1, p

′
2) in the distributed game.

Suppose that the winning condition in this game is to avoid environments’
positions where the components have different polarities, i.e., vertices (e1, e

′
2)

and (e′1, e2).

6

It is clear that there is a global winning strategy in this game. In position
(p1, p2) players should go to (e1, e2) and in position (p′1, p

′
2) they should go to

(e′1, e
′
2). This strategy is also a distributed strategy: player 1 chooses e1 in p1

and e′1 in p′1; similarly for player 2.
Now let us modify the example a little.

e1, e
′

2

e′

1
, e′

2

p1, p
′

2

e1, e2

e′

1
, e2

p1, p2

This is a global game build from the same local games G1 and G2 but the
moves of the environment are different. Instead to the position (p′1, p

′
2) we

have a move to the position (p1, p
′
2). It is clear that there is a global winning

strategy in this game. We claim that there is no distributed strategy. Suppose
conversely that we have a distributed strategy 〈σ1, σ2〉 which is winning from
the vertex (e′1, e2). If environment moves to the position (p1, p

′
2) then player 1

should respond with e′1. Hence σ1(e1p1) = e′1. But now, if environment moves
to (p1, p2) then the view of player 1 of the play is the same, so he moves also
to σ1(e1p1) = e′1, which is a losing move. As another example consider

e1, e
′

2

e′

1
, e′

2

p1, p
′

2

e1, e2

e′

1
, e2

p1, p2

This is almost the same game as before but for some suppressed moves of
the environment. Once again there is a global winning strategy in this game.
But there is also a distributed strategy. Define σ1(~vp1) to be e′1 if the number
of p1 in ~v is even and to be e1 otherwise. Let σ2(~vp2) = e2 and σ2(~vp′2) = e′2.
It is easy to verify that 〈σ1, σ2〉 is a distributed strategy winning from (e′1, e2).
Observe that strategy σ1 is not memoryless. It is easy to check that there is
no distributed strategy which is a memoryless strategy for player 1.

The following fact summarizes the observations we have made above.

Fact 3 There exist distributed games with a global winning strategy for the
players but no distributed winning strategy. There exist distributed games
with a memoryless global strategy but where all distributed strategies require
memory.

7

It is not difficult to show that it is not decidable to check if there is a dis-
tributed winning strategy in a given distributed game. The argument follows
the same lines as for example in [27, 16, 14, 4].

Fact 4 The following problem is undecidable: Given a finite distributed game
check if there is a distributed winning strategy from a given position.

Recall that by Theorem 1 it is decidable if there is a global winning strategy
in a finite game. There are two cases when existence of a global strategy
guarantees existence of a local strategy. The first is when we just have one
player. The second is when a game is environment deterministic, i.e., if each
environment position has exactly one successor (like in the second example
above).

Fact 5 If there is a global winning strategy in an environment deterministic
game then there is a distributed winning strategy from a given position.

Proof
A global winning strategy in an environment deterministic game determines a
single path in the game. Take some player i nad a prefix ~v of this path such
that view i(~v) is a player’s position. It is easy to see that view i(~v) determines
~v uniquely. This is because each time i-th component of a global position is a
player’s position, in the next step it changes to environments position. Hence,
given view0(~v) player i can make exactly the move that is suggested by the
global strategy from ~v. We define this way all the local strategies. Resulting
distributed strategy will choose exactly the same path in the game as the initial
global strategy. �

4 Division operation

Let us assume that we have a distributed game G = 〈P, E, T, Acc〉 with
n + 1 players constructed from local games Gi = 〈Pi, Ei, Ti〉. We would like to
construct an equivalent game with n players. This will be possible if some of
the players can deduce the global state of the game.

Definition 6 A game G is i-deterministic if for every environment position
η of G and every (η, π1), (η, π2) ∈ Te, if π1 6= π2 then π1[i], π2[i] ∈ Pi and
π1[i] 6= π2[i].

Intuitively, the definition implies that player i can deduce the global position
of the game from its local view.

Fact 7 In an i-deterministic game G, if (η, π) ∈ Te and η[i] = π[i] ∈ Ei, then
π is the only successor of η.

8

Proof
If η had more than one successors, then by the definition of i-deterministic
games, each one of them would have positions from Pi. This contradicts the
assumption that π[i] ∈ Ei. �

We use two functions for rearranging tuples flat((x0, xn), x1, . . . , xn−1) =
(x0, x1, x2, . . . , xn) and flat−1(x0, x1, x2, . . . , xn) = ((x0, xn), x1, . . . , xn−1). We
extend these functions point-wise to sequences.

Division operation For the game G, we define divide(G) = 〈P̃ , Ẽ, T̃ , Ãcc〉. It

consists of the local games G̃i = 〈P̃i, Ẽi, T̃i〉 (i = 0, . . . , n− 1) where:

• P̃i = Pi, Ẽi = Ei and T̃i = Ti for i = 1, . . . , n− 1;

• Ẽ0 = E0 × En and P̃0 = (P0 ∪ E0)× (Pn ∪ En) \ Ẽ0.

• In T̃0 we have transitions from (p0, en), (e0, pn), (p0, pn) to (e0, en) pro-
vided (p0, e0) ∈ T0 and (pn, en) ∈ Tn;

The global moves from the environment positions in divide(G) and the
acceptance condition are defined by:

• η → π ∈ T̃ if flat(η) → flat(π) ∈ T .

• Ãcc = {~v : flat(~v) ∈ Acc}.

Theorem 8
Let G be a 0-deterministic and n-deterministic distributed game of n+1 players.
For every position η of G: there is a distributed winning strategy from η iff there
is one from flat−1(η) in G̃.

The theorem follows from the two lemmas below. We will use view 01(~v)

as an abbreviation of view 1(view0(~v)) for ~v a path in G̃. Similarly for view 00.
Observe that view 01(~v) is a sequence of positions form (En∪Pn) and view00(~v)
is a sequence of positions form (E0 ∪ P0)

Lemma 9 If there is a distributed winning strategy in G from η0 then there
is one in G̃ from η̃0 = flat−1(η0).

Proof
Let us assume that there is a strategy in G. This means that there are strategies
σi : (EiPi)

+ → Ei for all i = 0, . . . , n. We define strategies in G̃. For i =

1, . . . , n−1 the strategies do not change, i.e., σ̃i = σi. Strategy σ̃0 : (Ẽ0P̃0)
+ →

Ẽ0 is defined by

σ̃0(~v) =





(σ0(view00(~v)), en) if last(~v) = (p1, en)

(e0, σn(view01(~v))) if last(~v) = (e0, pn)

(σ0(view00(~v)), σn(view01(~v))) if last(~v) = (p0, pn)

9

It is clear from the above definition that σ̃ is defined for all plays in G̃.
By induction on the length we show that for ~u in G̃ respecting σ̃, flat(~u) is

a play in G and flat(~u) respects σ. The base case is when ~u = η̃0 and it holds
trivially. The induction step follows directly from the definitions.

Finally, we show that the distributed strategy 〈σ̃0, σ̃1, . . . , σ̃n−1〉 is winning

in G̃. Take an infinite play ~u in G̃ respecting σ̃. All the finite prefixes of ~u

respect σ̃ so all the prefixes of flat(~u) respect σ. Hence flat(~u) respects σ, the

distributed strategy in G. Therefore, flat(~u) ∈ Acc which implies ~u ∈ Ãcc. �

Lemma 10 If there is a distributed winning strategy in G̃ from η̃0 then there
is one in G from η0 = flat(η̃0).

Proof
Suppose that there is a distributed winning strategy in G̃. We define strategies
in G. Once again the strategies for players 1, . . . , n − 1 do not change. From
the strategy σ0 : (Ẽ0 · P̃1)

+ → Ẽ1 we need to define two strategies σ0 and σn.
In order to do this, we need the following construction.

Let G̃(σ̃0, . . . , σ̃n) be the graph of the game G̃ where the moves of the
players are fixed by the respective strategies. The main observation is that for
a path ~v ∈ (E0 · P0)

+ there is at most one path ~u in G̃(σ̃0, . . . , σ̃n−1) such that
view00(~u)) = ~v. Assuming conversely that there exists two such paths, say ~u1

and ~u2. We have either:
Case 1 : There is the earliest environment position η and two player positions
π1 6= π2 such that ~u1 = ~u · η · π1 · ~w1 and ~u2 = ~u · η · π2 · ~w2. Let π1 =
((x0, xn), x1, . . . , xn) and π2 = ((x′0, x

′
n), x′1, . . . , x

′
n). Then, x0 6= x′0 since G is

0-deterministic. This gives view 00(~u1)) 6= view00(~u2)). A contradiction because
π is of the form ((p0, xn), x1, . . . , xn−1) for p0 a player’s position.

Case 2 : ~u1 is a proper prefix of ~u2 or vice versa. In this case, ~u2 =
~u1 · ~w · π. Hence, view 00(~u2)) is strictly longer than view 00(~u1)). This is also a
contradiction.

The above observation allows us to define a partial function that for a path
~v ∈ (E0P0)

+ gives the corresponding unique path (if it exists) p̃ath0(~v) in

G̃(σ̃0, . . . , σ̃n−1). By an analogous argument we can define the partial function

p̃athn(~v) for ~v ∈ (EnPn)+.
Now we define strategies:

1. σ0(~v0) = proj 1(σ̃0(view0(p̃ath0(~v0)))) for all ~v0 ∈ (E0 · P0)
+;

2. σn(~vn) = proj 2(σ̃0(view0(p̃athn(~vn)))) for all ~vn ∈ (En · Pn)+.

where proj 1 and proj 2 are the projections on the first and second component
respectively.

As in the previous claim, to show that 〈σ0, . . . , σn〉 is winning in G, it suffices
to prove by induction on length that for all finite plays ~v in G respecting σ,
flat−1(~v) is a play respecting σ̃.

10

The base case is when ~v = η0. Then η̃0 = flat−1(η0) satisfies the condi-
tions. The induction step when last(~v) ∈ P follows directly from the def-
inition of environment transitions. Slightly more interesting case is when
~v ends in an environment position preceded by a players position, say ~v =
~w(x0, . . . , xn)(e0, . . . , en). Consider σ̃(flat−1(~v)) = ((e′0, e

′
n), e′1, . . . , e

′
n−1). We

want to show that ei = e′i for all i.
First, consider any i = 1, . . . , n − 1. By the definition of flat function:

view i(~v) = view i(flat−1(~v)). If xi ∈ Ei the by the definition of distributed
games ei = xi and e′i = xi. If not then

ei = σ(view i(~w)xi) = σ̃(view i(flat−1(~w))xi) = e′i

Next, we consider the case of i = 0. If x0 ∈ E0 then e0 = x0 and e′0 = x0

by the definition of the game G̃. If not then we have by the definition of σ0:

e0 = proj 1(σ̃0(view0(p̃ath0(view0(~v))))) and e′0 = proj 1(σ̃0(view0(flat−1(~v))))

By the definition of flat function we have that view 00(flat−1(~v))) = view 0(~v).

