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1 Introduction

The connections between automata theory and logic are long and fruitful.
Good examples of this are Biichi’s proof of decidability of monadic second-
order (MSO) theory of infinite words and Rabin’s proof of decidability of
MSO theory of infinite binary trees. This last theory is one of the strongest
known decidable logical theories with many other decidability results being
an easy consequence. Recently, automata play a prominent role in under-
standing of many logical formalisms used in Computer Aided Verification.
Of particular interest to us here will be various versions of the p-calculus.

An equivalence between MSOL, automata and the p-calculus is an im-
portant and useful property. MSOL gives the guarantee of expressive power
as the MSOL properties are by definition closed under Boolean operations
and quantification. Automata are the main technical tool in analysing the
logic and in particular for inexpressibility results. They are also crucial in
the algorithmic problems. The pu-calculus offers a logical formalism which
is usually of much smaller complexity than MSOL. Still, it is a usable for-
malism in which many interesting properties can be formulated succinctly.
Sometimes, as in the case of graphs, the p-calculus gives a recursive syntax
for an interesting, but not recursive, subset of MSOL.

In these notes we will show many situations in which the three formalisms
are equivalent. We start with classical equivalences between MSOL, au-
tomata and the p-calculus over words and trees. The tools we develop allow



us then to study and compare hierarchies in all of the formalisms. Finally, we
describe extensions of the classical results in three directions. We consider a
more general relational setting, obtaining so called guarded logics. We also
discuss the extensions to trace models and to real-time models.

These notes are not intended to be a survey of the results in the area.
Some important aspects, as for example the relations with first-order logic,
are omitted here. We refer the reader to excellent surveys and books [51, 52,
49, 7.

2 Finite words

Let X be a finite alphabet. A finite word over X is a sequence w = ag . . . a, of
letters from X, or equivalently a function from {0,...,n} to ¥. We use |w|
for the length of w, i.e., n 4 1 in this case. We use dom(w) for the domain
of w, i.e., {0,...,n}. The empty word is denoted by £. We write ¥* for the
set of all finite words over X.

The word w as above can be represented as a relational structure:

Mw - <d0m(w)v <, (P(;H)a62>

where < is the standard linear order on dom(w) and P! are unary predicates
with the interpretation: P;” = {i € dom(w) : w(i) = a}.

2.1 First-order and monadic second-order logics

The structures as above can be described in first-order or second-order logics
which we are going to define now. Let Var; = {z,y,...} be the set of first
order variables. The set of first-order formulas is build from atomic formulas
of the form:

x <y, P,x) for every a € ¥

using the connectives V, = and the quantifier 3. A sentence is a formula
without free variables.

The meaning of a formula in a model of a form M, is defined in a
standard way. In particular the variables range over positions in w. If
Py, P € dom(w) are positions in w and p(z1,...,z,) is a formula then
My,p1,--,pn E @(z1,...,2,) means that ¢ holds in M,, when each z;
is interpreted as the position p;. Other connectives as A, = and universal
quantifier V are definable in the usual way. We admit the empty model, M.,
as interpretation. In this model all existential sentences Jz.¢ are false.



The language defined by a sentence ¢ is the set of words:
L(p) ={w e X : My, E ¢}

For example the sentence Vz.P,(z) = (Jy.x < yAPy(y)) defines the language
of words where after each letter a there is a letter b; in case ¥ = {a, b} these
are the words ending in b. A language L C ¥* is FO-definable if there is a
first-order sentence ¢ such that L = L(yp).

Monadic second-order logic is an extension of first-order logic with quan-
tification over sets of elements. Let Vary = {X,Y,...} be the set of second-
order variables. The syntax of monadic second order logic extends first-order
logic with atomic formulas X (y) and quantification 3 over second order
variables. To interpret such formulas we need now valuations

Vi (Var; — dom(w)) x (Vary — P(dom(w)))

assigning to each first-order variable an element of the domain and to each
second-order variable a set of elements in the domain. The term monadic
refers to the fact that second order variables range over sets of elements and
not over relations of higher arity.

As before we write L(y) for a set of words defined by a MSOL sentence .
For example the sentence: 3X. (Vy. X (y) & —X(y+1)) AVz. Py(z) = X (z)
expresses the fact that b appears only on odd or only on even positions in
the word. Here we use X (y + 1) as a shorthand for saying that the position
y + 1 belongs to X. Clearly +1(y, z) relation is definable in first-order logic
over words.

When proving something by induction on the structure of MSOL formulas
it will be convenient to have a small set of connectives and atomic formulas.
Consider the set of formulas given by the grammar

pu=XCY | XCP, | Succ(X,Y) | p1 Vo | g |IX.p (1)

In these formulas there are no first-order variables and there are two new
binary predicates C and Succ. As for the meaning of such formulas in a
structure M,, and valuation V' : Vary — P(dom(w)) we have:

e M,,VEXCYifV(X)CV(Y),
e M,,VEXCP,if V(X)C P,

e M,V E Succ(X,Y) if V(X) and V(Y) are singletons p; and po, re-
spectively, and p; + 1 = p».



It should be clear that both C and Succ are definable in MSOL. The converse
is also not difficult:

Lemma 1 Every MSOL formula without free first order variables is equiv-
alent to a formula generated by the grammar (1).

Proof
First, we define singleton sets. Then, we simulate first-order variables and
first-order quantification using singletons. O

2.2 Automata

A finite automaton is a tuple:

A=(Q,2,¢"€Q,6CQxTxQ,FCQ)

where: @ is a finite set of states, ¥ is the input alphabet, ¢° is the initial
state, ¢ is the transition relation, and F' is the set of final states.

A run of the automaton on a word w = ayq . . . a, is a sequence qg, - - ., @11
such that: go = ¢° is the initial state, and (g;, a;, ¢;41) € d foralli = 0,...,n.
A run is successful if q,.1 € F. The language recognized by A, denoted
L(A), is the set of words accepted by A.

Definition 2 A language L C X* is regular iff it is the language recognized
by some automaton.

It is well known that the class of regular languages is closed under:

e sum: if Ly and Ly are regular then L; U Ly is regular

e intersection: if Ly and Lo are regular then L, N Ly is regular,

e complement: if L is a regular language over ¥ then ¥* \ L is regular,

e projection: if L is a regular language over ¥ = {0, 1} x X' then my(L) =
{m(w) € X' : w € L} is regular; where we write my(w) for a word
ap - . .a, € X' whenever w = (by, ag)(b1,a1) ... (by,a,) € 5*.

The following theorem gives the connection between the languages ac-
cepted by automata and those defined in MSOL.

Theorem 3 (Biichi, Elgot)

A language of finite words is definable by a MSOL sentence iff it is the lan-
guage recognized by some finite automaton. The translations in both direc-
tions are effective.



Proof
Let A = (Q,%,¢% 6, F) be a finite automaton recognizing L. We need to
write a formula ¢4 which holds in a model M,, iff w € L.

The formula ¢ 4 says that there exist sets Sp, ..., S|g| such that:

1. the sets form a partition of the domain;

2. the first element of the domain belongs to Sy, and the last to some S
such that g € F;

3. for every element different from the last, if the element belongs to some
S; and its successor to some S; then (¢;,a,q;) € 6, where a is the label
of the element.

It should be clear that all these requirements can be formulated in MSOL
and that the resulting formula expresses the existence of an accepting run of
A. This shows the right to left implication of the theorem.

For the implication from left to right we are going to construct an au-
tomaton for every MSOL formula. By Lemma 1 we can do this by induction
on the reduced syntax of MSOL given by (1).

A small complication here is that we are going to translate formulas with
free second-order variables. Our inductive translation will be simpler if we fix
a set of variables { X7, ..., X, } and provide the translation for formulas using
only these variables. This is not a loss of generality as the set is arbitrary.

A formula with free variables in {Xi,..., X,} defines the set of pairs
(M, V) consisting of a model and a valuation in which the formula is satisfied.
Such a pair can be coded as a word over the alphabet ¥ x P({1,...,n})
where a position m is labelled with (a,S) iff a is the label of m in M and
S={ie{l,...,n} :meV(X;)}

By induction on the syntax of the formula ¢ we construct an equivalent
automaton A, i.e., such that A, accepts the word representations of exactly
those pairs (M, V) for which M,V E ¢ holds.

The automaton for an atomic formula of the form X; C X is very simple.
It checks that for all the letters (a,S) appearing in the word we have that
whenever 7 € S then j € S. The constructions of automata for X; C P, and
Succ(X;, X;) are also straightforward.

Consider the induction step. If ¢ = ¢; V ¢y then L(A,) = L(A,,) U
L(A,,). Similarly negation of a formula corresponds to complementation of
the language, and existential quantification corresponds to projection. Hence
the inductive step follows from well known constructions on finite automata.

O



Let us present a small application of this theorem. An easy pumping
argument shows that the language {a"b" : n € N} is not recognized by any
finite automaton, hence not definable in MSOL. We will use this fact to show
that existence of Hamiltonian cycle is not expressible in MSOL over graphs.
This logic is exactly the same as MSOL we have described above but with <
relation replaced by FE relation interpreted as the edge relation of the graph.

A balanced bipartite graph is a graph whose set of vertices can be divided
into two sets of the same size such that there are no edges between vertices of
the same set. First, we show that there is no MSOL formula defining balanced
bipartite graphs. Suppose to the contrary that ¢ defines such graphs. We
show that then the language {a"d" : n € N} would be definable in MSOL
which is impossible.

A word a™b" defines a bipartite graph K,,, with vertices {(a,7) : i =
L...,m}U{(bj):j=1,...,n} and edges connecting each a vertex with
each b vertex. By our assumption we have K, ,, F ¢ iff n = m. Replace each
occurrence of E(z,y) in ¢ by the formula Qq(z) A Qy(y). Call the resulting
formula w An easy induction argument shows that K, ,,, F ¢ iff a"b™ F 1/)
Hence ¢ A Vz,y. P,(z) AN Py(y) = = < y defines {a"b™ : n € N} which is
impossible.

So, there is no MSOL formula v over graphs such that K,,, F 1 iff
m = n. In K,,, there is a Hamiltonian cycle iff m = n. The graphs of the
form K,,, are definable in MSOL, hence there cannot be a MSOL formula
defining Hamiltonicity.

2.3 Complexity

Let us shortly summarize the complexity results for MSOL and automata on
finite words.

The emptiness problem is to decide whether a given automaton accepts
some word. It is easy to see that the problem is equivalent to the reachability
problem in finite graphs, hence it is NLOGSPACE-complete. Indeed, given an
automaton we can construct a graph with states of the automaton as nodes
and an edge whenever there is a transition on some letter between the states.
The automaton accepts some word iff there is a path in the graph from the
initial state to a final state.

The universality problem is to decide whether L(A) = X* for a given
automaton A. This problem is PSPACE-complete [46]. A PSPACE algorithm
for the problem is to determinize the automaton and look for a word that
is not accepted. The deterministic automaton may be of exponential size
but we never keep the whole of it in memory; we just calculate its states on



demand. For PSPACE hardness one shows that the language of words that
are not computations of a given O(n) space bounded Turing machine can be
recognized by a small nondeterministic automaton.

The satisfiability problem for MSOL over finite words is to decide whether
for a given formula ¢ there is a word w such that ¢ holds in M,. By
Theorem 3 the problem is decidable. Meyer [35] has shown that the problem
is nonelementary even for first-order logic.

Maybe it is worth to clarify the use of the term nonelementary here. Ele-
mentary functions were introduced by Grzegorczyk [24]. These are functions
obtained from some basic functions by operations of limited summation and
limited multiplication. Consider the function Tower(n, k) defined by:

Tower(n,0)=n  Tower(n, k + 1) = 277

Grzegorczyk has shown that every elementary function in one argument is
bounded by An. Tower(n, ¢) for some fixed c¢. Hence, the term nonelementary
refers to a function that grows faster than any such function. In particular
for the case of FOL over finite words it is known that the complexity of the
satisfiability problem is of order Tower(n,cn) for some constant ¢ [15].

3 Infinite words

An infinite word (or w-word) over an alphabet ¥ is an infinite sequence
w = apay ..., or equivalently a function from N to . We use ¥“ for the set
of infinite words over ¥. An infinite word w can be presented as a relational
structure:

Mw:<N7§7P;U>

where < is the standard order on N and PY(7) holds iff w(i) = a. A more
precise term for an infinite word is w-word. Of course one can consider words
for bigger ordinals than w, but we will not do it here. Hence, we will use the
two terms interchangeably.

The notions of first-order and second-order definability extend smoothly
from finite to infinite words. A sentence p now defines a set {w € 3¢ : M,, F
¢} of infinite words.

The extension of automata recognizability to infinite words requires more
work. An w-automaton has the form:

A:<Q’E’q0EQ,(SQQXEXQ,ACCQQW>

where (Q is the finite set of states, ¥ is the alphabet, ¢" is the initial state,
0 is the transition relation, and Acc defines which infinite sequences are



accepting. Of course, if we want our automata to be finite, we need some
finitary ways to describe the set Acc. These are discussed below.

A run of A on a word w is a sequence 7 : N — @ such that 7(0) = ¢°, and
(r(i),w(i),r(i+ 1)) € ¢ for all i € N. A word w is accepted by A iff there is
a run r of A on w such that r € Acc. The language recognized by A is the
set of words accepted by A.