Hence, flat−1(~v) = p̃ath0(view0(~v)) which shows that e0 = e′0. The case of
i = n is analogous.

�

5 Gluing operation

Let us assume that we have a game G = 〈P, E, T, Acc〉 constructed from n + 1
local games G0, . . . , Gn. We are going to define an operation glue which is like
determinizing the behaviour of the environment for one of the players. This is
sometimes a necessary step before being able to apply the division operation.
As an example suppose that in a distributed game we have the moves from
(e0, e1) as on the left side of the picture:

e0, e1

p′

0
, p1 p′′

0
, p1

e0, e1

{p′

0
, p′′

0
}, p1

There are two transitions with the same player 1 positions, so the game
is not 1-deterministic and we cannot apply the division operation. Gluing
together the possibilities for player 0 (as depicted on the right) we make this
part of the game deterministic for both players.

For gluing operation to work, the game should satisfy certain conditions.
There are in fact two sets of conditions describing different reasons for the
operation to work. The first is when, the player being glued has almost com-
plete information about the whole game. In the second, he almost does not
influence the behaviour of other components.

11

Definition 11 A game G is I-gluable if it satisfies the following conditions.

1. G is 0-deterministic;

2. G has no 0-delays: if (e0, e1, . . . , en) → (x0, x1, . . . , xn) then x0 ∈ P0;

3. The winning condition Acc is a parity condition on P0: there is a map
Ω : (P0 ∪ E0) → N such that ~v ∈ Acc iff lim inf i→∞ Ω(view0(~v)) is even.

Definition 12 A game G is II-gluable if it satisfies the following conditions:

1. The moves of other players are not influenced by P0 moves: for every
transition (e0, e1, . . . , en) → (x0, x1, . . . , xn) and every other environment
position e′0 we have (e′0, e1, . . . , en) → (x′0, x1, . . . , xn) for some x′0.

2. The moves of payer 0 are almost context independent: there is an equiva-
lence relation ∼⊆ (E0×P0)

2 s.t. if (e0, e1, . . . , en) → (p0, x1, . . . , xn) then
for every (e′0, p

′
0): (e′0, e1, . . . , en) → (p′0, x1, . . . , xn) iff (e′0, p

′
0) ∼ (e0, p0).

3. G has no 0-delays.

4. The winning condition is a conjunction of the winning condition for play-
ers 1 to n and the condition for player 0. Additionally the condition for
player 0 is the parity condition.

Glue operation We define the game G̃ = glue(G) of n + 1 players as follows
(to make the notation lighter we will use abbreviated notation for tuples, for
example we will write (e0, e) instead of (e0, e1, . . . , en)):

• P̃i = Pi, Ẽi = Ei and T̃i = Ti for all i = 1, . . . , n;

• P̃0 = P(E0 × P0) and Ẽ0 = P(P0 × E0);

• p̃ →0 ẽ if for every (e, p) ∈ p̃ there is (p, e′) ∈ ẽ ∩ T0;

• (ẽ0, e) → (x̃0, x) ∈ T̃ for x̃0 6= ∅, where x̃0 = {(e0, x0) : ∃(p′, e0) ∈
ẽ0. (e0, e) → (x0, x)}.

• Ãcc will be defined shortly.

Consider ~u = u1, . . . u2k ∈ (Ẽ0 · P̃0)
+. It is a sequence of sets of pairs of

nodes of the game G0. A thread in ~u is any sequence e1p1 · · · ekpk ∈ (E0P0)
+

such that (pi−1, ei) ∈ u2i−1 and (ei, pi) ∈ u2i for all i = 1, . . . , k. Similarly we
define threads for infinite sequences. Let threads(~u) be the set of threads in ~u.
We put:

~u ∈ Ãcc iff every ~v ∈ threads(view 0(~u)) satisfies the parity condition Ω

and ~u satisfies the conditions for players 1, . . . , n

Observe that if a game is I-gluable then the winning condition is only on 0-th
player and the second clause in the definition of Ãcc is automatically true.

12

Theorem 13
Let G be a I-gluable or II-gluable game. There is a distributed winning strategy
from a position η in G iff there is a distributed winning strategy from the
position η̃ in glue(G).

The proofs are different for I-gluable and II-gluable games. Their are pre-
sented in the following two sections.

Corollary 14 Directly from the definition of the glue operation it follows that
if from an environment position (ẽ0, e) we have transitions to (x̃0, x) and to
(x̃′0, x

′) then x 6= x′.

Remark: The condition “every ~v ∈ threads(view 0(~u)) satisfies the parity
condition Ω” is a regular winning condition. This means that there is a de-
terministic parity automation recognizing sequences over (Ẽ0 · P̃0) with this
property. By adding this automaton as a component for player 0 positions we
can convert glue(G) to the game with parity winning conditions for player 0.

5.1 I-gluable games

In this section we prove Theorem 13 for I-gluable games. Fix such a game
G = 〈P, E, T, Acc〉 constructed from n + 1 local games G0, . . . , Gn where Gi =
〈Pi, Ei, Ti〉 for i = 0, . . . , n. Since G is 0-deterministic, we get the following
fact immediately.

Fact 15 Let 〈σ0, . . . , σn〉 be a distributed strategy in G. For a sequence ~v ∈
(E0 · P0)

+ there is at most one path ~u in G such that view 0(~u) = ~v and ~u

respects 〈σ0, . . . , σn〉.

The above fact allows us to make a definition.

Definition 16 For ~v ∈ (E0P0)
+, let path(~v) be the unique play respecting

〈σ0, . . . , σn〉 in G such that view 0(path(~v)) = ~v. This function may be undefined
for some ~v because such a play may not exist. The notation does not mention
G and the strategy, but these will be always clear from the context.

The next definition and observation is essential for the construction. It
says that when the winning conditions are of the special form that we have
assumed then the strategy for player 0 can be in some sense memoryless.

Definition 17 A distributed strategy 〈σ0, . . . , σn〉 is called semi-positional
for process 0 if the local strategy σ0 is such that σ0(~u1) = σ0(~u2) whenever
last(~u1) = last(~u2) and view i(path(~u1)) = view i(path(~u2)) for all i = 1, . . . , n.

Lemma 18 Given a I-gluable distributed game G, if there is a distributed
winning strategy from a position η then there is a semi-positional one for
process 0.

13

Proof
Let 〈σ0, . . . , σn〉 be a distributed strategy in G. Let G(σ1, . . . , σn) be the same
game but where the players 1, . . . , n use their strategies. Let us define this game
formally. We will use notation Vi = Pi ∪ Ei. We have that G(σ1, . . . , σn) =

〈P̂ , Ê, T̂ , Ω̂〉 where

• Ê = E0 × (V ∗
1 · E1)× · · · × (V ∗

n ·En),

• P̂ = (P0 × Πi=1,...,nV +
i) \ E,

• (e0, ~v1e1, . . . , ~vnen) → (x0, ~w1x1, . . . , ~wnxn) ∈ T̂ when (e0, e1, . . . , en) →
(x0, x1, . . . , xn) ∈ T , and ~wi = ~vi if xi = ei or ~wi = ~viei otherwise.

• (x0, ~v1x1, . . . , ~vnxn) → (e0, ~w1e1, . . . , ~wnen) if

– for e0: x0 → e0 ∈ T0;

– for every ~wiei: either xi ∈ Ei and ~wiei = ~vixi, or xi ∈ Pi and
~wiei = ~vixi · σi(~vixi).

• Ω(x0, ~v1, . . . , ~vn) = Ω(x0).

It is easy to check that if the distributed strategy is winning from a po-
sition η in G then its 0-the component σ0 considered as a global strategy in
G(σ1, . . . , σn) is winning from η. As G(σ1, . . . , σn) is a parity game there is a
positional strategy σ′ that is winning from η.

Using σ′ we want to define a new strategy σ′0 for player 0 in G. Given
~v ∈ (E0 · P0)

+ we put

σ′0(~v · p0) = proj 0(σ
′(p0, view1(~u), . . . , viewn(~u))) where ~u = path(~v)

By the definition, the strategy σ′0 is semi-positional. It can be checked that
strategy 〈σ′0, σ1, . . . , σn〉 is winning from a position η in G if 〈σ0, σ1, . . . , σn〉
were winning from η. �

Lemma 19 If there is a distributed winning strategy in G from (e0, e1, . . . , en)

then there is one in G̃ from ({(p, e0)}, e1, . . . , en) for any p ∈ P0.

Proof
By assumption, there are strategies σi : (Ei × Pi)

+ → Ei for all i = 0, . . . , n.
By lemma 18, we can assume that σ is semi-positional for P0. We define
strategies in G̃. For i = 1, . . . , n the strategies do not change, i.e., σ̃i = σi. It
remains to define a strategy σ̃0 : (Ẽ0 × P̃0)

+ → Ẽ0. We put

σ̃0(~u · p̃0) = {(p0, e0) : ∃~v ∈ threads(~u · p̃0). last(~v) = p0 and σ0(~v · p0) = e0}

Since all σi are always defined, all σ̃i are always defined too. To shorten
the notation we extend the function threads to paths in G̃. For such a path ~v

we put threads0(~v) = threads(view0(~v)).

14

To show that 〈σ̃0, . . . , σ̃n〉 is winning we will construct for each finite play
~v respecting the strategy and each ~w ∈ threads0(~v) a path img(~v, ~w) in G such
that:

• it is a play respecting 〈σ0, . . . , σn〉,

• view0(img(~v, ~w)) = ~w,

• view i(img(~v, ~w)) = view i(~v) for i = 1, . . . , n.

The base case is when ~v consist of just one element ({(p′, e0)}, e1, . . . , en).
The unique path ~w ∈ threads0(~v) is e0 and we put img(~v, e0) = (e0, e1, . . . , en).
We have two cases for the induction step.

The first case is when ~v = ~v1 · (ẽ0, e1, . . . , en) · (p̃0, x1, . . . , xn). Take ~w ∈
threads0(~v). It is of the form ~w1 ·p0 with ~w1 ∈ threads0(~v1 · (ẽ0, e1, . . . , en)) and
(e0, p0) ∈ p̃0 where e0 = last(~w1). By the induction hypothesis we have that
img(~v1(ẽ0, e1, . . . , en), ~w1) is of the form ~u · (e0, e1, . . . , en). By the definition of

the game G̃ we have a transition (e0, e1, . . . , en) → (p0, x1, . . . , xn) in G. Hence
we can put img(~v, ~w) = ~u · (e0, e1, . . . , en) · (p0, x1, . . . , xn).

The second case is when ~v = ~v1 · (p̃0, x1, . . . , xn) · (ẽ0, e1, . . . , en). Let us
denote π̃ = (p̃0, x1, . . . , xn) and η = (ẽ0, e1, . . . , en). Take ~w ∈ threads0(~v). It
is of the form ~w1 · e0 with ~w1 ∈ threads0(~v1 · π̃) and (p0, e0) ∈ ẽ0 where p0 =
last(~w1). By the induction hypothesis we have that img(~v1π̃, ~w1) is of the form
~u · (p0, x1, . . . , xn). Let (e′0, e

′
1, . . . , e

′
n) be the reply of the distributed strategy

〈σ0, σ1, . . . , σn〉 in G in the position ~u · (p0, x1, . . . , xn). We put img(~v, ~w) =
~u · (p0, x1, . . . , xn) · (e′0, e

′
1, . . . , e

′
n).

We need to show that img(~v, ~w) satisfies the required properties. By def-
inition it is a play respecting the distributed strategy. For the third property
we need to show that ei = e′i for i = 1, . . . , n. If xi ∈ Ei then e′i = ei by the
definition of distributed game. It remains to deal with the case when xi ∈ Pi

and i ≥ 1. We have:

ei = σ̃i(view i(~v1 · π̃)) = σi(view i(~v1 · π̃)) = σi(view i(~u · (p0, x1, . . . , xn))) = e′i

The third equality in the chain above follows from the induction assumption
as ~u · (p0, x1, . . . , xn) = img(~v1π̃, ~w1).

Finally we need to check that img(~v, ~w) satisfies the second condition, i.e.,
that e0 = e′0. We know that (p0, e0) ∈ σ̃0(view0(~v1) · p̃0). By definition of σ̃0

it means that there is ~w2 ∈ threads(view 0(~v1) · p̃0) such that last(~w2) = p0 and
σ0(~w2) = e0. We want to show that σ0(~w1) = e0. As σ0 is a semi-positional
strategy it is enough to show that view i(path(~w1)) = view i(path(~w2)) for i =
1, . . . , n.

Observe that path(~w1) = img(~v1 · π̃, ~w1). This is because, by induction
hypothesis, view 0(img(~v1 · π̃, ~w1) = ~w1 and path(~w1) is the unique path with
this property. Then we have

view i(path(~w1)) = view i(img(~v1 · π̃, ~w1)) =

view i(img(~v1 · π̃, ~w2)) = view i(path(~w2)).

15

The second equality is by the third property of img(~v, ~w) function. �

Lemma 20 If there is a distributed winning strategy in G̃ from a position
({(p, e0)}, e1, . . . , en) then there is one in G from (e0, e1, . . . , en).

Proof
Suppose that there is a distributed winning strategy σ̃ in G̃. We define strate-
gies in G. Once again the strategies for players 1, . . . , n do not change.

The main observation is that threads0(~u1) ∩ threads0(~u2) = ∅ for any two

different ~u1, ~u2 ∈ G̃(σ̃0, σ̃1, . . . , σ̃n). Indeed take any two such paths ~u1 and ~u2.
We have two cases:

Case 1. ~u1 = ~u′ · η · π1 · ~w1 and ~u2 = ~u′ · η · π2 · ~w2 such that π1 6= π2.
We show that π1 ∩ π2 = ∅. Indeed, if (e0, p0) ∈ π1 ∩ π2 then we would have
both (e0, e1, . . . , en) → (p0, x1, . . . , xn) and (e0, e1, . . . , en) → (p0, x

′
1, . . . , x

′
n).

By determinacy of G we have xi = x′i for i = 1, . . . , n. But then π1 = π2, a
contradiction.

Case 2. ~u1 is a proper prefix of ~u2. By the assumption that G has no
0-delays we have that all threads in threads0(~u1) have the same length as ~u1

and similarly for ~u2.
By the above we know that each path ~v ∈ (E0P0)

+ determines a path

~u ∈ G̃(σ̃0, σ̃1, . . . , σ̃n) such that ~v ∈ threads0(~u). Let us denote this path by

p̃ath(~v).

From the strategy σ̃0 : (Ẽ0 × P̃0) → Ẽ0 we now define strategy σ0:

• σ0(~v · p0) = e0 where (p0, e0) ∈ σ̃0(view0(p̃ath(~v · p0))).

For every finite play ~v respecting 〈σ0, . . . , σn〉 in G we define the path ĩmg(~v)

in G̃ such that:

• view0(~v) ∈ threads0(ĩmg(~v)),

• view i(~v) = view i(ĩmg(~v)) for all i = 1, . . . , n,

• ĩmg(~v) respects 〈σ̃0, . . . , σ̃n〉.

We define ĩmg(~v) by induction on the length of ~v.
For the induction step we have two cases.
The first case is when ~v = ~v1 · (e0, e1, . . . , en) · (p0, x1, . . . , xn). In this case

ĩmg(~v1(e0, e1, . . . , en)) is of the form ~u(ẽ0, e1, . . . , en). We have that in G̃ a
transition (ẽ0, , e1, . . . , en) → (p̃0, x1, . . . , xn) with (e0, p0) ∈ p̃0. We can define

ĩmg(~v) = ~u(ẽ0, e1, . . . , en)(p̃0, x1, . . . , xn).
The second case is when ~v = ~v1 · (p0, x1, . . . , xn) · (e0, e1, . . . , en). In this

case ĩmg(~v1(p0, x1, . . . , xn)) is of the form ~u(p̃0, x1, . . . , xn). Consider position
(ẽ0, e

′
1, . . . , e

′
n) which is the response of the strategy 〈σ̃0, . . . , σ̃n〉 in the position

~u(p̃0, x1, . . . , xn). We want to show that (p0, e0) ∈ ẽ0 and ei = e′i for all
i = 1, . . . , n such that xi ∈ Pi (if xi ∈ Ei then xi = ei = e′i).

16

For i = 1, . . . , n, if xi ∈ Pi, we have

e′i = σ̃i(view i(~u) · xi) = σi(view i(~u) · xi) = σi(view i(~v1) · xi) = ei

For the case of i = 0 we have by definitions that

ẽ0 = σ̃0(view0(ĩmg(~v1(p0, x1, . . . , xn)))) and e0 = σ0(view0(~v1 ·(p0, x1, . . . , xn)))

By the definition of σ0 we have (p0, e0) ∈ σ̃0(view(p̃ath(view 0(~v1)·p0))). We are

done as p̃ath(view 0(~v1) · p0)) = ĩmg(~v1(p0, x1, . . . , xn)). This last equality fol-

lows because view 0(ĩmg(~v1(p0, x1, . . . , xn))) = view0(v1)·p1 and p̃ath(view 0(~v1)·
p0)) is the unique path with this property. �

5.2 II-gluable games

In this section we prove Theorem 13 for II-gluable games. Fix such a game
G = 〈P, E, T, Acc〉 constructed from n + 1 local games G0, . . . , Gn where Gi =
〈Pi, Ei, Ti〉 for i = 0, . . . , n.

Lemma 21 If there is a distributed winning strategy in G from (e0, e1, . . . , en)

then there is one in G̃ from ({((p, e0)}, e1, . . . , en) for any p ∈ P0.

Proof
By assumption, there are strategies σi : (Ei × Pi)

∗ → Ei for all i = 0, . . . , n.

We define strategies in G̃. For i = 1, . . . , n the strategies do not change, i.e.,
σ̃i = σi. For a moment take arbitrary strategy for σ̃0. Consider a play ~v in G̃

respecting the strategy 〈σ̃0, . . . , σ̃n〉. Directly from the definition and the fact
that P0 does not influence the moves of other players we get that there is a
play respecting 〈σ0, . . . , σn〉 in G with the same as ~v projection on components
1, . . . , n. Hence, for every strategy σ̃0, the distributed strategy guarantees that
for every play respecting the strategy the projection on components 1, . . . , n
is accepted. In the rest of the proof we are going to define the strategy σ̃0, so
that the 0 component is also accepted, i.e., satisfies the parity condition given
by Ω.

We will start by defining an ordering on sequences from (E0×P0)
∗. Recall

that the winning condition on 0-th component is given by a parity function
Ω : (E0 ∪P0) → N. For a finite or infinite sequence u over (E0 ∪P0) let mp(u)
be the smallest priority appearing in u, i.e., mp(u) = mini=1,2,... Ω(ui). Let
4 be the ordering on natural numbers such that all odd numbers are smaller
than all even numbers, on odd numbers 4 is the standard ordering and on
even numbers 4 is the reverse of the standard ordering. For example, 3 4 5
and 4 4 2.

We define a relation u 4 v on sequences u, v ∈ (E0×P0)
∗; we use the same

symbol for this relation on strings and the above defined relation on natural
numbers. We defined the strict version of this ordering. If u and v differ on
the first position we put u ≺ v if

17

• mp(u) ≺ mp(v); or

• mp(u) = mp(v) = p, p is odd (even) the first (last) occurrence of p in u

is sooner than its first (last) occurrence in v; or

• not the previous cases and the first position in u is smaller than the first
position in v in some arbitrary but fixed ordering on positions.

For u and v having a common prefix we put u ≺ v if u′ ≺ v′ where u′, v′ are
the words obtained by erasing the common prefix from u and v respectively.
By examining all possible cases we get:

Claim 21.1 4 is a linear ordering.

For a player’s position p0 and a sequence ~v ∈ (Ẽ0× P̃0)
∗ we define hist~v(p0)

to be the smallest in 4 ordering thread in ~v finishing with p0 (such a thread
exists if for some e the pair (e, p0) appears in the last element of ~v).

We put

σ̃0(~v · p̃0) = {(p0, e0) : ∃(e′, p0) ∈ p̃0. e0 = σ0(hist~v(p0))}

For a thread u of ~v ∈ (Ẽ0×P̃0)
ω we define the thread hist~v(u) to be hist ~w(p)

where ~w is the prefix of ~v of the same length as u and p is the last element of
u. We call a thread u ∈ (E0P0)

ω historic iff hist~v(u[0, m]) = u[0, m] for all m.
Take a play ~v respecting 〈σ̃0, σ̃1, . . . , σ̃n〉. We want to show that view 0(~v) is

accepted, i.e., satisfies the parity condition given by Ω. The first observation
is that all historic threads in ~v are plays according to the strategy σ0. We get:

Claim 21.2 All historic threads in view 0(~v) are accepted.