We are now going to define several standard ways of describing the set
Acc. Each of these ways leads to a different notion of automaton. All of
these ways refer to the states appearing infinitely often in the run. Hence we
introduce the notation:

In(r) = {q € Q : (i) = q for infinitely many i}

The most frequently used acceptance conditions are the following require-
ments on the set In(r):

Biichi condition is specified by a set F' C (). We have
Ace ={r:In(r)NF # 0}.

Muller condition is specified by a set F C P(Q). We have
Ace ={r:In(r) € F}.

Rabin condition is specified by a set {(Ry,G1),..., (R, Gg)}, where
R;,G; C (). We have
Ace ={r:3i. In(r)N R; =0 and In(r)NG; # 0}

Streett condition is also specified by a set {(R1,G1), ..., (Rk, Gk)}, where
R;,G; C Q. We have
Ace ={r:Vi. In(r)NR; =0 or In(r)NG; # 0}

Mostowski condition Is specified by a function © : ¢ — N. We have
Ace = {r: min(2(In(r))) is even}

Rabin condition is sometimes called “pairs condition”; Streett condition is
called “complement pairs condition”; Mostowski condition is called “parity
condition”.

Automata are named after acceptance conditions so we have Biichi au-
tomata, Muller automata, etc.

Example: Suppose that Q@ = {q¢i,¢2,¢3}. We will show how to express
with different types of conditions the fact that ¢; appears only finitely of-
ten and ¢y appears infinitely often. This property cannot be expressed
with Biichi conditions. The property is expressed with the Muller condition



{{42},{42,¢3}}. The Rabin condition for the property is {({¢:1}, {g2})}. The
equivalent Streett condition is {({q1},0), (0, {¢=})}. Finally, the Mostowski
condition for the property is given by the function Q(¢;) =i for i = 1,2, 3.
0

Fact 4 For every Biichi condition there is an equivalent Mostowski condi-
tion. Every Mostowski condition has equivalent Rabin and Streett condi-
tions. Every Rabin or Streett condition has an equivalent Muller condition.

Proof

A Biichi condition F' C () is equivalent to a Mostowski condition €2 : ) —
{0,1}, where Q(q) =0 iff ¢ € F. A Mostowski condition Q : Q — {0,...,k}
is equivalent to a Rabin condition {(R;,G;) : i =0,...,k/2} where R; = {q¢ :
Q(q) < 2i} and G; = {q : Q(q) = 2i}. The translation to Streett condition
is similar. It is obvious that any condition can be translated to a Muller
condition. 0J

Fact 5 Mostowski and Muller conditions are closed under negation. The
negation of a Rabin condition is a Streett condition and vice versa.

Proof
The complement of a Muller condition F C P(Q) is F = P(Q) \ F. The
complement of a Mostowski condition Q : @ — N is given by Q(q)
Q(q) + 1. The complement of a Rabin condition {(R;,G1),..., (R, Gn)
is {(G1,Ry),...,(Gy,, R,)} interpreted as a Streett condition.

L=

Fact 6 Nondeterministic Biichi-, Muller-, Rabin-, Streett-, and Mostowski-
automata all recognize the same class of w-languages.

Proof

Every acceptance condition is a special form of Muller acceptance condition.
Hence it is enough to show how to translate Muller automata to Biichi au-
tomata. Roughly, a Biichi automaton nondeterministically picks a set S from
the Muller condition and checks that S is precisely the set of states appearing
infinitely often. O

This fact allows us to formulate the definition:

Definition 7 A language L € ¥¥ is regular if it is the language recognized
by some nondeterministic Biichi automaton.

Unlike the case of finite words it is not true that every automaton can
be determinized. Biichi automata cannot be determinized as the following

10



example shows. Let L, € {a,b}* be the set of words containing only finitely
many occurrences of a. It is easy to construct a nondeterministic automaton
for the language. This automaton just guesses a position and checks that
after this position there is no occurrence of a.

Fact 8 There is no deterministic Biichi automaton recognizing L,.

Proof

Suppose conversely that A = (Q,%,¢%6 : Q@ x ¥ — @, F) is a Biichi au-
tomaton for the language. Take the word b“. There is an accepting run of
A on this word. Let i; be the position on which a state from F appears
on the run. Consider now the word b ab®”. It is also accepted, and as the
automaton is deterministic, the run is the same up to position 7;. Take
a position iy > 7; on which a state from F' appears. Repeat this process
n = |Q|+ 1 times. We get a word b aba . ..b"ab” which is accepted by A
and such that the run of 4 on this word has accepting states at positions ¢;
for j =1,...,n+ 1. By the choice of n there are two positions, say ¢, and

1; where the same state appears. We have that there is an accepting run on
the word b'*ab™a. .. 0" ' (ba(b*+1a... b1—1)® -

There is a deterministic automaton with Mostowski conditions for L,.
This is an automaton that signals 1 when it reads a and 2 when it reads 0.
By the definition of the Mostowski condition this automaton accepts iff it
signals 1 only finitely often.

This is not a coincident that there is a deterministic Mostowski automaton
for L,. The following important fact shows that deterministic automata with
all but Biichi conditions have the same expressive power. In the next section
we will see that they are equivalent to nondeterministic automata.

Theorem 9 (Mostowski [36])
For every deterministic Muller automaton there is an equivalent deterministic
Mostowski automaton.

Proof

Take a Muller automaton A = (@, X, 1,6, F) and assume that Q@ = {1,...,n}.
The states of the Mostowski automaton A’ will be permutations of () with an
additional index. Such a permutation is called last appearance record (LAR)

and the position distinguished by the index is called hit position. So the set
of LAR’s is:

Q' =Perm({1,...,n}) x {1,...,n}

The idea is that a LAR keeps the order between the last occurrences of
states up to the present point. That is, if a state ¢ appears before ¢’ in the

11



permutation then the last occurrence of ¢ up to the present position is before
the last occurrence of ¢’. In particular the present state is on the last place
of the permutation. The hit position shows what was the position of the
present state in the previous permutation.

More formally, if the original automaton moves from a state [ to a state

I’ then the simulating automaton A’ is in a state (i, ..., i, h), with i, =,
and changes it to (iy,...,,...,i, ', k) where k is the position of I’ in the
sequence (i.e. iy =1) and i; =47, for k < j <n.

Let 7 = qo,q1,... be a run of the original automaton A. Suppose that
F = In(r) is the set of states appearing infinitely often in the run. Let us
analyse the run of the automaton A’ from the state (n,...,1,1). We will
say that a state is an F-state if it is of the form (iy,..., ik, ..., iy, h) with

{iky...,in} = F and h > k.

Assume first that there is a position m such that only states from F
appear after m and the state of A" at m is an F-state. It is easy to see from
the definition of A’ that after m all the states will be F-states. Moreover,
the hit position will be k£ at some position after m. This is because the state
i 18 going to appear after m. So, this argument really shows that the hit
position will be k infinitely often after m.

Now, let us see why we are bound to reach such a position m as assumed
in the previous paragraph. Let m; be a position after which no state outside
F appears. Let (i1,...,0,...,in, h) be a state of A" at this position. Take
a position msy such that between m; and ms all the states from F' appeared
at least once. We claim that my + 1 is the required m. By the definition of
the transition relation of A’ in the permutation at position ms all the states
from F' occur after the states not in F'. As the state g,,, is from F' the state
of A’ at the position my will have the hit position > k.

So we have shown that if ¢g, ¢1, ... is a run of A and F is the set of states
appearing infinitely often on it then in the corresponding run of A’ almost
all states are F-states and the hit position is equal k£ = n — |F| 4 1 infinitely
often.

Now, we define the Mostowski acceptance condition on states of A". We
put
2h if {ip,...,in} €F

Qiy, ... iy, b)) = e (- ;
(21 ? )) {2h+1 1f{lh,---a2n}¢f

We claim that A’ is equivalent to A. Let F' be a set of states appearing
infinitely often on the run of A. By the above considerations almost all states
on the run of A’ are F-states and the hit position is equal k =n — |F| + 1
infinitely often. Hence priority appearing infinitely often on the run of A’ is
either 2(n — |F|+ 1) or 2(n — |F|+ 1) + 1. It is even iff ' € F. O

12



It is natural to ask what is the complexity of translating form one form
of automaton to the next. From the above we can deduce:

Corollary 10 For every deterministic Muller, Streett or Rabin automaton
with n states there is a deterministic Mostowski automaton with O(27 &)
states.

A survey of the results on this subject is presented in [32]. In particular
the bound in the corollary is essentially optimal.

3.1 Closure properties of w-automata

It is easy to see that regular w-languages are closed under sum. The con-
struction is exactly the same as in the case of automata on finite words. This
also true for the closure under projection. The closure under intersection is
not that immediate. The construction from the case of finite words needs
to be modified because now there is no last letter on which two runs can be
synchronized.

Differences between finite and infinite words show up acutely in the case
of closure under complement. In the case of automata on finite words a
simple powerset construction is enough. In the case of w-automata a very
refined version of a powerset construction is required. Below, instead of
complementation we consider the stronger property of determinization.

Theorem 11 (McNaughton)
For every Buchi automaton there is an equivalent deterministic Rabin au-
tomaton.

An immediate corollary of this result is the equivalence between MSOL
and Biichi automata. Recall that by the results of the previous section all
but deterministic Biichi automata are equivalent to (nondeterministic) Biichi
automata.

Corollary 12 (Biichi) A language of w-words is MSOL definable iff it is
the language recognized by some Biichi automaton. The translations in both
directions are effective.

Proof

The construction of a formula for a given automaton is almost the same as in
the case of finite words. The proof in the other direction is also very similar.
We build an automaton by induction on the syntax of a given formula. It
is easy to construct automata for atomic formulas. As noted above, Biichi

13



automata are closed under sum and projection. The closure under com-
plementation follows from Theorem 11 and Fact 6 saying that every Rabin
automaton can be converted into a nondeterministic Biichi automaton. [l

Actually, in 1962 when Biichi proved the above result he did not use
determinization construction. The determinization construction was given in
1966 by McNaughton. At that time there was no notion of Rabin automaton.
He has shown the determinization theorem for Muller automata. We follow
here the construction given by Safra in 1988 [45]. This construction gives
better complexity bounds than the original one. Later we will describe how
to modify the construction to get an automaton with Mostowski conditions.
The proof of the determinization theorem will take the rest of this subsection.

Let us start by examining why the standard subset construction does not
work. Take a Biichi automaton:

A: <Q727q0757F>

The states of the powerset automaton A" are nonempty subsets of ). We
call these states macro-states. The transition function §* of this automaton
is defined by 67(S,a) = {¢': 3¢ € S. (q,a,¢') € §}. So A" is a deterministic
automaton and there is a run of A" on w iff there is a run of A on w. The
problem comes when we want to define an acceptance condition. A first
attempt can be to define a Biichi acceptance condition F'¥ by taking all the
macro-states S containing a state from F. The resulting automaton may
accept too much. The problem is presented in part (a) of Figure 1. The big
bubbles represent macro-states. The arrows show the transition relation of
the original automaton. We assume that /' = {¢;}. In case (a) there is no
accepting run of the original automaton because there is no way to prolong
a run from an accepting state.

N ) ) )
qf qf ar|
e
(a)
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) N N N
. d d d
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Figure 1: Problems with the powerset construction.



An alternative construction can extend powerset construction with record-
ing some information about past of each state. As this will be a binary infor-
mation we will use the metaphor of painting states. In the initial macro-state
no state is painted. A state ¢’ of a macro-state is painted green if ¢/ € F
or it is a successor of some green state, i.e., ¢’ is obtained from ¢ on the
previous position and ¢ was green in the previous macro-state. If the power-
set automaton reaches a state with all the components painted green then it
signals acceptance and removes the paint from all the components. Then the
whole process repeats. An easy application of Konig’s lemma shows that if
such powerset automaton signals acceptance infinitely often then there is an
accepting run of the original automaton. Unfortunately, as example (b) on
Figure 1 shows, there may be an accepting run of the original automaton but
the powerset automaton will not be a able to signal acceptance. The prob-
lem here is that apart from an accepting run we have a run that does not
go through ¢, at all. Hence at each macro-state there is a not painted state.
If we were allowed to guess, than we would guess that we should restrict
the above construction only to ¢; and its successors. This would remove the
upper part of the run from the considerations and the powerset automaton
would accept. Because we are to construct a deterministic automaton we are
not allowed to guess. What we will do is to consider all the possible guesses
at the same time. We will need a clever way of keeping all these guesses
together so that the sates do not get to big. This is the role of Safra trees
defined below.

An ordered tree (¢, <) is a finite-tree with a partial order < relating two
nodes of the tree iff they are siblings, i.e., they have a common father. This
ordering defines to the left relation on nodes of the tree: left(u,v) holds if
there are two siblings u’' # v’ such that ' < v and u is a descendant of u’
and v is a descendant of v' (we allow for u = u' or v = v').

A Safra tree is an ordered tree labelled with nonempty subsets of @)
and colors white or green. The tree must also satisfying some coherence
conditions. Formally such a tree is a quadruple 7 = (t, <, A\ : t = P(Q), ¢ :
t — {white, green}). The conditions are:

1. the label of the father is a proper superset of the sum of the labels of
the sons,

2. the labels of two nodes which are not ancestral are disjoint.

The intuition is that the label of the root represents a macro-state from the
powerset automaton. The rest of the tree describes a decomposition of the
macro-state.
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Before defining the transition function on Safra-trees, consider the lemma
pointing out properties of the structure of Safra-trees and giving the bound
on their size.

Lemma 13 There are at most || nodes in a Safra tree.

Proof

By condition 2, if a state ¢ belongs to a label of a node then it can belong to
the label of at most one son of the node. Hence there is a uniquely determined
lowest node containing ¢. By condition 1, every node is the lowest node for
some state. Hence, there cannot be more nodes than states. (]

The deterministic transition function 0 transforms a given tree 7 on a
given input a into a tree obtained by the following sequence of actions:

1. Set the color of all the nodes to white,

2. For every node v, create a new node v’ with A(v') = A(v) N F. Make v’
a son of v which is bigger than all the other sons of .

3. For every node v, define the labeling A'(v) = U,y (¢, a). So we
apply the successor function of the given automaton.

4. For every node v, define the labeling \"(v) = X'(v) \ Ujepupy,0) A'(01)-
So we delete a state from the label if it appears somewhere to the left.

5. Remove all the nodes with empty A" labels.

6. For every node v which A\ label is equal to the sum of the \” labels of
its sons, remove the descendants of v and color v green.

The resulting tree 7/ = :5\(7, a) has the vertices of 7 plus the vertices added
in step 2 minus the vertices removed in step 6. The labeling is \” and the
colouring is defined by the last step.

We will show later that A accepts a word iff there is the sequence of Safra
trees constructed according to d and a vertex v which is never deleted and
which is coloured green infinitely often.

Before defining a Safra automaton we need to solve a small technical
problem. In step 2 we add new vertices. We need to bound the number of
vertices that can be added in order to have a finite number of Safra trees.
We do this by recycling the vertices that are deleted in step 6. As we have
observed before there can be at most |Q)| vertices in a Safra tree. Hence, we
can take a pool of 2|Q)]| vertices. In 2 we take vertices from the pool and in
step 6 we put them back. This way we have:
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Lemma 14 There are 29<Q10s(IQ)) Safra-trees.

The Safra automaton is A = (@, ¥, 4, 25\, Zc\c) where @ is the set of Safra
trees over Q; ¢° is the tree consisting only of root labelled with {¢°}; and
Acc contains all the sequences such that there is a vertex which is removed
only finitely often and lights green infinitely often on the sequence.

We now show that L(A) C L(A). Let 79,71,... be an accepting run of
A on some word w. Let v be a vertex that lights green infinitely often in the
run and is not removed after some position m. Take a position ¢ where v is
green and a position j > i such that v is not green between 7 and j. An easy
induction shows that if ¢’ € A;(v') for some v’ a son of v in 7; then there is
q € A\i(v) and a run of A on w;w;4; ... w; from ¢ to ¢' going through some
state in F'. Call a run green if it goes through F. Let i; < i3 < --- be the
sequence of positions after m where v lights green. From the above we have
that for every j = 1,2,... and every ¢’ € \;;,, (v) there is ¢ € \;;(v) and a
green run of A on w; w1 ... w;,,, from ¢ to ¢'. By Konigs lemma we can
find and infinite sequence qi, ¢, ... such that for every j = 1,2,... there is
a green run of A on Wi, Wiy1 - - wj,, form g; to gj41. This together with the
observation that there is a run of A from ¢° to ¢; on wy...w;, gives us an
accepting run of A on w. R

Next, we show that L(A) C L(A). Let gy, ¢ be an accepting run of A
on w. Consider the unique run 7y, 71, ... of A on w. By the definition of the
transition function we have that ¢; € \;(vg) where vy is the root of all the
Safra trees and J; is the labeling from the tree 7;. If the root lights green
infinitely often then the run of A is accepting and we are done. If not then
let my be the position where ¢,,, € F' and after which the root does not light
green, Hence ¢,,, appears in some son of vy. An easy induction shows that
for every ¢ > myg the state ¢; will appear in some son of vg. It may move
from one son to some other but this other son must be smaller in the tree
ordering. As there is a bounded number of smaller sons of the root, there
must be a son v; where the run of A stays forever, i.e., ¢; € X\;(vy) for all
positions bigger than some m;. If v; lights green infinitely often then we are
done as vy is not removed after m;. If not then we repeat the reasoning. This
way wa obtain a path vg,v1,.... This path cannot be infinite because Safra
trees have bounded size. Hence, there must be v; such that for all positions i
bigger than some m; we have ¢; € \;(v;) and v; lights green infinitely often.

Finally, it remains to show that Acc is a Rabin acceptance condition.
Recall that Safra trees were constructed over the fixed set {vy,...,vyq(} of
vertices. For each i = 1,...,2|Q| we take a pair (R;, G;) where R; are all the
Safra trees without v; and G; are all the Safra trees where v; is coloured green.
Then Acc is expressed by the Rabin condition {(Ry,G), ..., (R2q, Goq|)}-
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A more efficient strategy of vertex recycling would allow us to mange with a
pool of |Q| instead of 2|Q| vertices. This would reduce the number of pairs
in the Rabin condition to |Q)|.

Corollary 15 For every Biichi automaton with n states there is an equiva-
lent deterministic Rabin automaton with 2°(®198(") states and n pairs in the
acceptance condition.

This construction can be combined with LAR construction from Theo-
rem 9 to obtain a deterministic Mostowski automaton. A direct application
of the theorem would give a Mostowski automaton of doubly exponential
size and with big values of function 2. A closer look shows that it is enough
to keep LARs of vertices and not of the whole Safra trees. As there are n
vertices, there are 20(1°8(")) LARs. So the resulting Mostowski automaton
is of not much bigger size than the Rabin automaton.

Corollary 16 Every Biichi automaton with n states is equivalent to a de-
terministic Mostowski automaton with 29(1°8(") states and the range of the
acceptance condition contained in {0, ...,2n}.

3.2 Complexity

Let us shortly discuss the complexity of some problems for MSOL and au-
tomata on w-words.

Checking emptiness of an w-automaton is NLOGSPACE-complete. The
lower bound follows from the case of automata on finite words. The upper
bound is a modification of the reachability algorithm.

Checking universality is PSPACE-complete for automata on finite words.
It is also PsPACE-complete for w-automata of any the discussed kinds. The
argument is essentially the same as for finite words. One constructs a deter-
ministic automaton equivalent to the given one. The states of the automaton
are calculated on demand.

As there is an effective translation from MSOL formulas to w-automata,
it follows that the satisfiability problem for MSOL over w-words is decidable.
The complexity of the problem is nonelementary. The lower bound follows
from the satisfiability problem of FOL over finite words.

4 Infinite trees

In this section we extend the concept of automaton even further. We consider
automata running on full infinite binary trees. We will show that these
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automata enjoy the same closure properties as word automata. This will
allow us to get the equivalence with MSOL over trees.

The full binary tree is the set {0,1}* of finite words over a two element
alphabet. The root of the tree is the empty word £. A node w € {0,1}*
has the left son w0 and the right son wl. A Y-labelled full binary tree is a
function ¢ : {0,1} — 3. We use Trees(X) for the set of all Y-labelled binary
trees.

Similarly as for words, >-labelled trees can be represented as relational
structures. A tree ¢ : {0,1} — X is represented by:

Mt - <{07 1}*7 <, So, S1, (Pa)a€2>

where u < v holds if u is a prefix of v and sy and s; are the binary left and
right son relations respectively. As before the predicates (P,).cx code the
labeling function t.

With such representations of trees we can say that a set of trees L is
monadic second-order (first-order) definable ifft L = {t : My E ¢} for some
monadic second-order (respectively first-order) formula.

The idea of extending automata to trees is simple. Before, being in some
position in a word the automaton had to decide which state to assume in
the successor position. Now, as every node in a tree has two successors,
the automaton splits and sends one copy of itself to each of the successors.
Formally an automaton on trees is:

A=(Q,%,¢",0 CQxX xQ xQ,Acc)

where all the components but the transition relation § are the same as for
automata on words. Depending on whether Acc is Biichi-, Muller-, etc.
condition we call A Biichi-, Muller-, etc. automaton.

A run of A on ¢ is a function 7 : {0,1}* — @ labeling nodes of the tree
with states so that the root is labelled by the initial state, i.e., r() = ¢%
and for every node w and its sons w0 and w1l we have that

(r(w), t(w), r(wo), r(wl)) € 6.

A run r is accepting iff for every path P of the tree the sequence of states
appearing on the path belongs to Acc. To put it more formally a path is a
sequence of nodes vy, vy, ... such that vy = ¢ and v;; is a son of v;, for every
i. A run r is accepting iff for every such path the sequence r(vp), r(vy),. ..
belongs to Acc. A tree is accepted by A iff there is an accepting run of A on
it. The language recognized by A is the set of trees accepted by A.
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Example: We show a Biichi automaton for the language L>° € Trees({a, b})
of trees having a path with infinitely many a’s. The states of the automaton
are ¢q, qp, 1 . The transition relation is given by:

0(qera) ={(qa: T),(T,qa)}
0(q,0) ={(a@- T), (T, )}
o(T, ) ={(T,T)}

where in the above x stands for either a or b. The Biichi acceptance condition
is F' = {q,, T}. Clearly the automaton accepts every tree from the state T.
It is easy to see that any run from g, consists of a single path labelled with
states qq, ¢, and the rest of the tree labelled with T. There are infinitely
many states ¢, on this path iff there are infinitely many vertices labelled by
a. Hence the automaton accepts a tree iff it can find a path with infinitely
many a’s on it. [

An important difference with the case of words is that Biichi conditions
are weaker than the other types of conditions. The following fact was shown
by Rabin [43] (see also [51])

Fact 17 The class of languages accepted by Biichi automata is not closed
under complement. The complement of the language L>° from the example
above is not recognizable by a nondeterministic Biichi automaton.

This fact explains why we use Rabin automata in the following:

Definition 18 A tree language L C Trees(X) is regular iff there is a Rabin
automaton recognizing L.

4.1 Closure properties of tree automata

As in the preceding sections our goal is to show that the class of regular
languages coincides with those definable in MSOL. For this we need to check
the closure properties of regular tree languages. Essentially the same con-
structions as for word automata show that the class of regular tree languages
is closed under sum and projection. As in the case of infinite words, it is the
closure under complement that brings the biggest problems.

Theorem 19 (Rabin)

Regular tree languages are closed under complementation. For every Rabin
tree automaton A one can effectively construct a Rabin automaton accepting
the complement of L(A).
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Once we prove this theorem we get the equivalence between automata
and MSOL. The proof of the corollary below is very similar to the case of
words.

Corollary 20 A tree language is definable by a MSOL sentence iff it is the
language recognized by some Rabin automaton. The translations in both
directions are effective.

In the rest of the section we will sketch the proof of the complementa-
tion theorem. Observe that it does not say that Rabin automata can be
determinized. Indeed the following easy fact shows that there is no hope for
determinization.

Fact 21 Let L] C Trees({a, b}) be the set of trees having at least one vertex
labelled with a. The language L7 is not recognizable by a deterministic tree
automaton with any of the considered acceptance conditions.

Although determinization is not possible, still the determinization re-
sult for word automata is essential in the complementation proof for tree
automata. Except for this result we will need an important fact from the
theory of infinite games. We will now define games abstractly and then make
the connection to tree automata.

A game G = (V,Vi,VI,E C V x V, Accg C V¥) is a bipartite labelled
graph with the partition (V,V]) of the set of vertices V. We say that a
vertex v’ is a successor of a vertex v if E(v,v') holds. The set Accg is used
to determine the winner in a play of the game.

A play from some vertex vy € Vj proceeds as follows: first player 0 chooses
a successor v1 of vy, then player 1 chooses a successor v, of v1, and so on ad
infinitum unless one of the players cannot make a move. If a player cannot
make a move he looses. The result of an infinite play is an infinite path
Ug, V1, Vg, ... This path is winning for player 0 if it belongs to Accg. The play
from vertices of V; is defined similarly but this time player 1 starts.

A strategy o for player 0 is a function assigning to every sequence of
vertices ¢ ending in a vertex v from Vj a successor vertex o(7) € Vi. A
strategy is memoryless iff o(¢) = o(w) whenever @ and @ end in the same
vertex. A strategy is winning iff it guarantees a win for player 0 whenever he
follows the strategy. Similarly we define a strategy for player 1.

In our application to tree automata we will be interested only in games
with Accq given by Mostowski conditions. Such a condition is determined
by a function Q2 : V' — N with the additional requirement that the image
of  is finite. In the case of finite automata we did not have to make this

21



finiteness assumption because the set of states was finite by definition. Here
we do not assume that the set V' of vertices is finite.

Definition 22 A game with Mostowski conditions is given by a labelled
graph (V, V5, VI, E CV x V,Q: V — N) such that the image of Q is a finite
set.

The following is the main theorem about games with this kind of con-
ditions. The idea of a strategy with bounded memory was introduced by
Gurevich and Harrington [25]. They have shown a bounded memory theo-
rem for Rabin conditions. The simplification for Mostowski conditions was
proved independently by Emerson and Jutla [19] and by Mostowski [37].

Theorem 23 (Memoryless determinacy)
Let G be a game with Mostowski conditions. From every node of G one of
the players has a memoryless winning strategy.

Now we can make the connection between tree automata and games. For
a given automaton A and a given tree ¢ we will define an acceptance game
G4y Player 0 will have a strategy in this game iff ¢ € L(A). This way
t ¢ L(A) is equivalent to player 1 having a strategy in G 4,. By the above
theorem, in this situation there is a memoryless strategy for player 1. The
existence of such a strategy can be checked by a finite automaton. This will
be the automaton accepting the complement of L(.A).