In the rest of the proof we show that if all historic threads are accepted
than all threads are accepted. For a contradiction suppose that there is a
non-accepting thread u in view 0(~v). The following claim shows that we can
associate to u a historic thread that is not accepted.

Claim 21.3 For every m there exists n ≥ m such that hist(u[0, n])[0, m] =
hist(u[0, n′])[0, m] for all n′ > n.

Proof
Consider the sequence mp(hist(u[0, n])). It is not increasing, hence it must be
constant, say equal to q for all n bigger than some n0. Suppose that q is even;
the case when q is odd is similar. Let in be the position of the last appearance
of q in u[0, n]. We have that the sequence in is not increasing, hence after
some n1 > n0 it is fixed. Take the smallest thread that leads to a position of
priority q in in1

-th element of ~v. This thread is a prefix of hist(u[0, n′]) for all
n′ > n1. We can repeat the reasoning to fix more positions. �

Let hu be the limit of hist(u[0, n]), i.e., a thread such that for every m,
hu[0, m] = hist(u[0, n])[0, m] for almost all n. It is easy to check that hu is a

18

historic thread. Let gn = hist(u[0, n])u[n+1,∞] for every n = 0, 1, . . . Observe
that none of gn is accepted. We will show that hu is not accepted too.

Claim 21.3 says that to calculate a prefix of hu it is enough to take a
(maybe longer) prefix of u.

To show that hu is not accepted we will define a sequence of positions
m0, m1, Then we will show that the smallest number appearing infinitely
often in the sequence {mp(hu[ml + 1, ml+1])}l=1,2,... is odd.

We start with m0 = 0, and n0 being a position such that gn0
[0, 0] = hu[0, 0].

Suppose that we have already defined ml and nl having the property that
gnl

[0, ml] = hu[0, ml]. Let ql = mp(gl[ml + 1,∞]). If ql is even then we
take ml+1 to be the last position when ql occurs on gl. If ql is odd then
let ml+1 be the first position when ql occurs on gl. We take nl+1 such that
gnl+1

[0, ml+1] = hu[0, ml+1]. Let pl = mp(gnl+1
[ml + 1, ml+1]); we have pl =

mp(hu[ml + 1, ml+1]). Let ql+1 = mp(gl+1[ml+1 + 1,∞])

Claim 21.4 If ql is even then one of the following holds:

E1 pl, ql+1 are even, ql+1 > ql and pl ≥ ql;

E2 pl is even, ql+1 is odd and ql+1 < p or ql+1 > q and pl ≥ ql;

E3 pl is odd, ql+1 is even and ql+1 > min(pl, ql);

E4 pl, ql+1 are odd.

Proof
To see this observe that gnl+1

and gnl
are the same up to position ml, hence

gnl+1
[ml + 1, nl+1] 4 gnl

[ml + 1, nl+1] by definition of 4. We know that
mp(gnl

[ml + 1, nl+1]) = q and the last appearance of q is in ml+1. Let
r = mp(gnl+1

[ml + 1, j]). If r > ql then ql+1 > ql and pl > ql hence one
of E1, E2, E3, E4 holds. If r = ql then pl = ql and ql+1 > ql as all occurrences
of ql in gnl+1

[ml + 1, nl+1] are before ml+1; so E1 holds. The last case is when
r < ql. We have that r is odd. If pl is even then ql+1 = r and ql+1 < pl, so E2
holds. If pl is odd and ql+1 is even then pl = r and ql+1 > r; so E3 holds. �

Claim 21.5 If ql is odd then one of the following holds:

O1 pl is odd and pl ≤ ql, pl ≤ ql+1;

O2 ql+1 is odd pl > ql and ql+1 < ql.

Proof
To see this observe that r = mp(gnl+1

[ml + 1, nl+1]) is odd and r ≤ ql. If r

appears in gnl+1
[ml +1, nl+1] then O1 holds. If not then ql+1 = r. By definition

of 4 we have r < ql so O2 holds. �

Claim 21.6 If ql > ql+1 then ql+1 is odd or pl ≤ ql+1 and pl is odd.

19

Proof
We check the possibilities one by one. Property E1 cannot hold. In case E2,
E4, O2 we know that ql+1 is odd. For the properties E3 and O1 we have that
either ql+1 > min(ql, pl) hence ql+1 > pl. �

Claim 21.7 If ql < ql+1 then either pl is odd or pl ≥ ql.

Proof
Property O2 is impossible. In case of properties E3, E4 and O1 we have that
pl is odd. Property E1 implies pl ≥ ql. If we have property E2 then either
pl > ql+1 ≥ ql or pl ≥ ql. �

Claim 21.8 If ql is odd then there is k > l such that pk = min(pl, . . . , pk), pk

is odd, pk ≤ ql and pk ≤ qk+1.

Proof
If property O1 holds then we know that pl is odd, pl < ql and pl ≤ ql+1. If
not then 02 holds so pl > ql and ql+1 < ql. We repeat the argument with ql+1.
After finitely many steps the property O1 should hold for some k with qk < ql.
We conclude as we have that pl, . . . , pk−1 > qk. �

Claim 21.9 If ql > ql+1 then there is k > l such that pk = min(pl, . . . , pk) ≤
ql+1 is odd and qk+1 ≥ pk.

Proof
Using Claim 21.6 we see that we can have pl odd and p ≤ ql+1. In this case we
take l = k. Otherwise from the same claim we know that ql+1 is odd. Using
Claim 21.8 we get the desired k. �

Claim 21.10 The smallest priority appearing infinitely often in the sequence
{pl}l=0,1,... is odd.

Proof
Consider the sequence {ql}l=0,1,.... As we can never have ql = ql+1 then this se-
quence consists of strictly increasing and strictly decreasing finite intervals. Let
r be the minimal priority appearing infinitely often on the sequence {ql}l=0,1,....
Whenever qi = r then qi−1 > qi so Claim 21.6 guarantees that pi is odd and
pi < r. Let n0 be a position such that ql ≥ r for l ≥ n0. For such l we have,
by Claim 21.7 that whenever ql < ql+1 then pl ≥ ql ≥ r. Whenever ql > ql+1

then by Claim 21.9 we can find k such that pk = min(pl, . . . , pk) and pk is odd.
Summarizing, on the sequence {pl}l=n0,n0+1,... we have infinitely many times
an odd priority smaller than r. Each priority pl corresponding to increasing
position (i.e. ql < ql+1) is not smaller than r. Each priority pl corresponding
to a decreasing position (i.e. ql > ql+1) is bounded from below by some odd
priority pk for k > l. Hence the smallest priority appearing infinitely often on
{pl}l=0,1,... is odd. �

20

�

Lemma 22 If there is a distributed winning strategy in G̃ from a position
({(p, e0)}, e1, . . . , en) then there is one in G from (e0, e1, . . . , en).

Proof
Suppose that there is a distributed winning strategy σ̃ in G̃. We define strate-
gies in G. Once again the strategies for players 1, . . . , n do not change.

Let us defined a function pm : Ẽ0 ×E0 × P0 → P̃0 by (e, p) ∈ pm(S, e0, p0)
if ∃p′. (p′, e) ∈ S ∧ (e, p) ∼ (e0, p0); recall that ∼ is the equivalence rela-
tion required to exist by II-gluability conditions. These are the moves that
are possible from S knowing that the move from e0 to p0 was made by the
environment.

Given a finite or infinite sequence u = e1p1e2p2 . . . of positions for player 0
we can define a sequence pump(u) = S1

eS
1
pS

2
eS

2
p . . . by

S1
e = {(p, e1)}, Si

p = pm(Si
e, e

i, pi), Si+1
e = σ̃0(S

i
p)

We define the strategy σ0. Let u ∈ (E0 × P0)
∗ with p = last(u), we put

σ0(u) = e such that (p, e) ∈ σ̃0(pump(u))

Let ~v be a play respecting 〈σ0, σ1, . . . , σn〉 in G. We construct a play ~w

respecting 〈σ̃0, σ̃1, . . . , σ̃n〉 in G̃ such that:

• view0(~v) is a thread in view 0(~w),

• view i(~v) = view i(~w) for i = 1, . . . , n.

If we manage to do this then it will show that 〈σ0, σ1, . . . , σn〉 is winning.
The initial position of ~v is some 〈e0

0, e
0
1, . . . , e

0
n〉. We can fix some arbitrary

p−1
0 and take 〈{(p−1

0 , e0
0)}, e

0
1, . . . , e

0
n〉 as the initial position of ~w.

Suppose that we have constructed ~w up to the position i. Suppose that
the i-th positions in ~v and ~w are respectively:

〈e0, e1, . . . , en〉 〈Se, e1, . . . , en〉

We also assume that

• view i(~v[0, i]) = view i(~w[0, i]);

• view0(~w[0, i]) = pump(view 0(~v)) and moreover view 0(~v[0, i]) is a thread
in view0(~w[0, i]).

The prolongations of ~v[0, i] and ~w[0, i] look as follows:

〈e0, e1, . . . , en〉 〈Se, e1, . . . , en〉

〈p0, x1, . . . , xn〉 〈Sp, x1, . . . , xn〉 with (e0, p0) ∈ Sp

〈e′0, e
′′
1, . . . , e

′′
n〉 〈S ′

e, e
′
1, . . . , e

′
n〉 with (p0, e

′
0) ∈ S ′

e

21

Let us explain this sequence. Element 〈p0, x1, . . . , xn〉 is just the (i + 1)-th
position of ~v. By induction assumption (p′, e0) ∈ Se hence the environment
can move from 〈Se, e1, . . . , en〉 to 〈Sp, x1, . . . , xn〉 where Sp = pm(Se, e0, p0). We
have (e0, p0) ∈ Sp. The element 〈S ′

e, e
′
1, . . . , e

′
n〉 is the reply to 〈Sp, x1, . . . , xn〉

according to the strategy 〈σ̃0, σ̃1, . . . , σ̃n〉. Similarly for 〈e′0, e
′′
1, . . . , e

′′
n〉 and

〈σ0, σ1, . . . , σn〉. By the definition of σ0, (p0, e
′
0) ∈ σ̃0(pump(view 0(~v[0, i]p0))).

We have that e′′i = e′i and (p0, e
′
0) ∈ S ′

e because S ′
e is the last element of

pump(view 0(~v[0, i]p)). Hence the invariants hold again and we are done. �

6 Synthesis for pipeline architecture

In this section we show how to encode the synthesis problem for pipeline ar-
chitectures [27] into the game framework. Then we will use the theorems from
preceding sections to solve the resulting games. We will consider branching
specifications [13]. For this we need to introduce automata working on trees
bounded but varying degrees.