Fix an automaton A and a tree t. We define the game G 4;. The idea
of the game is quite simple. Player 0 will try to show that A accepts t.
So, in each position of the game which is a current vertex of the tree and
the current state of the automaton player 0 will chose a transition of the
automaton. Player 1 will try to show that the choices suggested by player 0
are not correct. To this end he will point to direction, left or right, asking
player 0 to provide the evidence for the respective subtree. The result of such
play is an infinite path. Player 0 is the winner if the the sequence of states
on this path satisfies the acceptance condition of A, otherwise player 1 wins.
Formally the game G 4, is defined by:

e the set 1 of vertices for player 0 is {0,1}* x @,
e the set V] of vertices for player 1 is {0,1}* x (@ x @),

e from each vertex (v,q) € V;, for each transition (q,a,qy,q1) € 0 with
t(v) = a we have an edge to (v, (g, q1)),

e from each vertex (v, (qo,q1)) € V1 we have edges to (v0, ¢y) and (v1,¢q),
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e the acceptance condition Accg consists of the sequences

(vo, qo)(vo, mo) (v1,q1)(vi,ma) . ..

such that the sequence qpq; ... is in Acc, i.e., it belongs to the accep-
tance condition of the automaton. (Here we use letters m; to denote
the elements of @ X Q.)

Directly from the definition of the game we have that there is one to one
correspondence between accepting runs of A on ¢ and winning strategies for
player 0 in G 4.

Lemma 24 t € L(A) iff player 0 has a winning strategy from the position
(g,4°), i.e., the position consisting of the root of the tree and the initial state

of A.

Hence, by Theorem 23, ¢t ¢ L(A) iff player 1 has a winning strategy in
G 4. We will now construct an automaton B which accepts a tree ¢ iff player
1 has a memoryless strategy in the game G 4. This way we will have that
L(B) accepts the complement of L(.A).

A memoryless strategy for player 1 is a function oy : Vi — V; which for
each vertex (v, (qo,q1)) € Vi chooses either (v0,¢q) or (v1,q;). An important
point is that such a function can be coded as a labeling function

f:{0,1}" — Moves;

where Moves; is the finite set ((Q x @) — {0,1}).

Consider infinite words over the alphabet ¥’ = 3 x Mowves, x {0,1}. Such
a word & = ((ay, fi,d;))ien describes a path e, dg, dody, ... in the tree. Letter
a; is the label of the vertex dy...d;_;, and f; is the strategy of player 1 in
this vertex. A play staying & is a sequence (vg, qo)(vo, mo)(v1, q1)(v1, M) ...
such that

e vy =cand g = ¢°,
e m; € 6(¢;, ai),
e fi(m;) = d; and g1 = g% where m; = (¢°, ¢").

That is the strategy always suggests the directions along the path determined
by &.

Let C be a nondeterministic automaton accepting precisely those words
¢ over ¥ which have a play staying in £ that is winning for player 0. It
is quite easy to construct such an automaton from the description above.
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By Theorem 16 there is a deterministic Rabin automaton C accepting the
complement of this language. That is C accepts those words ¢ for which all
the plays staying & are winning for player 1.

Consider a tree t and a strategy function f. If f is not winning then there
is a play which is winning for player 0 when player 1 uses the strategy defined
by f. This play proceeds along some path of the tree. Hence automaton C
would accept description of such a path. If f is winning then none of the
paths is accepted by C. Hence every path is accepted by C. So f is a winning
strategy for player 1 iff each path of ¢ x f (i.e. the tree ¢ labelled additionally
with the values of f) is accepted by C.

The tree automaton B accepting the complement of A consists of two
automata. The first guesses the value of strategy a function f; in each vertex.
The second runs C on every path of the tree. Automaton B accepts iff C
accepts on all the paths.

4.2 Complexity

The complexity of decision problems for tree automata is more subtle than
for word automata.

Recall that the emptiness problem, is to decide if there is a tree accepted
by a given automaton. For Biichi automata the problem is PTIME-complete.
For Rabin automata it is NP-complete [18]. As Streett conditions are nega-
tions of Rabin conditions, the emptiness problem for these automata is CO-
NP-complete. The exact complexity of the emptiness problem for Mostowski
automata is not known. The problem is in NP and co-NP [17]. Determin-
ing whether the problem is in PTIME is one of the main open problems in
the area.

The universality problem is EXPTIME-complete even for automata on
finite trees [46]. The EXPTIME-completeness result carries over to all kinds
of automata discussed in this section.

The satisfiability problem for MSOL on binary trees is nonelementary.
The decidability of the problem follows from the effective translation to Rabin
automata. The lower bound is inherited from that for first-order logic over
finite words.

5 The p-calculus and alternating automata

In the previous sections we have described very classical equivalences between
monadic second-order logic and automata. Here we will present another
logical formalism equivalent to the two. This will be the p-calculus, an
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extension of modal logic with fixpoint operators. We will show a very direct
connection between the p-calculus and alternating automata. These are an
extension of nondeterministic automata with universal moves, in the same
way as alternating Turing machines are an extension of nondeterministic
Turing machines.

5.1 Syntax and semantics of the pu-calculus

Here we will introduce the p-calculus over binary trees. Later, we will be
also interested in the p-calculus over words and arbitrary graphs. These
variations can be easily obtained by changing the set of modalities.

Let Vary = {X,Y,...} be the set of second order variables. Let {P, :
a € ¥} be the set of propositional letters. The syntax of the p-calculus is
given by the following grammar:

X | Pu|malavB] 0ol (el pX.aX)

where in the last construct we require that X appears only positively (under
even number of negations) in a(X). In this construct g binds X. This
has the same consequences for substitution as in the case of quantifiers in
first-order logic (free variables of the formula being substituted should not
be captured by the binders of the other formula). We write «[3/X] for the
result of substituting the formula  for the variable X in the formula a.

A binary tree is represented as a structure M = ({0,1}*, (PM),cx). Pre-
viously we had the successor relations s; and sy in the signature. Now we
do not need them as we do not have them in the syntax of the logic. The
meaning of a sentence is a set of nodes of a tree. To define the meaning of
a formula with free variables we need a valuation V' : Vary — P({0,1}*)
assigning to each variable a set of nodes of the tree. The meaning [[Oz]]y of a

formula « in a tree M and valuation V is defined inductively as follows:
o XTIV =V(X)

P, = pM

~a] = {0,1}*\ [a]}"

v B = [l U I8

(0ol = {v: 00 € [o]y"}

(] = {v: vl € o]y}

[
[
[
[
[
[
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o [uX.a(X)" =N{S C{0,1}": [aly]s/x, € S}

So, the meaning of uX.a(X) is the least fixpoint of an operator assigning to
a set S the set [[Oz(X)]]C/ES/X]. By our assumption on the positivity of X, this
operator is monotone, i.e., [[Oz(X)]]C/;SI/X] - [[a(X)]]C/ESZ/X] if S; C S5. Hence,
the least fixpoint always exists in the complete lattice of sets of tree nodes.

If o is a sentence then its meaning does not depend on the valuation. We
will then write [o]™ or even [o] if M is clear from the context. We will
sometimes write M, v £ « instead of v € [a]™. A sentence o defines the
language of trees

L(a)={t: My, e Fa}

So a formula defines a set of trees for which it holds in the root node.
The greatest fixpoint operator, denoted vX.«(X) is definable using the
least fixpoint by
vX.o(X) = pX.~a(-X)

We will use o to mean p or v.

Let us look at some example properties expressible in the p-calculus. The
formula pX.P, vV (0)X V (1)X holds in the root of a tree whenever there is
a node labelled by a. If there is such a node v then the path from ¢ to v
belongs to the least fixpoint of the operator defined by the formula (any fixed
point should contain v and should be closed under father relation). If there
is no node labelled by a then the empty set is a fixpoint.

The formula v.X.P, A ((0)X V (1)X) holds in the root of a tree if there
is an infinite path from e every node of which is labelled with b. Indeed, if
there is such a path then it is a fixpoint of the operator. Other way around,
if S'is a fixpoint of the operator and € € S then ¢ is labeled by b and ¢ has a
successor v € S. Hence, inductively we can construct an infinite path with all
the vertices labelled by b. Observe that if in the above formula we replaced
the greatest fixpoint with the least, obtaining uX.P, A ((0)X V (1)X), then
we would get an unsatisfiable formula.

Sometimes it will be convenient to work with formulas in positive normal
form, i.e., formulas were negations occur only before propositional constants
and variables. The next lemma says that for this we need to add conjunction
and the greatest fixpoint operators to the syntax.

Lemma 25 Every formula of the p-calculus is equivalent to a formula in a
positive normal form, possibly using conjunction and the greatest fixpoint
operator.

Proof
A formula in a positive normal form can be obtained by repetitive uses of
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de Morgan laws and the equivalences:

5.2 Alternating automata

Alternating automata model extends nondeterministic automata with a no-

tion of universal moves. Here we will present alternating tree automata

postponing presentation of variations for words and graphs to later sections.
An alternating tree automaton is a tuple:

A = <Q7Q37QV727q075 . Q X X — P(Q X {07 176})7ACC>

There are two differences with nondeterministic automata. First, the set
(Q of states is partitioned into existential and universal states, ()5 and Qv
respectively. Next, the transition relation is a function and e-transitions are
allowed. If an automaton is in an existential state ¢ and in a vertex labelled
by a then it chooses a transition from (g, a) which it is going to execute.
If ¢ is universal then the automaton has to execute all the transitions from
d(q,a). To execute a transition (¢’,d) in a vertex v means to go to the vertex
vd and change the state to ¢'. So, if d = ¢ then the automaton stays in v, if
d = 0 it moves to the left son of v.

It is the simplest to formalize the notion of a run and acceptance of alter-
nating automata in terms of games. Given a tree ¢ we define the acceptance
game G 4, which is very similar to the one defined for nondeterministic au-
tomata. We have:

e the set 1 of vertices for player 0 is {0,1}* x Q,
e the set V] of vertices for player 1 is {0,1}* x Qv,
e from each vertex (v, ¢) and (¢’, d) € 6(q,t(v)) there is an edge to (vd, ¢').

e the acceptance condition Acc consists of the sequences

(an QO)(Ul, (]1) -

such that the sequence ¢pq; ... is in Acc, i.e., it belongs to the accep-
tance condition of the automaton.
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We say that A accepts a tree t iff player 0 has a winning strategy in the
game G 4. The language recognized by A is the set of trees accepted by A.

Example: An automaton expressing that there is a descendant labelled by
a can have two states ¢, T and the transition function:

(¢,0) = {(¢,0),(¢, 1)} (g,a) = {(T,e)}

where T is a state from which every tree is accepted. We make ¢ an existential
state and put (¢) = 1. When such an automaton starts from the state ¢
in a vertex labelled by a then it goes to the accepting state T. If the vertex
is labelled by b then it goes with the state ¢ to one of its successors and the
process repeats. It cannot repeat like this for ever because then we would
have a path consisting only of ¢ states and such a path is not accepting.
Hence in order to accept the automaton must finally meet a vertex labelled
by a. If we changed the status of ¢ from existential to universal then the
automaton would accept from ¢ precisely those trees which have a on every
path. [J

The following lemma shows that the complementation is easy for alter-
nating automata. It is also easy to show that alternating automata are closed
under disjunction and conjunction. Hence it seems that they may be a better
candidate to use in the proof of Rabin’s theorem than nondeterministic au-
tomata where we need a lot of work to show the closure under complement.
Unfortunately, it is difficult to show that alternating automata are closed
under projection. One essentially needs to convert an alternating automaton
into a nondeterministic automaton. This in turn is as complicated as the
closure under complement for nondeterministic automata.

Lemma 26 For every Mostowski alternating automaton A there is a dual
Mostowski automaton A, such that L(A) = Trees(X) \ A. The size of A is
the same as the size of A.

Proof
Let A = (Q,Q3,Qv, %, % d,Q) be an alternating automaton as above. The
dual automaton is

./Tl = <Q7 QV) QH) Ea qO, 67 §>

where Q(q) = Q(q) + 1 for every ¢ € Q. Hence, A has the same set of
states and the same transition function as A. The difference is that the roles
of existential and universal states are interchanged. Also the acceptance
condition is negated.

To see that L(.A) is the complement of L(.A) consider a tree ¢ € Trees(X)
and the acceptance games G4, G4, The graphs of these games are the
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same but every position for player 0 in G 4, becomes a position for player
1 in Gz, and vice versa. Moreover, for every infinite play in these games,
the play is winning for player 0 in G 4, iff it is winning for player 1 in Gz,.
Hence, player 0 has a winning strategy in G 4, iff player 1 has a winning
strategy in G4, (this is just the same strategy). So, t € L(A) iff t ¢ L(A).
O

5.3 From the p-calculus to alternating automata

The translation from the p-calculus to alternating automata is quite direct.
The interesting and not obvious part of the translation is the construction
of acceptance conditions. The presented translation is based on the ideas
from [50, 48]

Let us fix a sentence « in a positive normal form and such that each
variable is bound at most once in a. Let ¢l(«) stand for the set of subformulas
of a.. As every variable is bound at most once, we can use fSx for the unique
subformula such that 0 X.5x € cl(a). If o is p then we call X a p-variable,
otherwise we call X a v-variable. We construct an alternating automaton:

Aa = <Qa7 Q%? QS? E? a) 6a7 Acca>

where Q® = cl(a)U{T, L} is the set of subformulas of o with two additional
states. The intended meaning of the additional states is that the automaton
should accept everything from T and it should accept nothing from L. The
initial state is the formula « itself. The partition of states is such that ()5
contains all disjunctions (formulas of the form (5; V ;) and @y contains the
rest. When we will define transition function, it will be clear that from states
other than disjunctions and conjunctions there is no choice. So it is irrelevant
whether we put these states in Q3 or Q.