Automata Given a finite set Σ, a deterministic Σ-tree is a prefix-closed subset
Υ of Σ∗. The elements of Υ are called nodes. The empty word ε is called the
root node. For each node x ∈ Υ, and letter b ∈ Σ, word x · b is a b-successor of
x. A path (finite or infinite) in a tree Υ is a sequence of nodes x0, x1, . . . such
that x0 = ε and xi+1 is a successor of xi for every i.

We define an automaton running on deterministic Σ-trees:

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q → P(Moves(Σ, Q)),Acc ⊆ (Q∀)ω〉

where (Q∃, Q∀) is a partition of Q, Acc is a regular set of sequences, and

Moves(Σ, Q) = ((Σ ∪ {ε})×Q) ∪ (Σ× {→, 9})

The intuition is that (Q∃, Q∀) is a partition of Q into the set of universal
and existential states. The transition function assigns to each state a set of
possible moves. A move (b, q) means go into direction b (if it exists) and
change the state to q. If b = ε then the automaton stays in the node and
just changes the state. A move (b,→) “tests” for the existence of b transition.
The automaton rejects if he decides to execute this move and there is no b

transition from the current node, otherwise this part of the run of automaton
accepts. Similarly (b, 9) test for absence of a b transition.

An automaton as above is bipartite nondeterministic if δ(q) ⊆ {ε} × Q∀

for every q ∈ Q∃; and δ(q) ⊆ Moves(Σ, Q∃) \ ({ε} × Q) for every q ∈ Q∀. In
the case of q ∈ Q∀ we additionally require that if (a1, q1), (a2, q2) ∈ δ(q), with
q1, q2 ∈ Q, and a1 = a2 then q1 = q2. Moreover, we assume that the initial
state q0 is universal (i.e., in Q∀).

We refer the reader to [4] for the semantics and properties of these au-
tomata. Here we will give the semantics only for bipartite nondeterministic
automata. We quote the fact from [4] that permits us to do this.

22

Fact 23 Every automaton is equivalent to a bipartite nondeterministic parity
automaton. The automata accept precisely MSOL definable languages.

For bipartite nondeterministic automata the notion of run is slightly eas-
ier to define than for the general case. Given an nondeterministic bipartite
automaton A, a run of A on a Σ-tree Υ is a function r : Υ → Q∀ such that
r(ε) = q0 and for every node x of Υ:

• if (b,→) ∈ δ(r(x)) then x has a b successor;

• if (b, 9) ∈ δ(r(x)) then x does not have a b successor;

• if (b, q∃) ∈ δ(r(x)) then r(x · b) ∈ δ(q∃) provided x · b exists.

A run of the automaton A on Υ is accepting if for all the infinite paths
v0, v1, . . . in Υ, the sequence r(v0), r(v1), . . . is in Acc. An Σ-tree is accepted
by the automaton A if there is an accepting run of A on Υ.

Note that only the universal states of the automaton are used for labeling
and the consequent definition for acceptance. Since A is bipartite, this does
not result in any loss of generality.

Pipeline A pipeline is a sequence of processes communicating by unidirec-
tional channels:

C1 Cn−2 Cn−1 Cn

A0 An−2 An−1 An

We assume that the alphabets A0, . . . , An are disjoint. The execution fol-
lows in rounds. Within a round, processes get inputs and produce outputs in a
step-wise fashion. At the beginning of a round, process Cn gets input an ∈ An

from the environment and gives an output an−1 ∈ An−1. In the next step, this
output is given as input to process Cn−1 and so on. When C1 has given an
output, the round finishes and another round starts.

A local controller for the i-th component is a function fi : (Ai)
∗ → Ai−1. A

sequence a0b0a1b1 · · · ∈ (Ai · Ai−1)
ω respects fi if fi(a0a1 . . . aj) = bj for all j.

A pipeline controller P is a tuple of local controllers 〈f1, . . . , fn〉, one for
each component. An execution of the pipeline is a string in (AnAn−1 · · ·A0)

ω.
An execution ~v respects P if ~v|(Ai ∪ Ai−1) respects fi, for all i = 1, . . . , n.

Let Σ = An ·An−1 · · ·A0. Observe that an execution, which is a string from
(AnAn−1 · · ·A0)

ω, can be considered as a string over Σ by identifying a block
of letters from (AnAn−1 · · ·A0) with one letter from Σ. A controller P defines
a Σ-tree Υ(P) of Σ-labeled paths which are the executions respecting P .

The pipeline synthesis problem is: given a pipeline over alphabets A0, . . . , An

and a nondeterministic parity tree automaton A over the alphabet Σ = An ·
An−1 · · ·A0, find a pipeline controller P = 〈f1, . . . , fn〉 such that Υ(P) ∈ L(A).

23

Encoding A pipeline synthesis problem is coded as a distributed game G =
〈P, E, T, Acc〉 constructed from local games G0, . . . , Gn, with G0 taking the
role of the automaton and Gi the role of the i-th component Ci. The game G0

is:

• P0 = Q∃ × Σ; E0 = Q∀;

• (q∃, w) → q∀ ∈ T0 if (ε, q∀) ∈ δ(q∃), and all possible transitions from
environment to player positions.

For each component i = 1, . . . , n we have the game Gi which is defined by:

• Pi = Ai; Ei = (Ai → Ai−1); and the complete set of transitions between
these sets of positions.

To define global transitions from an environment position ((q∀, a), f1, . . . , fn)
let us introduce some notation. For a letter an ∈ An let w(an) = anan−1 . . . a0

be the word such that ai−1 = fi(ai). The word w(an) is a letter of Σ. We have
the following:

• (q∀, f1, . . . , fn) → (⊥, a1, . . . , an) if (w(an), 9) ∈ δ(q∀) for some an ∈ A

or (v,→) ∈ δ(q∀) for some v not of the form w(an).

• If not the previous case then (q∀, f0, . . . , fn) → ((q∃, w(an)), a1, . . . , an)
where q∃ = δ(q∀, w(an)) and an . . . a0 = w(an).

The winning condition Acc is defined by the parity condition in the au-
tomaton A. The initial position is π0 = (q0, a1, . . . , an) for some arbitrarily
chosen letters a1, . . . , an.

Lemma 24 Given a pipeline on alphabets A0, . . . , An and a nondeterministic
bipartite parity automaton A over Σ, the pipeline synthesis problem is solvable
iff there is a distributed winning strategy in the pipeline game G from η0.

Proof
(=⇒) Let P = (f1, . . . , fn) be a controller such that Υ(P) is accepted by A.
Let r : Υ(P) → Q∀ be an accepting run of A on Υ(P).

We define distributed strategy σ = 〈σ0, σ1, . . . , σn〉. For i = 1, . . . , n strat-
egy σi is of type A∗

i → (Ai → Ai−1). We put σi(~v)(an) = f(~v · an).
Strategy σ0 is of type P ∗

0 → Q∀. We put σ0(~v) = r(path(~v)), where
path((q∃0 , w0) . . . (q∃n, wn)) = w1 . . . wn.

It is easy to see that for every play ~v respecting σ, then there is a path ~u

of Υ(P) such that the sequence of universal states in both paths is the same.
Since r is accepting P , ~u satisfies the parity condition. Therefore, the play ~v

also satisfies the parity condition and is winning.
(⇐=) Let (σ0, σ1, . . . , σn) be a distributed winning strategy in the pipeline
game G. We put fi(v1 . . . vnvn+1) = σi(v1 . . . vn)(vn+1). We define the run
on Υ(P) by r(w1 . . . wk) = σ0((q

∃
0 , w0) . . . (q∃n, wn)) where (q∃i , wi) are uniquely

defined by: (q∃i , wi) ∈ δ(r(w1 . . . wi−1)). �

24

Decidability We will abstract some properties of a pipeline game and show
that for any game with these properties it is decidable to establish if there
exists a distributed winning strategy.

Definition 25 A game G is i-sequential if for all environment positions η1

and η2: if η1 → π1, η2 → π2, η1[1, i] = η2[1, i] and π1[1, i − 1] 6= π2[1, i − 1]
then π1[i] 6= π2[i] and π1[i], π2[i] ∈ Pi. Here we use η[1, i − 1] to denote the
subsequence of the sequence η consisting of elements on positions from 1 to
i− 1; note that tuple η has also 0 position.

Definition 26 We call a game 〈0, n〉-proper if it satisfies the following:

P1a. G is 0-deterministic,

P1b. P0 has no 0-delays,

P1c. the winning condition is a parity condition on P0;

P2. G is n-deterministic;

P3. G is i-sequential for all i ∈ {1, . . . , n}.

A game is 〈0, n〉-almost proper if it is proper except that it may not satisfy
P2. Observe that the condition P3 does not imply P2, as the sequentiality
does not say anything about player 0.

Directly from the definitions we obtain.

Fact 27 The pipeline game G is 〈0, n〉-proper.

The following lemmas are easy to check consequences of the constructions
for divide and glue operations. They will allow us to solve proper games.

Lemma 28 A 〈0, n〉-proper game G is dividable and divide(G) is a 〈0, n−1〉-
almost proper game.

Proof
If G is 〈0, n〉-proper then it is 0-deterministic and n-deterministic. Hence
divide(G) exists. By the definition divide(G) satisfies P1c. The condition
P1b also follows directly from the definition and assumption that P1b is true
for G.

To check P1a suppose that in divide(G) we have moves from ((e0, en), e) to
two different positions ((x0, xn), x) and ((x′0, x

′
n), x′). By the definition of divi-

sion, in G we have transitions form (e0, e, en) to (x0, x, xn) and to (x′0, x
′, x′n).

Since G is 0-deterministic (by P1a), x0 6= x′0 and x0, x
′
0 ∈ Pi. This implies

(x0, xn) 6= (x′0, x
′
n) and (x0, xn), (x′0, x

′
n) ∈ P̃i.

Along the same lines one can verify the condition P3. �

Lemma 29 A 〈0, n〉-almost proper game G is I-gluable and glue(G) is a
〈0, n〉-proper game.

25

Proof
Observe that G is I-gluable because of conditions P1a, P1b and P1c. By
definition, glue(G) satisfies conditions P1b and P1c (by Remark 5).

In order to prove that glue(G) is 0-deterministic, it suffices to consider

the transitions of the form (ẽ0, e) → (p̃0, x) and (ẽ0, e) → (p̃′0, x
′) such that

x 6= x′. We want to show a stronger property that p̃0 ∩ p̃′0 = ∅. Assuming

conversely, we have some (e0, p0) in the intersection. By the definition of G̃ we
have (e0, e) → (p0, x) and (e0, e) → (p0, x′) in G. But this is impossible since
G is 0-deterministic by P1a.