The transition function is defined by:
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Hence, the automaton just decomposes the formula and, in the case of modal
formulas, it proceeds in an appropriate direction. In the case of a proposition
P, it checks the labeling of the current node. If the label is a then it accepts
the rest of the tree, otherwise it rejects. In the case of a variable, it replaces
it by its fixpoint definition. We have not shown the obvious transitions from
T and L.

Before defining the acceptance condition we need one more notion.

Definition 27 The dependence order on bound variables of « is the smallest
partial order such that X <, Y if X occurs free in oY.f3y. The alternation
depth of a variable X, denoted adepth(X), is the maximal number of alter-
nations between p and v-variables in a chain X <, 7 <, --- <, Zr <. Y.

For example, in the formula pX.(vY.(0)Y) A (1) X the alternation depths
of both X and Y are 0. This is because X is not smaller than Y in the
dependence order as it does not occur free in the Y subformula. On the
other hand, in puX.(¢Y.(1)X A (0)Y") the alternation depth of X is 1.

The acceptance condition Acc, is the Mostowski condition Q, : Q, =& N
defined by

2 x (maxy — adepth (X)) if # = X is a v-variable
Qa(B) = € 2% (maxy —adepth(X))+1 if = X is a y-variable
M otherwise

where maxg is the maximal alternation depth of a variable from cl(«), and
M is the maximal value of €2, for variables. The intention is that meeting
a v-variable brings us closer to acceptance while meeting a p-variable take
us further away. The values of €2, for formulas other than variables do not
matter.

The correctness of the construction is stated in the next theorem.

Theorem 28
For every tree t represented by a structure My: My, e E a iff t € L(Ay).

In the rest of the subsection we will sketch the proof of the theorem.
The main point is to understand the behaviour of fixpoints. We do this
by introducing fixpoint approximations. This will allow to use an induction
argument, on approximations.

Definition 29 An approzimation of a formula pX.5(X) has the form p” X.3(X)
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for some ordinal 7. The meaning of such an approximation is defined by:

[OX B =0 [ X801 = BOOT s
X B0 = | [ X.(X)]y if 7 is a limit ordinal

T'<T
Similarly we define approximations v” X.3(X) of v-formulas.

Approximations are not themselves formulas of the p-calculus. They are
extensions of the syntax needed in the inductive argument showing correct-
ness of our automaton. Recall that by Knaster-Tarski theorem we have:

X B8] = | X8

7€ Ord

Here the sum is over all ordinals, but it is enough to stop at the first ordinal
whose cardinality is bigger than the cardinality of M.

Definition 30 Let X;,..., X} be all the variables from « listed in the or-
der respecting <, relation (with smaller variables first). For a sequence of
ordinals 7 = (71, ...,7) and a formula v € ¢l(«) we define:

(% = Y[op Xe- B/ Xe] .. . [01 X181/ X1

where o0;, = v if X,, is a v-variable and o), = "™ otherwise. We define ()%
similarly but with the roles of ;1 and v-variables interchanged.

So ()% is the result of replacing sequentially every free variable by a fixpoint
formula or its approximation.

Definition 31 If v € [7]) for some v € cl(a) then we define the u-
signature, Sig(y,v), of v in the vertex v of the model M to be the least
in the lexicographical ordering tuple of ordinals 7 such that v € [[([7]>‘Ti]]<\//(
Ifv ¢ [[fy]](\//l then the v-signature of v, Sig”(v,v), is the least in the
lexicographical ordering tuple of ordinals 7 such that v ¢ [[([7]>Z.H<\/A

Using Knaster-Tarski theorem one can check that p and v-signatures
always exists when the conditions of the definition are satisfied. Having
signatures we can formulate the signature decrease lemma which is the main
tool in proving correctness of our automaton.

Lemma 32 (Signature decrease) For every vertex v, whenever the left
hand-sides are defined we have:
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e Sig(1 A o, v) = max(Sig(f, v), Sig(Bs, v)).

o Sig(31 V By, v) = Sig(f1,v) or Sig(fy V B, v) = Sig(fa, v).
Sig((0)3, v) = Sig(S, v0) and similarly for 1.
(

o Sig(vX.B(Y),0) = Sig(3(Y),v).
e Sig(pX;.5(X;),v) is the same as Sig(5(X;), v) on the first i—1 positions.
e If Y is a v-variable, Sig(Y,v) = Sig(8y(Y), v).

e If X is a v-variable, Sig(X;,v) is bigger than Sig(fy,(X;),v) and the
difference is at position .

Similarly for v-signatures but with interchanged roles of p with v, and con-
junction with disjunction.

Using the signature decrease lemma we can show that if M;,e F a then
t € L(A,). For this we show that there is a winning strategy for player 0
in the acceptance game G(A,,t). The only choice for player 0 in this game
is in the case of a disjunction 5 V . In a position (v, 51 V 33) he should
choose (v, f1) if Sig(51 V Ba, v) = Sig(f1,v) and (v, 52) otherwise.

To see that such a strategy is winning for player 0 assume conversely that
there is a play on which some odd priority p is the least priority appearing
infinitely often. This means that on this play we infinitely often meet the u-
variable X; where [ = (p — 1)/2. Moreover the variables with indices smaller
than [ appear only finitely many times on the play. Let m be a step of
the play after which no such variable with smaller index appears. By the
signature decrease lemma, the signatures of positions of the play after m
never increase on the first [ positions. They decrease every time we meet
X;. But this is impossible as the lexicographic order on [-tuples of ordinals
is a well ordering. Hence, such a play cannot exist, and the strategy we have
defined is winning for player 1.

The proof of the theorem in the other direction is very similar. We show
that if My, e & « then ¢t ¢ L(A,). For this we present a winning strategy for
player 1 in G(A,,t). Player 1 has a choice only in case of conjunction. In a
position (v, 51 A B2) he should choose (v, 1) if Sig” (51 V B2, v) = Sig(51,v)
and (v, f2) otherwise.

5.4 From alternating automata to the p-calculus

In the translation from alternating automata to the p-calculus it will be
convenient to use vectorial syntax as an intermediate step. Hence, we start
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with a definition of u-formulas in vectorial form. As it will turn out later,
every p-calculus formula is equivalent to the one in this form.
Let n € N. An n-array p-calculus formula has the form

Xll X{n (0%}
o : Oy :
1 m
X, X ap,
where m is some integer; oy, ..., 0, are fixpoint operators; and aq,...,a,

are formulas of the ordinary (scalar) p-calculus without fixpoint operators.
The semantics of such a formula in a tree M and a valuation V is a set of
n-tuples of vertices of M. For a vectorial formula without fixpoints we have

[[(ala R an)]l/\\//l = [[O‘I]l/\\//l X X [[O‘n]l/‘\//l

For a fixpoint we have

X A1 = (S € (10,13 : DBllvgs ) € S

So, this is a fixpoint of an operator over sets of n-tuples of vertices. The
greatest fixpoint is defined similarly.
Finally, we introduce the projection operation. If £ is an n-array formula

then we write (f) ; for the value of the first component. So, [(f) il]]y is

—

the first component of [5];,
A first useful observation is that vectorial p-calculus is not more powerful
than the ordinary one

Lemma 33 For every vectorial formula 5 there is a formula « of the ordinary
(scalar) p-calculus such that for every tree M and valuation V' we have:

-,

(B LIy = [al.

Proof
The proof is a rather tedious application of Bekic principle:

(0 <§;> . <Z;gi§z;)> b= oXi. an(X1,0Xs. as(X), Xo))

that is, the meaning of the first component of the formula on the left is the
same as the meaning of the formula on the right. This principle holds for

every complete lattice; hence in all interpretations we consider in these notes.
Il
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Let A be an alternating automaton with a Mostowski acceptance condi-
tion given by a function 2 : Q — N. Let ¢,...,q, be an ordering of the
states of A such that Q(g;) < Q(g;) for every i < j. The vectorial formula
corresponding to A is

Vaes (P A [6(g1,0)])

— —

Oé_A:0'1X1...O'an. :
Vaes (P A [0(gn, a)])

where o; is p if Q(g;) is odd and o; is v otherwise. We also need to explain
what [d(g;,a)] stand for. Recall that §(g;, a) is a subset of @ x {0,1,¢}. For
a pair (¢;,d) € Q x {0,1,e} we put:

(0)X7 ifd=0
[(gj,0)] = ¢ (DXF ifd=1
X]]. ifd=c¢

then we put

VA, d)]: (. d) € (g, a)}  if g € Q3

[0(gi,a)] = {/\”(q',d'ﬂ (¢, d") €6(q;,a)}  if g € Qy

Theorem 34
For every tree t: t € L(A) iff My, e E (aq)d1

The proof is similar to the one for the translation form formulas to au-
tomata. It also uses the signature decrease lemma.

5.5 The p-calculus and alternating automata over graphs

Originally [31] the p-calculus was defined over arbitrary directed graphs and
not just binary trees. In this setting, instead of (0) and (1) modalities it
has one modality (-). The models are X-labelled graphs G = (V, E C V x
VAV — ¥). Such a graph can be represented as a structure Mg =
(V,E, (Ps)(aex)). The meaning of the modality is:

o [(Ya] = {v: . E(v,v') and v’ € [o]'}

The rest of the clauses is the same as for the p-calculus over binary trees.
A new thing in the present situation is that the modality is “nondeterminis-

tic”, i.e., there are several possible v/ in the semantical clause above. Using
negation we can define the dual modality [-|a = =(-)=a. So we have:
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o [Ja] = {v: V' BE(v,v') = ' € [a])'}

We can also extend the notion of alternating automata to X-labelled
graphs. Such an automaton has a form:

A=(Q,2,Q3,Qv,¢°,6: Q x X — P(Q x {{-),[],}), Acc)

The only difference with the automaton on binary trees is in the transition
function. Before we had 0 and 1 and now we have () and [-]. At first it may
seem that (-) should be enough, but we do not have negation in automata so
we would have no means to express [-]. Before we did not need negation of (0)
because over binary trees it was expressible using (0) itself. The acceptance
of such automata is defined using games almost the same way as before.
Given a X labelled graph M we have the game G 4 u:

e the set 1} of vertices for player 0 is {0,1}* x (Q3UQ x {(-),e}),
e the set V] of vertices for player 1 is {0,1}* x (QvUQ x {[-]}),

e from a vertex (v,q), for each (¢',d’) € 6(q, A\(v)) there is an edge to
(v, (¢, d"))

e form a vertex (v, (¢',¢)) there is an edge to (v, ¢'),

e form a vertex (v, (¢, (-))) or (v,(¢,[-])) there is an edge to (v',¢') for
every successor v’ of v.

e the acceptance condition Accg consists of the sequences

(UO, QO)v (UOa (Qh dl))7 (Ula q1)7 (Uh (Q27 d2))7 (U27 Q2)7 S

such that the sequence qpq; ... is in Ace, i.e., it belongs to the accep-
tance condition of the automaton.

The difference with the game for binary trees is that now we have an addi-

tional round. If a game reaches a position (v, (¢, (-))) then player 0 chooses

the successor of v. In a position (v, (¢’,[])) the choice is made by player 1.
Very similar translations to the previous ones show

Theorem 35
The p-calculus over X-labelled graphs is equivalent to the alternating au-
tomata. The translations in both directions are effective.
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5.6 Relation to MSOL: binary trees

An interesting question is to compare the p-calculus and alternating au-
tomata with MSOL. Given all the facts on automata and MSOL that we
have seen till now, it is not difficult to show that over words and trees the
formalisms are the same.

Consider the following translation of the p-calculus over binary trees into
MSOL:

P, ~P,(x)
X ~X(x)

aV [ ~p.(x)V ps(x)
-y «»—>—|(10a ({L‘)

(0Yar ~Ty.s0(x, ) A @al(y)
pX.a(X) ~VZ.(Vy. pa(Z,y) = Z(y)) = Z(2)

This translation produces a MSOL formula with one free first order variable
x and the same free second-order variables as in the starting formula. It is
not difficult to prove by induction on a formula « that for every tree ¢, vertex
v of t and valuation V' : Vary — P({0,1}*) of second order variables we have:

v E [[a]]/‘\//lt ifft My, VE pu(v)

This shows that whenever a set of trees is definable by a p-calculus formula
then it is definable by a MSOL formula.

The translation into the other direction goes through nondeterministic
automata. We know that for every MSOL formula over binary trees there is
an equivalent nondeterministic automaton. A nondeterministic automaton
is a special case of alternating automaton. For every alternating automaton
there is an equivalent p-calculus formula. Summarizing we get:

Corollary 36 Over binary trees MSOL, the p-calculus, alternating automata
and nondeterministic automata have the same expressive power. This equiv-
alence holds also over finite and infinite words.

From the presented translations it follows that MSOL is the most succinct
of the formalism. For a formula of the p-calculus or for an automaton there
is an equivalent MSOL formula of a linear size. It can be shown that every
translation the other way must produce results of nonelementary size. As
we have seen, the translations between alternating automata and vectorial
p-calculus are linear. The known translations to scalar p-calculus produce
an exponential blowup. The translation from alternating to nondeterministic
automata has an exponential lower and upper bound.