To show condition P2 we consider a position (ẽ0, e) with transitions to

(p̃0, x) and to (p̃′0, x
′). We need to show that the last elements of x and x′ are

different. Denote them by xn and x′n respectively. From Corollary 14 we know
that x 6= x′. By the n-sequentiality of G we have that xn 6= x′n.

For condition P3 consider two transitions:

(ẽ0, e) → (p̃0, x) and (ẽ′0, e
′) → (p̃′0, x

′)

We want to establish that xi 6= x′i whenever e[1, i] = e′[1, i] but x[1, i − 1] 6=
x′[1, i− 1]. This follows directly from the i-sequentiality of G. �

Theorem 30
The synthesis problem in the pipeline is decidable.

Proof
Given a pipeline game of n + 1 players. By the fact above, it is 〈0, n〉-proper.
Now, by the preceding lemmas successive application of divide and glue

result in a 〈0, n−1〉-proper game G ′. By theorems 8 and 13, G has a distributed
winning strategy iff G ′ has a distributed winning strategy.

By n−1 repeated application of divide and glue followed at the end by a
divide operation, we eventually have the game consisting of a single player and
the environment with a parity winning condition. A distributed strategy in
this game is just the winning strategy for the player. By Theorem1, existence
of winning strategy in this game is decidable. �

7 Local specifications

In [17, 16] Madhusudan and Thiagarajan have considered the synthesis prob-
lem for distributed architectures and local specifications, i.e., specifications
that are conjunctions of requirements on the behaviour of each of the com-
ponents separately. They have shown that the synthesis problem is decidable
only for double flanked pipeline architecture.

C1 Cn−1 Cn

A0
A′

1 A1 An−2 An−1 An

26

The peculiarity of the double flanked pipeline is that the component closest
to the end has an additional input from the environment. Otherwise the
behaviour of such a pipeline is the same as of the normal one: when the
input comes on the channel An then the component Cn sends a letter on the
channel An−1 and so on up to the component C1 which not only receives a
letter on the channel A1 but also an additional letter from the environment on
the channel A′

1.
The global behaviour of a pipeline is a sequence from (An · An−1 · · ·A1 ·

A′
1 ·A0)

ω. Let Σi denote the alphabet of the component i, i.e., Σi = Ai ∪Ai−1

for i > 1 and Σ1 = A1 ∪ A′
1 ∪ A0. The behaviour of the component i is the

projection of the global behaviour on the alphabet Σi.
A local specification is given by a tuple of regular languages (L1, . . . , Ln)

over respective alphabets. A global behaviour u satisfies the specification if for
each i the projection of u on Σi is in Li.

Encoding into a game The coding of this synthesis problem into a distributed
game is very similar to the coding of a simple pipeline. The game G will consist
of local games Gi: one for each component of the pipeline. Each game Gi, for
i = 2, . . . , n, is as in the case of simple pipeline:

• Pi = Ai, Ei = (Ai → Ai−1), and there is a complete set of transitions
between Pi and Ei.

For game G1 the definition is different as the first component takes addi-
tional argument and as we want to put a parity acceptance condition on this
component. Take a deterministic parity automaton A1 = 〈Q1, Σ1, q

0
1, δ1, Ω1〉

recognizing L1. We have:

• P1 = Q× A1 × A′
1, E1 = Q× ((A1 × A′

1) → A0) and payer’s transitions
are restricted to (q, a1, a

′
1) → (q, f), i.e., player is not allowed to change

state.

The global moves of the environment are:

((q1, f1), f2 . . . , fn) → ((q′1, a1, a
′
1), a2, . . . , an)

where ai−1 = fi(ai) for i > 1, and q′1 = δ1(q1, a1a
′
1f1(a1, a

′
1)). This means that

the whole global position is determined by letters an and a′1. The winning
condition is that on each component i = 2, . . . , n the sequence f 1

i , a1
i , f

2
i , a2

i , . . .

is such that the word a1
i , f

1
i (a1

i), a
2
i , f

2(a2
i), . . . is in Li. For the first component

the condition is that the sequence of states satisfies the parity condition of the
automaton A1. Actually we see only every third state of the run of A1 so we
need to assume some special form of A1 like that only each third state has a
significant priority and the rest have some big irrelevant priority.

The argument that the game indeed codes the behaviour of the double
flanked pipeline is the same as in the case of simple pipelines. To solve the
game G, we first show that we can apply to it the gluing operation over the
first component. For this we check II-gluability conditions (cf. 12).

27

• The moves of other players are not influenced by P1 moves, i.e., having

((q, f1), f2 . . . , fn) → ((q′, a1, a
′
1), a2, . . . , an)

we also have

((q1, f 1
1), f2 . . . , fn) → ((q2, a1, a

′
1), a2, . . . , an)

for any other (q1
1, f

1
1) and some appropriate q2.

• The moves of player 1 are almost context independent. Required equiv-
alence relation on pairs of positions of player 0 is defined by:

((q1
1, f

1
1), (q2

1, a1a
′
1)) ∼ ((q3

1 , f
3
1), (q4

1, a1b
′
1))

i.e., the pairs having the same a1 letter.

• Directly from the definition it follows that player 1 moves at each step
and that the winning condition is a conjunction of the parity condition
for player 0 and some conditions on other components.

By Theorem 12, there is a distributed strategy in G iff there is one in glue2(G).
The game glue2(G) is essentially a pipeline game we have seen before but with
the difference that the acceptance condition is not a parity condition on the
0-th component. To have this we just add one component to the game which
“observes” all the others. We quickly describe the construction below.

Consider a deterministic parity automaton A0 = 〈Q0, Σ0, q
0
0, δ0, Ω0〉 rec-

ognizing the set of winning plays in G. In particular the alphabet Σ0 of A0

consist of the global positions in the game glue2(G). We define G0 to be the
game with: P0 = Q0, E0 = Q0 × {e}, where e is just a marker to distinguish
positions of player and environment. The player is restricted to move from q

to (q, e), i.e., he has no choice.

We now define the global game Ĝ with the components G0, G̃1, . . . , G̃n,
where each G̃i is i-th component in th game glue2(G). The global moves
of the environment are: ((q, e), η) → (δ(q, η π), π) if η → π is a global move
in the game glue2(G). By ((q, e), η) we mean a (n + 1)-tuple with the first
component (q, e) and the other components as in η. The winning condition is
the parity condition on the 0-th component.

We check that Ĝ is a 〈0, n〉-proper game (cf. Definition 26). All the con-
ditions but P3 follow directly from the definitions. For P3 we observe that
whenever we have a move from ((q, e), S, f2, . . . , fn) to (q′, S ′, a2, . . . , an) then
ai determines S ′ and aj for all j < i. By definition ai−1 = fi(ai), so it remains
to consider S ′. We have by the definition of the glue operation:

S ′ = {((q, f), (q′, a1, a
′
1)) : ∃p ∈ P0. (p, (q, f)) ∈ S

((q, f), f2, . . . , fn) → ((q′, a1, a
′
1), a2, . . . , an)}

28

Recall that by definition q′ = δ1(q, a1a
′
1f(a1, a

′
1)). As a1 is determined by a2

and a′1 is not influenced by f2, . . . , fn we have that S ′ is determined by S and
a2.

This shows that Ĝ is a 〈0, n〉-proper game and we can solve it in the way
described in Section 6.

8 Synthesis for communicating machines

In this section we show how to formulate and solve the synthesis problem con-
sidered by Madhusudan and Thiagarajan in [18]. In their setting a system
consists of several components that can synchronize with each other on com-
mon actions; additionally there are environment actions that are local for each
component. The problem is to synthesize a controller for each of the compo-
nents so that the global behaviour satisfies a given specification. In general the
problem is undecidable. It becomes decidable if restricted to “trace closed”
specifications and a particular class of controllers.

Let us fix a set of processes {1, . . . , n}. Each process has its alphabet Σi of
actions which is partitioned into Σc

i and Σe
i of actions controlled by the process

and by the environment respectively. We assume that Σe
i ∩ Σe

j = ∅ for i 6= j;
but we do not assume this for controllable actions. Alphabets Σi define the
distribution function θ :

⋃
Σi → {1, . . . , n} by θ(a) = {i : a ∈ Σi}. We will

use the notation Σc =
⋃

i Σ
c
i and Σe =

⋃
i Σ

e
i

Consider a tuple {〈Sc
i , S

e
i , {→

a
i }a∈Σi

, sin
i 〉}i=1,...,n of deterministic transition

systems, where the transitions on Σc
i always go from Sc

i to Se
i and the tran-

sitions on Σe
i go from Se

i to Sc
i . Such a tuple defines a product transition

system:
〈Πi=1,...,n(Sc

i ∪ Se
i), {→

a}a∈Σ, sin〉

with sin = (sin
1 , . . . , sin

n) and (s1, . . . , sn) →
a (t1, . . . , tn) if si →

a
i ti for i ∈ θ(a)

and si = ti for i 6∈ θ(a).
We will be interested in trace closed specifications. Such a specification is

a regular language L ⊆
⋃

i=1,...,n Σi closed under trace equivalence determined
by the alphabets (Σi)i=1,...,n. Although we will use the trace terminology, we
will not recall it here (we refer the reader to [18, 8]). We can assume that L is
given as a deterministic parity automaton A = 〈Q, Σ, q0, δ, Ω〉 with a diamond
property. This means that for every state q and two letters a, b such that θ(a)∩
θ(b) = ∅, we have that δ(δ(q, a), b) = δ(δ(q, b), a) and the visited priorities are
the same: {Ω(δ(q, a)), Ω(δ(δ(q, a), b))} = {Ω(δ(q, b)), Ω(δ(δ(q, b), a))}. These
properties allow us to define δ(q, {a1, . . . , ak}) for a set of pairwise independent
letters from Σ and min(q, {a1, . . . , ak}) which is the minimal priority among
Ω(q1), . . . , Ω(qk) where qi = δ(q, {a1, . . . , ai}).

The goal is to find a controller for the product system such that all the
possible paths satisfy the given specification. As the system is distributed, of
course we are interested in local controllers that cannot use the global view of
the system.

29

A local controller for process i is a function ρi : Σ∗
i × Σe

i → P(Σc
i). This

function suggests a set of possible moves for the system depending on the part
of the execution up to that moment. Distributed (global) controller is the set
of local controllers, one for each process. An execution respecting distributed
controller (ρ1, . . . , ρn) is an infinite path ~s1 →

a1 ~s2 →
a2 · · · such that for each

ak ∈ Σc we have ak ∈ ρi((a1 . . . ak−1) � Σi) for all i ∈ θ(ak); in particular
it means that (a1 . . . ak−1) � Σi should end on a letter from Σe

i . A partial
executions a finite sequence with the same property. Intuitively the property
says that an action can be taken if it is allowed by controllers of all the processes
involved in it.