36



5.7 Relation to MSOL: graphs

An interesting question is whether we can relate the p-calculus and MSOL
over graphs. We cannot hope to have exact equivalence. As we will see
p~calculus sentences cannot distinguish between bisimilar models while sen-
tences MSOL sometimes can. Still, we get a surprisingly strong connection.
A bisimulation between two Y-labelled graphs Gy = (V1, Ey, A1) and Gy =
(Va, E5, \o) is a relation R C Vi x V5 such that whenever (vq,v3) € R then:

® )\(Ul) = )\('Ug),
e for each successor v} of vy there is a successor v}, of vy with (v}, v}) € R,

e the same with v; and v, interchanged.

Fact 37 Every p-calculus sentence is invariant under bisimulation. That is
if M,v E « and there is a bisimulation on M x M’ relating v ad v’ then
MV E a.

Proof
The proof is quite easy for alternating automata. We get the thesis using the
correspondence from Theorem 35. (]

Fact 38 There is an MSOL sentence which is not invariant under bisimula-
tion.

Proof
Just consider a sentence saying that a model is a tree and its root has exactly
two successors. (]

So the most we can expect is that every MSOL sentence that is invariant
under bisimulation is equivalent to a p-calculus sentence. This is indeed the
case. Before stating this theorem let us examine the power of MSOL on trees
of arbitrary degree (i.e., not only binary).

A graph is a tree iff to every node there is a unique finite path from the
distinguished vertex called the root. A counting alternating automaton is an
extension of an alternating automaton with the ability to count the number
of successors. It is of the form:

A=(Q,%,Q3,Qv.¢", 0 : @ x ¥ = P(Q x {&, (n),[n] : n € N}), Acc)

The intuitive meaning of (¢, (n)) move is that the automaton needs to find
n distinct successors to which it should go with the state ¢q. The meaning
for (g, [n]) is that it should go to all but n successors with the state g. We
have [53]
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Theorem 39
Counting alternating automata characterize the expressive power of MSOL
on trees of arbitrary degree.

Clearly counting alternating automata can distinguish between bisimilar struc-
tures. From every counting alternating automaton we can produce an ordi-
nary one by changing each (n) and [n] into (-) and [-] respectively. An inter-
esting thing is that if the counting automaton happen to accept a bisimula-
tion invariant language then a slight improvement of this simple translation
would produce an equivalent non-counting alternating automaton. It in turn
can be translated in to a p-calculus formula. This is roughly the way to show
the following correspondence [30)].

Theorem 40
A bisimulation invariant property of graphs is MSOL definable iff it is u-
calculus definable.

5.8 Complexity

We briefly summarize the complexity of some decision problems for the p-
calculus and alternating automata.

The satisfiability problem for the p-calculus is to decide whether a given
formula has a model. The problem is ExpTIME-complete [50, 18]. For the
lower bound one can reduce the problem of universality of tree automata.
For the upper bound one can use the translation to alternating automata.

The emptiness problem for alternating automata is EXPTIME-complete.
The EXPTIME algorithm is to translate the automaton into a nondetermin-
istic automaton and check the emptiness of the result. An important point
here is that although the automaton grows exponentially in the translation,
the acceptance conditions do not [39, 18].

Another important problem is the model checking problem: “For a finite
graph G and a p-calculus formula « decide if a holds in the given vertex
of G”. The problem is equivalent to the emptiness problem for Mostowski
alternating tree automata over one letter alphabet [17]. The later problem is
in turn equivalent to the emptiness problem for nondeterministic Mostowski
tree automata. Hence, its complexity is in NPNco-NP but no deterministic
polynomial time algorithm is known.
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6 Hierarchies

As we have seen, the connections between MSOL, the p-calculus and al-
ternating automata are quite strong. Here we will refine the connections
by considering relations between the hierarchies. For each of the three for-
malisms there are some “obvious” ways of defining hierarchies. For MSOL
we can consider the quantifier alternation hierarchy. For the p-calculus this
will be the fixpoint alternation hierarchy. For alternating automata we can
measure the complexity of the acceptance condition.

6.1 Definitions

MSOL First, we define the hierarchy for MSOL. As it will turn out a notion
of weak quantification is relevant here. A weak quantifier is a quantifier
ranging over finite sets. We can write a formula 3“X. ¢(X) with the meaning
that there is a finite set S for which ¢(S) holds. Over binary trees finiteness
is definable so addition of weak quantification does not extend the power of
the logic over this model. Let WMSOL be the fragment of MSOL using only
first-order and weak second order quantification.

Consider MSOL sentences of the form QX;...Q,X,. ¢ where ¢ is a
WMSOL formula and @ ...Q, are second-order quantifiers. Define the
classes ) = TI}! to be exactly WMSOL. Next, for each i € N the level
M, is the set of formulas 3X;....3X,,.p with ¢ € M. Similarly I},
consists of formulas VX;....VX,.p with ¢ € £V,

Definition 41 A language L of words, trees or graphs is in ¥ if there is a
YM formula defining this language. Otherwise it is X -unfeasible. Similarly
for TIM classes.

p~calculus The definition of the p-calculus hierarchy is easier to formulate
for the vectorial p-calculus. The formulas of levels Xf and I14 are of the form
@ for some vector of formulas without a fixpoint operator. Xf , formulas
are of the form pX.@ for some [T} formula &. I, formulas are of the form
vX.a for some ¥ formula @.

Equivalently the definition of the hierarchy for the p-calculus can be for-
mulated using the scalar syntax. Then Xf = TIj is the set of formulas without
fixpoints. I, is the closure of IIff under conjunction, disjunction, substi-
tutions and application of the least fixpoint operator p (i.e. pX.oo € ¥, if
o € X ). Similarly for IIf, ; but now the class is closed under applications
of the greatest fixpoint operator.
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An alternation free fragment of the p-calculus is the closure of X4 U IT{
under Boolean operations and substitutions.
Remark: We use the term alternation here with a different meaning than
in the case of alternating automata.

Definition 42 A language L of words, trees or graphs is in ¥# if there is a X#
formula defining this language (alternatively there is a ¥# vectorial formula
« such that ()] defines L). Otherwise it is X#-unfeasible. Similarly for IT#
classes.

Automata Finally, we define the hierarchy for automata. The hierarchy
is based on the size of acceptance conditions. It is the easiest to define it
for Mostowski acceptance conditions although it was original formulated for
Rabin conditions (cf. [41])

Automata of level ¥¢ are such that the range of the acceptance function
Q is in the set {1,...,n}. Automata of level II2 have the range of the
acceptance function in {0,...,n — 1}. In the case of n = 1 automata from
3¢ would accept nothing. To remedy this we assume that automata have a
special state T from which they accept every tree. Such a state is definable
in all but X¢ automata.

Remark: The range of the function ) defining a Mostowski acceptance
condition can be always scaled down, so that the smallest number in the
range is 0 or 1. Just observe that subtracting 2 from every value of €2 does
not change the semantics of the automaton (provided we do not get negative
values). Similarly we can cut out any gaps in the range of {. So we can
always make the image of (2 to be an interval starting from 0 or 1.

A weak automaton is an automaton with weak acceptance conditions [38,
33]. These are like Biichi, Rabin, etc. conditions but on the set of all the
states appearing in the run and not only on the set of states appearing
infinitely often. So for example a weak Biichi condition F' C () defines a set
of runs going through some state from F' at least once.

Fact 43 Every weak alternating automaton is a X{ and a II{ automaton.

The above definitions did not depend on whether an automaton in ques-
tion is deterministic, nondeterministic or alternating. Hence we have defined
not one but actually three hierarchies.

Definition 44 A language L of words, trees or graphs is in deterministic,
nondeterministic or alternating X% if there is a ¢ deterministic, nondeter-
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ministic or alternating automaton recognizing this language. Otherwise it is
Yo -unfeasible. Similarly for IIZ classes.

6.2 Connecting fixpoint alternation and index hierar-
chies

Looking closer at the translations between the p-calculus and alternating
automata from Sections 5.3 and 5.4 we can see that they preserve the levels
of the hierarchy.

Theorem 45
For every n, ¥h = X% and I1# = TI2.

The hierarchy of nondeterministic tree automata is different. There are
Y% languages that are arbitrary high in the hierarchy of nondeterministic
automata. The hierarchy of nondeterministic automata has a corresponding
fixpoint hierarchy for formulas with a very limited use of conjunction. These
relations are in depth discussed in [41].

We also cannot expect that the MSOL hierarchy coincides with the fix-
point alternation hierarchy. It should be clear that existence of a run of an
automaton can be expressed by a formula quite low in the monadic hierarchy.
So over words or trees the MSOL hierarchy collapses. The level on which it
collapses depends on the model. We will examine it in more detail below.

6.3 The case of words

In the case of infinite words most of the hierarchies collapse on the first level.
This is mainly due to the fact that there are deterministic devices capturing
the power of MSOL on infinite words.

Fact 46 WMSOL=MSOL over infinite words.

Proof

Let ¢ be a MSOL formula and let A, be a deterministic parity automaton
accepting exactly the models of . We write a WMSOL formula expressing
the fact that there is an accepting run of A,,.

Let w € ¥ be some word. Because A, is deterministic, if A, has arbi-
trary long finite prefixes of runs on w then it has a unique infinite run on w.
Hence, to state an existence of a run of A, it is enough to say that for every
position there is a run up to this position.

A run is accepting iff there is some even priority p which appears infinitely
often on the run and every smaller priority appears only finitely often on the
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run. This property can be expressed by saying that there is some position
after which on the run there is no state of priority smaller than p and for
every position there is a later position with a state of priority p.

All these facts can be formulated in WMSOL because they refer only to
finite prefixes of the model. 0J

Fact 47 The hierarchy of nondeterministic word automata collapses on the
level II{. Every word automaton is equivalent to a weak alternating automa-
ton.

Proof
The first statement is just rephrasing of the fact that every automaton over
words is equivalent to a Biichi nondeterministic automaton.

The second fact is the rephrasing of the above considerations for WMSOL.
Let A be a deterministic parity automaton. We want to find an equivalent
weak automaton B. First part of B just simulates .A. All the states in this
part have priority 1, so B cannot stay in this part if it is going to accept a
word. It can go to another part when it decides that from that moment no
priority smaller than p is going to appear and p is going to appear infinitely
often. To check this B simulates A over states of priority > p. It also uses
universal branching to check that after every position a state of priority p
eventually occurs. O

Corollary 48 Every p-calculus sentence is equivalent over words to a sen-
tence from the alternation-free fragment.

The picture changes if we restrict ourselves to deterministic automata.
We present, here the analysis from [42]. Later we will see that very similar
examples show up in the case of trees.

For deterministic automata we have a proper hierarchy. To see the exam-
ples consider for each n € N an alphabet 3, = {0,...,n}. Then we define
the languages:

M, ={w € ¥} : liminfw(n) is even}
n—r00

N, ={w € £} : liminfw(n) is odd}
n—oo
So, M, consists of words where the smallest number appearing infinitely
often is even, and for words in /N,, this number is odd.
It is easy to see that M, can be recognized by a X¢ deterministic au-
tomaton and /N, can be recognized by a II?¢ deterministic automaton. The
proof that there are no simpler automata follows from a more general lemma,
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presented below. It shows a connection between the Mostowski index of an
w-word language and the shape of a deterministic Mostowski automaton rec-
ognizing the language. Roughly speaking, it says that in the graph of an
automaton recognizing a “hard” language there must be a subgraph, called
a flower, “witnessing” this hardness.

Definition 49 Let A = (X,Q, ¢, 9,) be a deterministic Mostowski au-
tomaton on words. The graph of A is the graph obtained by taking ) as the
set of vertices and adding an edge from ¢ to ¢' whenever (¢, a,q’) € 9, for
some letter a.

A path in a graph is a sequence of vertices vy, ..., v;, such that, for every
t =1,...,7 — 1 there is an edge from v; to v;y; in the graph. A mazimal
strongly connected component of a graph is a maximal subset of vertices of
the graph, such that, for every two vertices vy, vo in the subset there is a
path from v; to v9 and from vy to v;.

For an integer k, a k-loop in A is a path vy,...,v; in the graph of A with
vy =wvj, j > 1and k = min{Q(v;) : i = 1,...,j5}. Observe that a k-loop
must necessarily go through at least one edge.

Given integers m and n, a state ¢ € Q) is a m-n-flower in A if for every
k€ {m,...,n} there is, in the graph of A, a k-loop containing g.

Definition 50 We say that a language L C ¥* admits an m-n-flower if there
exists a deterministic Mostowski automaton A, such that, L = L(A) and A
has an m-n-flower ¢ for some ¢ not a useless state in A (i.e. ¢ occurring in
some accepting run of A).

Lemma 51 (Flower Lemma) For every n € N and L C ¥¢: (1) if L is
¥e . -unfeasible then L admits a 2i-(2i 4+ n)-flower, for some i; (2) if L is
[1%-unfeasible then L admits a (2¢ + 1)-(2¢ + 1 + n)-flower, for some i.

Corollary 52 The problem of establishing the index of the language ac-
cepted by an automaton A with a Mostowski condition can be solved in time

O(JA]*).

6.4 The case of trees

The case of trees is even more interesting than the case of words. The
fixpoint alternation and automata hierarchies are infinite over binary trees.
The MSOL hierarchy collapses on )/ level. But even here we have an
intriguing correspondence between lower levels of the MSOL hierarchy and
the fixpoint alternation hierarchy.
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The fixpoint alternation hierarchy in infinite

The main result of this section is the proof of strictness of the fixpoint
alternation hierarchy. The strictness of the hierarchy over graphs was proved
by Bradfield [10]. For binary trees the result was independently shown by
Bradfield [11] and Arnold [5]. We present here the beautiful proof of Arnold.