A distributed controller is non-blocking if every partial execution can be
prolonged.

As it was shown in [18] it is undecidable to determine if for a given product
system and an asynchronous automaton there is a non-blocking distributed
strategy such that all the plays respecting this strategy are accepted by the
automaton.

Madhusudan and Thiagarajan give two restrictions on the set of controllers
which make the problem decidable:

1. Controller (ρi)i=1,...,n is com-rigid if every possible value R of every ρi is
com-rigid which means that θ(a) = θ(b) for all a, b ∈ R.

2. Controller (ρi)i=1,...,n is clocked if for every i = 1, . . . , n and u, v ∈ Σ∗
i , if

|u| = |v| then ρi(u) = ρi(v).

The MT-control problem is: given S = 〈Sc
i , S

e
i , {→

a
i }a∈Σi

, sin
i 〉i=1,...,n and an

automaton A decide if there exists a distributed non-blocking, com-rigid and
clocked controller such that all the paths of S respecting this controller are
accepted by A.

Encoding into a game Take the tuple of local systems and an automaton
defining a trace closed language as above:

{〈Sc
i , S

e
i , {→

a
i }a∈Σi

, sin
i 〉}i=1,...,n A = 〈Q, Σ, q0, δ, Ω〉

We define a game G consisting of components G0, G1, . . . , Gn. Then we will
show that the distributed strategy in G gives a distributed controller for the
system as described above.

The games G1 . . . , Gn are defined to reflect the behaviour of the respective
controllers. We put Gi = 〈Pi, Ei, θi〉 where:

1. Pi = {?}, Ei = {R |R ⊆ Σc
i and R is com-rigid }.

2. ? → R, R →? are in Ti for all com-rigid R,

Intuitively in the game Gi player is repeatedly asked to provide a set of actions
he agrees to execute.

Game G0 keeps track of the moves of the automaton A and the states of
the local transition systems. Let Sc = Sc

1 × · · · × Sc
n, AP = P({1, . . . , n}).

30

1. E0 = Sc × AP ×Q× range(Ω).

2. P0 = (E0 × P(Σ)) ∪ {lose}.

3. (~s, ap, q, min, ς) → (~t, ap, δ(q, ς), min(q, ς)) where ~s →ς ~t, i.e. a path
labelled by ς in the product system. Moreover lose does not have any
successors (if this position is reached then the players lose).

4. Ω(lose) = 1 (fixed arbitrarily), for other positions, the priority is the
value of the min component.

Intuitively, the Sc and Q components keep track of the path in the system
and in the automaton respectively. The min component is need as in one step
the automaton reads many letters and we need to memorize the minimal state
visited while it did so. The AP component specifies which of the processes are
still active. It is needed because the environment may decide to block some of
the components forever.
Consider an environment position

η = ((~s, ap, q, min), R1, . . . , Rn).

Define enabled(η, ap′) = {i : ∃a∈Ri
θ(a) ⊆ ap′ ∧ ∀j∈θ(a) a ∈ Rj}. This is the set

of processes than can move in the current position. We define when we have
a global transition η → π:

1. if enabled(η, ap) = ∅ and ap = {1, . . . , n} then π = lose,

2. if enabled(η, ap) 6= ∅ then for all ap′ ⊆ ap and all ς, x1, . . . , xn we have a
transition to π = ((~s, ap′, q, min, ς), x1, . . . , xn,) whenever:

T1 enabled(η, ap′) 6= ∅.

T2 For each a ∈ ς, if a ∈ Σc then θ(a) ⊆ enabled(η, ap′) and if a ∈ Σe

then θ(a) ⊆ enabled(η, ap).

T2’ For each i ∈ enabled(η, ap′) there is precisely one letter in ς ∩ Σc
i

and precisely one letter in ς ∩ Σe
i .

T3 xi =? for all i ∈ enabled(η, {1, . . . , n}) and xi = Ri otherwise;
observe that here we use {1, . . . , n} and not ap or ap′.

The intuition behind this transition is relatively simple. The environment
decides which actions ς to execute. These should be executable actions, i.e.,
the respective processes should be in enabled(η, ap). There should be at most
one controllable and one environment action for each process. Additionally
the environment may decide to block some processes forever by removing them
from the set ap′ of active processes. The processes that remain active should
execute an action. The condition T3 says that all the components, even those
that are not in ap, will move if they can. This means that the choice of ap

influences only the 0-th component and not the other components of the game.
Lastly, the acceptance condition in G is given by the parity condition on

the positions of P0.

31

Lemma 31 G is I-gluable and glue(G) is an environment deterministic game.

Proof
Consider an environment position η = ((~s, ap, q, min), R1, . . . , Rn). By the
condition T3 for every player position such that η → π, all the components of
π but the 0-th component are fixed by R1, . . . , Rn.

We want to apply glue operation to 0-th component. For this we need to
check that G is gluable. By the above paragraph G is 0-deterministic. P0 is
never idle by the definition of transitions, hence G is 0-independent. Lastly,
the acceptance condition is the parity condition on 0. Hence, by Theorem 13,
there is a distributed strategy in glue(G) iff there is one in G. Additionally
glue(G) is [1, n]-deterministic.

By the observation from the first paragraph of this proof it follows that
every environment position η̃ in glue(G) has at most one successor. Hence,
glue(G) is environment deterministic. �

Using Fact 5 we obtain:

Corollary 32 It is decidable if there is a distributed strategy in the game G
constructed from a given system and a given local specification as described
above.

Equivalence It remains to show that there is a distributed strategy in the
game G iff there is a non-blocking, com-rigid and clocked controller in the
original system. In this subsection we assume that both the system and the
game are fixed as above.

The first observation is that a clocked controller ρ : Σ∗ × Σc → P(Σe)
can be as well presented as a function ρ : N → P(Σe) because such a con-
troller depends only on the length of the argument. Similarly if we have a
distributed strategy (σ1, . . . , σn) in G then each of the components is a func-
tion σi : (EiPi)

+ → Ei. As Pi is a singleton we can identify such a function
with a function σi : N → Ei.

Lemma 33 If there is a non-blocking, com-rigid and clocked controller for the
system then there is a distributed winning strategy in G.

Proof
Given a controller (ρ1, . . . , ρn) for the system we define σi(k) = ρi(k) for all i

and k. Consider a play:

((~s1, ap1, q1, min1), ~R1) → ((~s1, ap2, q1, min1, ς1), ~R′
1) →

((~s2, ap2, q2, min2), ~R2) → ((~s2, ap3, q2, min2, ς2), ~R′
2) · · ·

in G respecting the strategy (σ1, . . . , σn) and such that ~s1 = sin, ap1 =

{1, . . . , n}, min1 = 0 and ~R1 = (ρ1(0), . . . , ρn(0)).

32

We would like to show that it is winning. For this it is enough to observe
that

~s1 →
ς1 ~s2 →

ς2 · · ·

is a path in the global system respecting the controller (ρ1, . . . , ρn). Moreover

q1 →
ς1 q2 →

ς2 · · ·

is the run of A on ς1 · ς2 · · · and mini = min(qi, ςi). As the run is accepting the
minimal priority appearing infinitely often in the sequence min1, min2, . . . is
even. Hence the play in G is indeed winning for the players. �

Lemma 34 If there is a distributed winning strategy in G then there is a
distributed controller for the system.

Proof
Let (σ1, . . . , σn) be a distributed winning strategy in G. We define the controller
for S by (ρ1, . . . , ρn) with ρi(k) = σi(k) for all i and k.

Recall that on the words w ∈ Σ∗ we have the trace equivalence relation
induced by the the dependence relation: (a, b) ∈ D iff θ(a) ∩ θ(b) 6= ∅. We
denote by w ∼ w′ the fact that the two words are trace equivalent. Let M(w)
denote the set of minimal letters in w, i.e., the letters a such that aw′ ∼ w for
some w′. Let u1 be a linearization of M(w) and let w1 be such that u1 ·w1 ∼ w.
We then define u2 in a similar way but starting from w1. Repeating this
procedure ad infinitum we obtain the word nice(w) = u1 · u2 · · · . It follows
that nice(w) ∼ w.

Let w be a path in S respecting (ρ1, . . . , ρn) and starting in sin. Directly
from the definitions we have that nice(w) is also a path in S. It is of the form:

~s1 →
u1 ~s2 →

u2 ~s3 →
u3 · · ·

where u1 · u2 · · · is a decomposition of nice(w) as described above. From the
definition of u1 · u2 · · · we have that ui ∈ (Σc)∗ for even i and ui ∈ (Σe)∗ for
odd i. Let

~q1 →
u1 ~q2 →

u2 ~q3 →
u3 · · ·

be the run of A on nice(w) and let mini = min(qi, ui). Finally let apk = {i :
∃j≥k∃a∈Σi

a ∈ uj}. It the follows that apk ⊇ apk+1 and apk = apk+1 if k is odd.
We obtain that

((~s1, ap1, q1, min1, ~R1) → ((~s1, ap2, q1, min1, ς1), ~R′
1) →

((~s2, ap2, q2, min2, ~R2) → ((~s2, ap3, q2, min2, ς2), ~R′
2) · · ·

is a path of G respecting the strategy (σ1, . . . , σn). �

Corollary 35 The MT-control problem is decidable.

33

Proof
Given an instance of the control problem we translate it into a game G. By
Corollary 32 we can decide if there is a distributed winning strategy in G. By
the two lemmas above we know that there is such a strategy iff the instance
of the control problem has a solution. �

9 Discrete-event systems

In this section we describe how to formalize and solve the decentralized con-
troller synthesis problem of Rudi and Wonham. This is the only problem where
we do not have a simpler solution via distributed games. Instead of artificially
forcing the solution to use the game terminology we prefer to show how the
problem itself can be presented as a game. For completeness we present also
a very simple argument why the problem is decidable [6]. The argument does
not use any of our theorems about games neither we could find any interesting
generalization of it in the language of games.

A plant P over a set of actions Σ is a deterministic finite state automaton
i.e. P = 〈S, Σ, s0, δ〉 where S is a finite set of states; δ : S × Σ

·
→ S is the

partial transition function and s0 is the initial state. We do not specify the set
of final states because we assume that all the states are final. The language of
P is the set of all the sequences w = a1a2 . . . ak that are accepted by P . Hence
L(P) is closed by prefixes.

A controller with the set Σc ⊆ Σ of controllable actions and set Σo ⊆ Σ of
observable actions is a deterministic finite state automaton C = 〈Sc, Σ, sc

0, δ
c〉

such that δc(s, a) is defined for every a ∈ Σ \ Σc and δc(s, a) = s for every
a ∈ Σ \ Σo for which δc(s, a) is defined.