The example languages showing the strictness of the hierarchy reflect
closely the acceptance games of alternating automata. For a number n € N
consider the alphabet ¥, = {¢;,d; : i =1,...,n}. A tree over ¥,, represents
a game. In vertices labelled by d; player 0 chooses a successor, in vertices
labelled by ¢; player 1 makes a choice. The result of a play in such a game
is a path in the tree. We look at the subscripts of the letters ¢ and d and
consider those subscripts which appear infinitely often on the path. Player 0
wins if the minimal subscript is even. Hence, a tree over ¥, defines a game
with Mostowski winning conditions given by subscripts of the letters from
the alphabet.

With the interpretation of trees over X, as games we can define two
families of languages:

M, ={t € Trees(X,) : player 0 has a winning strategy on ¢}
N,, ={t € Trees(X,) : player 1 has a winning strategy on t}

The following easy lemma gives an upper bound on the complexity of
these languages.

Lemma 53 Languages M, and N, can be recognized by a nondeterministic
Y% and II automata respectively.

The theorem we want to prove now says that there are no simpler au-
tomata, even alternating ones, recognizing these languages.

Theorem 54 (Bradfield, Arnold)
Language N,, cannot be recognized by an alternating X% automaton. Simi-
larly, M,, cannot be recognized by an alternating I1% automaton.

For the proof we need a way of coding runs of automata as game trees.
Let A = (Q,Q3,Qv,%,,¢° 0, Acc) be an alternating automaton. We can
assume without a loss of generality that for every ¢ €  and a € X the set
d(q, a) has precisely two elements. If not then we can split bigger sets and
add some auxiliary states connecting them. Sets having zero or one element
can be extended with dummy states.

Acceptance of a tree t by A was defined using the game G 4,. By our
assumption on the values of 9, every vertex of this game has a degree 2. Still
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G 44 is usually not a tree. What we are after is an unwinding of this game
into a tree such that each node is labelled with ¢; or d; depending on the
player this node belongs to and the priority of the node. Formally, we define
a function runy : @ x Trees(X,) — Trees(X,) to be the unique function
satisfying that for every ¢ € @, whenever §(q,t(a)) = {(go, do), (¢1,d1)} then:

run (g, t) = ci(run a(qo, t|a), run a(q, tla,)) for g € Qv
) di(runA(q()aﬂdO), TUTLA(ql, t|d1)) for q c QH

We write ¢;(to, 1) to denote the tree with root labelled ¢; and the trees tg, ¢
as the left and right subtrees respectively. We use t|; to denote the subtree
rooted in the vertex d. So, t|y denotes the left subtree of the root and t|. = t.
In the above definition a small catch is that the value of the function ¢ is an
unordered pair and the definition of run 4 depends on the order in this pair.
We assume that we have some unambiguous way of ordering such pairs.

The function we are interested in is run’ : Trees(X,) — Trees(%,,) defined
by run%(t) = run4(q°,t) where ¢° is the initial state of A. The following
lemma is just a reformulation of the definition of acceptance.

Lemma 55 For every tree t € Trees(X,), t € L(A) iff run’(t) € M,.

The proof of the theorem uses a tree which is a fixpoint of the function
run’. The existence of such a fixpoint is guaranteed by Banach theorem
which we now recall. We begin by with the usual ultrametric distance on

Trees(X,).

Definition 56 The distance between two trees ¢, € Trees(X,) is defined
inductively as follows. If ¢ = ¢’ then dist(t,¢") = 0. If the labels of the roots
of t and t' are different then dist(¢,t") = 1, otherwise,

dist(t,t") = 1/2 max(dist(t|o, ty), dist(t1,}))

A mapping f : Trees(X,) — Trees(3,) is called contracting if there is a
constant ¢ < 1 such that for every ¢,¢' € Trees(X,,) we have:

dist(f(t), f(t') < cdist(t,t)
Lemma 57 The mapping run? : Trees(3,) — Trees(X,) is contracting.

A metric space is complete if every Cauchy sequence of elements of the
space has a limit. It is not difficult to check that Treesy, with dist metric is
compact. By Banach theorem the function run% has a unique fixpoint. We
use this fixpoint to prove the theorem.
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Proof (of Theorem 54)
For the first statement, suppose that [V, is recognized by an alternating >
automaton A. Take the fixpoint ¢ of the run’ mapping. We have:

teN, iff teL(A) iff run’(t)e M, iff te M,

The second equivalence follows from Lemma 55. The third holds just because
run’ (t) = t.

For the second statement, suppose that M, is recognized by an alter-
nating I automaton A. Language N, is the complement of A,,. Hence,
it is recognized by A, the dual of A (see 26). But, A is a ¢ automaton.
Contradiction with the previous paragraph. O

The languages M,,, N,, showing strictness of the hierarchy use alphabets
depending on n. It is possible to show the strictness for the languages over
a two element alphabet. Big alphabets can be coded by sequences over two
letters. Then, one can show that if the coding of N,, were accepted by a X%
alternating automaton then NN, also would be accepted by an automaton of
this kind.

Relation to the MSOL hierarchy
The MSOL hierarchy over binary trees also collapses but on a higher level
than over words.

Lemma 58 Every MSOL formula over trees is equivalent to a ¥) formula.

Proof

It is enough to show that for every nondeterministic tree automaton A there
is a ¥ formula ¢4 expressing the fact that A has an accepting run. The
formula is of the form

X, ... X,.VP. Run(Xy,...,X,) A (Path(P) = Accepting(Xy,...,X,, P))

So we use existential quantification to guess a run and then universal quan-
tification to quantify over paths of the tree. The facts that X;,..., X,, define
a run and that that the run is accepting on a path P can be expressed in
first-order logic. O]

There is a nice correspondence between lower levels of the MSOL hierar-

chy and the fixpoint alternation hierarchy.

Theorem 59
SM properties are exactly 115 properties. Eé\/[ = H(])‘/[ properties are exactly

the properties expressible in the alternation free fragment of the p-calculus.
Moreover, S = S N1,
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Recall that II5 tree languages are precisely the languages definable by
Biichi tree automata. By Fact 17 we know that ¥ is strictly smaller than
YM . As the set of ©) tree languages is closed under complement, also TT}
is strictly smaller that X)'. For the similar reasons ¥}/ = II} is strictly
included in £ and IT}.

6.5 The case of graphs

The hierarchies over graphs are also very interesting. There are still many
open questions in this setting. The first important difference is that finiteness
is not definable is MSOL over graphs. So the standard definition of the
hierarchy changes. Now the Y} = I1) level consists of first-order formulas.
The rest of the monadic hierarchy is defined the same way as before. This is
the way we will understand the monadic hierarchy in this section.

The important difference with the previous cases is that here the monadic
hierarchy is infinite [34] over graphs.

Theorem 60 (Matz, Schweikardt, Thomas)
The MSOL hierarchy over finite graphs is strict.

The strictness of the fixpoint alternation hierarchy over binary trees im-
plies the strictness of this hierarchy over (finite) graphs. A natural question
to ask is what are the relations between the hierarchies. It turns out that we
cannot hope for a complete correspondence [29].

Fact 61 There are bisimulation invariant graph properties that are arbitrary
high in the fixpoint alternation hierarchy but on )/ level of the monadic
hierarchy.

It is an interesting open question whether the monadic hierarchy is strict
for bisimulation closed properties. In other words, whether one can translate
the p-calculus into some fixed level of the monadic hierarchy.

A whole new spectrum of problems opens when one considers a modifica-
tion of the monadic hierarchy called closed monadic hierarchy. Roughly, in
the closed monadic hierarchy we can use first-order quantifiers for free. See [1]
for the introduction to this hierarchy. In [6] the closed monadic hierarchy
over trees is discussed.

7 Guarded logic

The goal of this section is to extend the results on MSOL and the p-calculus
to a more general relational setting. Consider a translation of modal logic
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(i.e. the p-calculus without fixpoints) to first-order logic:

7~ Z(x)
Py ~» Py(z)
(o~ Ty, E(z,y) A pa(y)
aV B~ pa(z) Vps(2)

The translation gives for a modal formula « a formula ¢, (z) with one
free variable z, s.t, for every labelled graph M = (V| E, (P,)scs) we have
Loy ={s: M,V Epa(s)}

The set of formulas obtained from the translation is called the modal
fragment. These formulas have several special properties. They use only
monadic relations except for the edge relation. They use only two variables.
The quantification pattern is very specific. First-order logic is undecidable,
but the modal fragment is decidable in exponential time (because the pu-
calculus is). The question we ask is “what makes the modal fragment so
special?”

Here we show that it is the quantification patterns that are important.
The idea of having the same quantification pattern as in the modal fragment
is captured by the definition below. The main extension is that we put no
restrictions on arity of relations. In the definition we use bold letters for
vectors of variables.

Definition 62 The guarded fragment GF [4] of first-order logic is defined
inductively as follows:

1. Every relational atomic formula belongs to GF.
2. GF is closed under propositional connectives —, A, V, —.

3. If x, y are tuples of variables, a(x, y) is a positive atomic formula and
Y(x,y) is a formula in GF such that free(¢y)) C free(ar) = & U y, then
the formulas

Jy(a(z,y) ANY(z,y))
Vy(a(z, y) — ¥(z,y))
belong to GF.

Here free(1)) denotes the set of free variables of ). An atom «(z,y) that
relativizes a quantifier as in rule (3) is the guard of the quantifier. Notice
that the guard must contain all the free variables of the formula in the scope
of the quantifier.
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Note that first-order quantification over individual free variable is always
admissible in GF, since singletons are guarded:

dx. p(z) = Jr. x =2 A p(2)

Clearly all modal formulas are translateable to GF. But there are other for-
mulas in GF too. For example backwards modalities are expressible in GF:

(Y 'a ~ Jy. R(y,z) A @aly)

We can also have very strange modalities like

(O)a ~ Fy. R(z,y) A R(y,2) A ¢a(y)

GF seems not to be able to express all of temporal logic over (N, <).
Indeed, the straightforward translation of (¢ until ¢) into first-order logic

Jy(x <yAo(y) ANVz((x <z Az <y) = P(2))

is not guarded in the sense of Definition 62. However, the quantifier Vz in
this formula is guarded in a weaker sense, which lead van Benthem [8] to the
following generalization of GF.

Definition 63 The loosely guarded fragment LGF is defined similarly to GF,
but the quantifier-rule is relaxed as follows:

(3)" If Y(x,y) is in LGF, and a(x,y) = oy A --- Ay, is a conjunction of
atoms, then

Fy((n A+ Aam) A (,y))
Vy((ar A Aam) = ¥(x, y))
belong to LGF, provided that free() C free(a) = & Uy and for every

quantified variable y € y and every variable z € & U y there is at least
one atom «; that contains both y and z.

In the translation of (¢ until ¢) described above, the quantifier Vz is
loosely guarded by (z < 2z A z < y) since z coexists with both z and y in
some conjunct of the guard. On the other side, the transitivity axiom

Veyz(Exy A Eyz — Exz)

is not in LGF. The conjunction Exy A Eyz is not a proper guard of Vryz
since x and z do not coexist in any conjunct. Indeed, adding transitivity
statement to GF makes the fragment undecidable [21].
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Notation. We will use the notation (Jy.«) and (Vy.«) for relativized
quantifiers, i.e., we write guarded formulas in the form (y.«a)y(z,y) and
(Vy.a)y(x,y). When this notation is used, then it is always understood
that « is indeed a proper guard as specified by condition (3) or (3)’.

The following theorem says that LGF is not much more difficult than
modal logic. The theorem refers to the width of a formula. This is a maximal
number of free variables in any subformula of the formula.

Theorem 64 (Gradel [21])
The satisfiability problem for LGF is 2EXPTIME-complete. It is EXPTIME-
complete for formulas of bounded width.

The reason for this doubly exponential complexity is just the fact that the
formulas have unbounded width. Given that even a single predicate of arity
n over a domain of just two elements leads to 22" possible types already on
the atomic level, the double exponential lower complexity bound is hardly a
surprise. When the width is bounded the complexity of LGF is just slightly
bigger than that of the modal logic (which is PSPACE-complete).

The next step is to add fixpoints to LGF without loosing decidability.
We follow [23].

Definition 65 The guarded fixpoint logics pGF and pLGF are obtained by
adding to GF and LGF, respectively, the following rules for constructing
fixed-point formulas:

Let W be a k-ary relation variable and let & be a k-tuple of
distinct variables. Further, let (W, ) be a guarded formula
where W appears only positively and not in guards. Moreover
we require that all the free variables of ¢)(W, x) are contained in
x. For such a formula ¢(W, ) we can build a formula

[LFP Wz . ¢](x)

The part in square brackets, i.e. [LFP Wa . ] is called fized point predicate.

The semantics of fixpoint formulas is the usual one: Given a structure M
and a valuation V for the free second-order variables in ¢, other than W, the
formula (W, x) defines an operator on k-ary relations W C M*, namely

PMY(IW) = {a € MF: M,V g(W,a)}.

Since W occurs only positively in v, this operator is monotone (i.e.,
W C W' implies V(W) C MV (W’)) and therefore has a least fixed
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point LEP (V). Now, the semantics of least fixed point formulas is defined
by
M,V ELFPWz . (W, z)](a) iff a € LFP(y™Y)

Similarly as in the p-calculus the greatest fixpoint is definable by:
[GFPWa .y (W, x)|(a) = —[LFPWa .- (=W, z)](a)

Observe that we do not allow to use fixed point predicates in guards. Oth-
erwise guarded quantification would be as powerful as unrestricted quantifi-
cation. Indeed, for every k, we can define the universally true k-ary relation
by the fixed point predicate [GFP Uz - - - . . true] (where true stands for any
tautology). Using these predicates as guards one could obtain unrestricted
quantification. Also the use of the fixed point variable W as a guard inside
the formula defining it as a least or greatest fixed point, or the use of addi-
tional first-order variables as parameters in fixed point formulas would lead
to an undecidable logic.