By P × C we denote the synchronized product of the two automata, i.e.,
P × C = 〈S × Sc, Σ, (s0, s

c
0), δ

×〉 where δ×((s, sc), a) = (δ(s, a), δc(sc, a)). Of
course δ×((s, sc), a) is only defined if both components are defined.

Fix a number n of processes and for each process i = 1, . . . , n fix two alpha-
bets Σc

i ⊆ Σ and Σo
i ⊆ Σ of controllable and observable actions, respectively.

For an action a, let obs(a) = {i | a ∈ Σo
i } be the set of controllers that can

observe it and let con(a) = {i | a ∈ Σc
i} be the set of controllers that can

control it.
The Rudie and Wonham control problem is: for given P , two languages

M, N ⊆ Σ∗ and (Σc
i , Σ

o
i)i=1,...,n decide if there exist controllers C1, . . . , Cn such

that
M ⊆ L(P × C1 × · · · × Cn) ⊆ N

Observe that we can “hide” the plant into the specification because the above
is equivalent to

M ⊆ L(C1 × · · · × Cn) ⊆ N ∪ (Σ∗ \ L(P)) (1)

if we assume that L(M) ⊆ L(P). We can assume this and the fact that M is
prefix closed because otherwise the problem does not have a solution.

34

Encoding into a game The distributed game encoding the problem has n + 1
players. The Player 0 codes the the automaton AM = 〈SM , Σ, sM

0 , δM〉 for the
language M . Players 1, . . . , n code controllers.

The 0 component coding the automaton AM is G0 = 〈P0, E0, T0〉 where:

• P0 = Σ× SM ∪ {⊥}, E0 = SM ; and the players’ moves are restricted to
(a, s) → δM(s, a).

For each i, the component Gi = 〈Pi, Ei, Ti〉 is defined by:

• Pi = Σo
i ; Ei = P(Σc

i) and no restriction on the moves of the player or
environment

We have a global transition (s, R1, . . . , Rn) → ((a, s), x1, . . . , xn) from an
environment position if

• δM(s, a) is defined and a ∈
⋂

i∈con(a) Ri;

• xi = a for all i ∈ obs(a) and xi = Ri for all i 6∈ obs(a).

We also have a transition (s, R1, . . . , Rn) → (⊥, R1, . . . , Rn) if δM(s, a) is
defined and there is no move to ((a, s), x1, . . . , xn) as described above. The
winning condition is to avoid a state with ⊥.

In the 0-th component the player has no choice, so there is unique strategy
for this component, denote it by σ0. A strategy for every other component is
a function σi : Pi(Ei · Pi)

∗ → Ei. We can as well consider it to be a function
σi : P ∗

i → Ei by putting

σi(p1p2 . . . pn) = σi

(
p1 · σi(p1) · p2 · σi(p1σi(p1)p2) · · · pn

)

This is because if we play according to the strategy, then the environment
positions we see are determined by the strategy.

Definition 36 The language of a strategy σi : P ∗
i → Ei, denoted L(σi) is the

set of words w ∈ Σ∗ such that v = w|Σo

i
respects σi which means that for each

prefix uaiai+1 of v, if ai+1 ∈ Σc
i then ai+1 ∈ σ(uai).

Lemma 37 A distributed strategy 〈σ1, . . . , σn〉 is winning in G from the po-
sition (sM

0 , σ1(ε), . . . , σn(ε)) iff M ⊆
⋂

i=1,...,n L(σi).

Proof
This lemma follows directly from the definition of G by observing that each
word w ∈ M determines at most one path respecting the distributed strategy
in G. The distributed strategy is winning if for every word w ∈ M there is a
path respecting the strategy labelled by w. On the other hand there is such a
path iff w ∈

⋂
i=1,...,n L(σi). �

Now we define the strategy

σ̂i(v) = {a ∈ Σc
i : ∃w. w|Σo

i
= v and δ(sM

0 , wa) is defined}

By definition M ⊆ L(σ̂i). The next lemma says that σ̂i is the smallest
strategy with this property.

35

Lemma 38 For every i, if M ⊆ L(σi) then L(σ̂i) ⊆ L(σi).

Proof
Suppose conversely that w ∈ L(σ̂i) \ L(σi). By the definition of L(σi) it
means that w ends on the letter in Σc

i and by the definition of σ̂i we have that
δM(sM

0 , w) is defined. But then w ∈ L(M) which is a contradiction. �

Corollary 39 A Rudie and Wonham synthesis problem as in (1) has a solution
iff

⋂
i=1,...,n L(σ̂i) ⊆ N ∪ (Σ∗ \ P).

Proof
Given a strategy 〈σ1, . . . , σn〉 we can define the controllers C1, . . . , Cn where
Ci is the minimal deterministic automaton recognizing L(σi). It is easy to
see that it is a controller with set Σo

i of observable and set Σc
i of controllable

actions. From the definition L(C1 × · · · × Cn) =
⋂

i=1,...,n L(σi).
For the other direction, suppose that we have controllers C1, . . . , Cn solving

the problem. For each i = 1, . . . , n we define a strategy σi : P ∗
i → Ei by

σi(v) = {a ∈ Σc
i : va is permitted by Ci}. Once again L(C1 × · · · × Cn) =⋂

i=1,...,n L(σi). �

10 Conclusions

We have introduced a notion of distributed games as a framework for solving
distributed synthesis problems (DSP). We have tried to make the model as
specific as possible but still capable to easily encode the particular instances
of DSP found in the literature. This deliberate restriction of the model is the
main difference between our approach and the general models proposed in the
literature [22, 2, 7].

Having decided on a model we have looked for a set of tools that can be
applied in different instances of DSP. We have given two theorems allowing
to simplify distributed games. We have shown how they can be used in two
instances of DSP from the literature. In the appendix we consider two more
cases. The advantage of our approach is that we separate the proofs into two
steps: coding an instance in question as a distributed game model and use of
simplification theorems. While both steps are not completely straightforward,
they nevertheless allow some modularization of the proof and reuse of the
general results on distributed games.

We hope that distributed games will be useful in exploring the borderline
between decidability and undecidability of DSP. For example, the only archi-
tectures for which the DSP problem with local specifications is decidable are
doubly flanked pipelines. The undecidability arguments for other architectures
use quite unnatural specifications that require a process to guess what will be
its next input. We hope to find, for each particular architecture, a class of spec-
ifications for which the problem is decidable. We want to do this by analyzing
the encoding of this DSP problem into games and looking at the structure of

36

resulting games. In a similar way we want to find decidable instances of DSP
in the discrete control synthesis framework.

Acknowledgments: The authors a very grateful to Julien Bernet and David
Janin for numerous discussions and valuable contributions.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable spec-
ifications of reactive systems. In ICALP’89, volume 372 of Lecture Notes
in Computer Science, pages 1–17, 1989.

[2] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In FOCS’97, pages 100–109, 1997.

[3] S. Ambroszkiewicz and W. Penczek. Local interactions, explicit com-
munication and causal knowledge in games and multi-agent systems. In
CEEMAS’99, St. Petersburg, 1999.

[4] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of con-
trollers with partial observation. Theoretical Computer Science, 303(1):7–
34, 2003.

[5] H. Attiya and J. Welch. Distributed Computing : Fundamentals, Sim-
ulations, and Advanced Topics. McGraw-Hill Publishing Company, UK,
1998.

[6] A. Bergeron. A unified approach to control problems in discrete event
processes. RAIRO-ITA, 27:555–573, 1993.

[7] J. Bradfield. Independence: logic and concurrency. In LCS’00, volume
1682 of Lecture Notes in Computer Science, 2000.

[8] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scien-
tific, 1995.

[9] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and deter-
minacy. In Proc. FOCS’91, pages 368–377, 1991.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
knowledge. MIT Press, 1995.

[11] J. Y. Halpern and R. Fagin. A formal model of knowledge, action and
communication in distributed systems. In Proc. of ACM Symp. on Prin-
ciples of Distributed Computing, pages 224–236, 1985.

37

[12] J. Y. Halpern and L. Zuck. A little knowledge goes a long way: Sim-
ple knowledge based derivations and correctness proofs for a family of
protocols. Journal of the ACM, 39(3):449–478, 1992.

[13] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc.
16th IEEE Symp. on Logic in Computer Science, 2001.

[14] H. Lamouchi and J. G. Thistle. Effective control synthesis for DES under
partial observations. In Proc. 39th IEEE Conf. on Decision and Control,
December 2000.

[15] F. Lin and M. Wonham. Decentralized control and coordination of
discrete-event systems with partial observation. IEEE Transactions on
automatic control, 33(12):1330–1337, 1990.

[16] P. Madhusudan. Control and Synthesis of Open Reactive Systems. PhD
thesis, University of Madras, 2001.

[17] P. Madhusudan and P. Thiagarajan. Distributed control and synthesis
for local specifications. In ICALP’01, volume 2076 of Lecture Notes in
Computer Science, 2001.

[18] P. Madhusudan and P. Thiagarajan. A decidable class of asynchronous
distributed controllers. In CONCUR’02, volume 2421 of Lecture Notes in
Computer Science, 2002.

[19] D. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

[20] P. Morris. Introduction to game theory. Springer-Verlag, 1994.

[21] A. W. Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdansk, 1991.

[22] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[23] R. Parikh. Social software. Synthese, 2002 (To appear).

[24] M. Pauly. Logic for social software. PhD thesis, Institute for Logic,
Language and computation, Universiteit van Amsterdam, 2001. ILLC
Dissertation Series 2001-10.

[25] G. L. Peterson and J. H. Reif. Multi-person alternation. In Proc. IEEE
FOCS, pages 348–363, 1979.

[26] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
ACM POPL, pages 179–190, 1989.

[27] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthe-
size. In 31th IEEE Symposium Foundations of Computer Science (FOCS
1990), pages 746–757, 1990.

38

[28] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(2):81–98, 1989.

[29] S. Ricker and K. Rudie. Incorporating knowledge into discrete-event con-
trol systems. IEEE Trans. on Automatic Control, 45(9):1656–1668, 2000.

[30] K. Rudie and W. Wonham. Think globally, act locally: Decentralized
supervisory control. IEEE Trans. on Automat. Control, 37(11):1692–1708,
1992.

[31] W. Thomas. On the synthesis of strategies in infinite games. In STACS’95,
volume 900 of Lecture Notes in Computer Science, pages 1–13, 1995.

[32] S. Tripakis. Undecidable problems of decentralized observation and con-
trol. In IEEE Conference on Decision and Control, 2001.

39