Despite all of these restrictions on constructing fixpoints, we can still
translate the p-calculus to GF. We extend the translation of modal logic to
GF given at the beginning of the section:

pZ.0(Z) ~ [LFP Z(y). ¢a(y)l(z)

Contrary to both GF and the p-calculus, guarded fixed-point logic does
not have the finite model property. An infinity axiom is a satisfiable sentence
that does not have a finite model.

Proposition 66 Guarded least fixpoint logic (even with only two variables,
without nested fixed points and without equality) contains infinity axioms.

Proof
Counsider the formulas

dxy. Fay
(Voy . Fay)JzFyx
(Vzy . Fry)[LFP Wz . (Vy. Fyz)Wy|(x)

The first two formulas say that a model should contain an infinite F-path
and the third formula says that F' is well-founded, thus, in particular, acyclic.
Therefore every model of these formulas is infinite. On the other side, the
formulas are clearly satisfiable, for instance by (N, <). O

Even though we can express more than in the u-calculus, the complexity
of uLGF stays essentially the same.

51



Theorem 67
The satisfiability problem for pLGF is 2EXPTIME-complete. It is EXPTIME-
complete for formulas of bounded width.

Note that this is the same complexity as for guarded first-order sentences,
so we essentially do not pay any penalty for fixpoints. Fortunately, in most
practical applications, formulas have only bounded width. In particular,
for a fixed finite vocabulary all guarded formulas have bounded width. For
example, the translation of the p-calculus into uGF uses at most binary
relations and leads to formulas of width two.

Knowing the complexity of guarded fragments it would be nice to un-
derstand the expressive power of the logic. Theorem 40 characterizes the
expressive power of the p-calculus by MSOL properties invariant under bisim-
ulation. Of course we cannot directly compare uGF with MSOL as the sig-
natures of the logics are different (uGF contains relations of higher arity).
We rather define a fragment of second-order logic which we call guarded
fragment or GSO for short. Then we define guarded bisimulation which will
relate tuples of elements of two structures and not just single elements as
bisimulation did. Finally, we show that GSO sentences that are guarded
bisimulation invariant are exactly puGF sentences. The results sumarized
below come from [22].

Definition 68 Let M be a structure over a signature Sig and with the
universe M. A tuple (myq,...,my) is guarded iff there is a relation R and el-
ements m/, ..., m; such that R(m/, ..., mj) holds in M and {my,...,m;} C
{m!,...,mj} . Arelation S C M™ is guarded if it consists of guarded tuples.

Definition 69 Guarded second-order logic (GSO), is an extension of first-
order logic with second-order quantifiers ranging over guarded relations.

Lemma 70 SO is strictly more expressive than GSO. In particular GSO
collapses to MSOL over words in case words are represented as structures
with a successor relation instead of linear ordering.

In order to define guarded bisimulation it will be useful to have a notion
of partial isomorphism. The bisimulation relation relates single elements.
These elements are required to have the same labeling. Now we want to
relate tuples of elements and we want to say that the tuples satisfy the same
relations. This is precisely what partial isomorphism is saying. Formally, a
partial isomorphism between structures M; and M, is a bijective function
f: X =Y for some X C M; and Y C M,. It must satisfy the condition
that for every relation symbol R and a tuple of elements a,...,a; € X:
relation RM!(ay, ..., a;) holds iff RM2(f(ay),..., f(ax)) holds.
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Definition 71 Guarded bisimulation between two structures M;, M, of
signature Sig is a non-empty set I of partial isomorphisms from M; to M,
such that for every f : X — Y in I the following conditions hold:

e for every guarded set X' C M, there is a partial isomorphism g : X' —
Y’ such that f and ¢ agree on X N X'.

e for every guarded set Y’ C My there is a partial isomorphism ¢ : X' —
Y’ such that f~! and ¢ ! agree on Y NY".

Two tuples of elements (ay,...,a,) € My and (by,...,b,) € My are guarded

bisimilar if there is f € I mapping a; to b; for all: =1,... n.
Definition 72 A formula ¢(z1,...,x,) is invariant under bisimulation if it
cannot distinguish between guarded bisimilar tuples, i.e., if My E ¢(aq, ..., a,)

and (aq,...,a,) is guarded bisimilar to a tuple (by,...,b,) € My then
Mz F (,0(b1, ceey bn)

The following theorem from [22] ties together the expressive power of
GSO and uGF.

Theorem 73 (Gradel, Hirsch, Otto)
Every formula of GSO invariant under guarded bisimulation is equivalent to
a pnGF formula.

8 Traces

Infinite words, which are linear orders on ewvents, are often used to model
executions of systems. Infinite traces, which are partial orders on events,
can be used to model concurrent systems when we do not want to put some
arbitrary ordering on actions occurring concurrently. The idea is that if we
have two actions, say a and b, occurring concurrently then we do not want
to model this neither as a word ab nor as ba. A more faithful representation
of what happened is a partial order with two events a, b and no ordering
between them.

A trace alphabet is a pair (X, D) where ¥ is a finite set of actions (i.e.
letters) and D C ¥ x ¥ is a reflexive and symmetric dependence relation.
Intuitively if (a,b) € D then a and b share some resource, so their occurrences
should be ordered. On the other hand, if (a,b) ¢ D then there is no reason
to order occurrences of these actions.

A trace or dependence graph is a labelled graph

G=(E,RCExFE,\:E—Y)
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such that R is a partial order and the following conditions are satisfied:

(T1) Vee E. {¢/ : R(¢/,e)} is a finite set.
(T2) Ve,e' € E. (Ae),A(¢')) € D= R(e,e')V R(e,e).
(T3) Ve,e' € E. R(e, €)= (Ae),\(¢))) € DV
de". R(e,e") ANR(", ') Ne £ e #¢€.

The nodes of a dependence graph are called events. An a-event is an
event e € E which is labelled by a, i.e., A(e) = a. We say that e is before ¢’
iff R(e,e’) holds. In this case we also say that €' is after e.

The first condition of the definition of dependence graphs says that the
past of each event (the set of the events before the event) is finite. The
second one postulates that events labelled by dependent letters are ordered.
The third, says that the order is induced by the order between dependent
letters.

Below we describe a variation on the representation of dependence graphs.
This variation will be important when defining the p-calculus over traces.

Definition 74 A Hasse diagram of a trace G = (F, R, \) is a labelled graph
(E, Ry, \) where Ry is the smallest relation needed to determine R, i.e., the
reflexive and transitive closure of Ry is R, and if Ry(e,¢’) holds then there
is no ¢” different from e and ¢’ such that Ry(e,e”) and Ry(e”,€') hold.

Biichi theorem tells us that for the class of finite or infinite words (depen-
dence graphs for alphabets where all the letters are mutually dependent) the
properties definable by MSOL are exactly the languages recognizable by au-
tomata. This characterization carries through to traces with an appropriate
modification of the notion of automata.

MSOL logic over traces is just MSOL logic over dependence graphs con-
sidered as labelled graphs. Observe that a Hasse diagram of a trace is MSOL
definable in a dependence graph. Also dependence graph is MSOL definable
in a Hasse diagram of a trace. Hence, MSOL definability over dependence
graphs and over Hasse diagrams are the same thing.

Another way of defining traces is to consider linearizations of traces. A
linearization of a trace (E, R, \) is an injective function f : E' — N such that
if R(e,¢') holds then f(e) < f(e'). We can identify a linearization f with an
w-word A(f7H(0)A(f1(1)).... It is easy to see that an infinite word over
Y} defines the unique trace of which it is a linearization. This defines a trace
equivalence over w-words: w ~ w' if they define the same trace. A language
L is trace consistent if whenever w € L and w ~ w' then w' € L. Hence, a
way to define a trace language is to define the set of its linearizations, i.e., a
trace consistent language.
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There are also automata working directly on traces, although it will be
easier here to describe their behaviour on linearizations of traces. From their
definition it will be clear that they only accept trace consistent sets of w-
words.

Suppose we have some number k off processes and consider function loc :
Y — P({1,...,k}) assigning to each letter a set of processes. Intuitively
these are the processes that are needed to read input a. The distribution of
letters should reflect our dependence alphabet (3, D) in a sense that (a,b) €
D iff loc(a) N loc(b) # 0. Intuitively, the two letters are dependent if for
reading them some common process is needed. An asynchronous automaton
is a tuple:

k
A= <H Qia E, qO, (5G)GEZ’ f>
=1

satisfying the following conditions

e the global set space Q = Hle (Q; is the product of local finite states
spaces (;,

* €@,
e for each a € ¥, relation 0, C ) x @) such that if
((Qh sy qk)7 a, (qL R q;c)) € 6‘1

and ¢ ¢ loc(a) then ¢; = ¢ and for every ¢ € Q;:
((Qh"'7qiflaa\7"'7Qk)7a’7 (qg7aaa7q;c)) € 6‘1

o F ={(F¥,F),....(F¢, Fr)} C P(Q) x P(Q) defines the acceptance

condition.

Hence the transition relation for a letter a is allowed to examine and change
only the components of the automaton that are in loc(a). A run of A on a
w-word w € X¥ is defined as for ordinary finite automata over states (). For
arun 7 : N — @ and p € {1,...,k} we define Inf,(r) = Inf(r) N Q, to be
the set of sates form (), that appear infinitely often in the run. A run r is
accepting if:

e inf,(r) N Ey # () for every p such that a letter b with p € loc(b) appears
infinitely often in w, and

e inf,(r) N F, # 0 for every other p.
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So the acceptance condition is a Biichi condition but it can also tell whether
a process p was active infinitely often or not.

A trace is accepted by A if one of its linearizations is accepted by A. The
language recognized by A is the set of traces accepted by A.

The following theorem summarizing many results on traces can be found
in [16, 20, 40].

Theorem 75
Fiz a trace alphabet. For a set L of traces the following are equivalent:

o L is definable by a MSOL formula.
e [ is recognizable by an asynchronous automaton.

e The set of linearizations of traces in L is a recognizable language of
infinite words.

In the case of words we had also a characterization of regular languages
by the p-calculus. As traces are just labelled graphs we can evaluate the
p-calculus directly on them, but we have a small problem when we want to
make it precise what it means that a set of traces is definable by a p-calculus
formula. In the case of words we said that these are the words where the
formula holds on the first position. In the case of traces we may have several
minimal events. To overcome this problem we assume that in our traces we
have always the least element L labelled with a special letter also denoted
by L. This letter is dependent on every other letter in 3.

If G is a trace that has the least event | and « is a p-calculus sentence
then we write G F o to mean that G, L F a. Sentence a defines the set of
traces {G : G F a}.

The p-calculus over traces does not have sufficient expressive power. Let
us see an example showing that there are even first-order definable properties
of traces which are not expressible in the p-calculus.

We claim that no p-calculus sentence can distinguish between the follow-
ing two Hasse diagrams of traces presented in Figure 2. In the left graph
the dots stand for the sequence (dc)” and in the right graph for (cd)”. In
this example the trace alphabet ({L,a,b,c,d}, D) where D is the smallest
symmetric and reflexive relation containing the pairs {(a, ¢), (b,d), (¢,d)} U
{L}x{a,b,c,d}. The two Hasse diagrams are bisimilar, hence indistinguish-
able by p-calculus formulas. Still, a first order formula saying that the first
d is before the first c is satisfied in the left graph but not in the right. The
figure shows Hasse diagrams, but also dependence graphs of these two traces
are bisimilar.

56



C<——""——

|
NSNS

Figure 2: Indistinguishable traces

L—0

The above example indicates that some extension of the p-calculus is
needed. To see such an extension consider a concurrency relation in a trace G
defined by co(e, ¢’) if neither R(e,e’) nor R(¢,e) holds. Then we can extend
the p-calculus with a proposition co(a) for every a € ¥.. The semantics is

e G,eF co(a) if there is €' such that co(e,€’) and A(e') = a.

Let p be the extension of the p-calculus with co(a) propositions.

In the p-calculus we can distinguish the two traces from Figure 2. The
formula (-)(P, A co(d)) says that there is a successor of the least event, this
successor is labelled by a and has a concurrent event labelled by d. The
formula is true in the left graph but not in the right. The theorem below [54]
says that this is not a coincident.

Theorem 76 (Expressive completeness)
The p calculus is equivalent in expressive power to MSOL over traces.

Moreover the satisfiability problem for the p“-calculus is relatively easy.

Theorem 77
The satisfiability problem for the p®-calculus is PSPACE-complete.

9 Real-time

In real-time systems we have an interaction between continuous behaviour of
some physical components and finite, discrete control. A standard example of
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such a system is a steam boiler, that needs to keep water warm by switching a
heater on and off. To describe behaviour of such a device it seems natural to
model time flow by nonnegative real numbers. So, now we will be interested
in properties of signals which are functions from reals to {0, 1}. Equivalently
a signal is a monadic predicate P C R*.

Intuitively, not all predicates can model a behaviour of a physical device.
It is implausible to expect a device which is on when the time is a rational
number and which is off when the time is an irrational number. To exclude
such predicates one sometimes postulates non-Zeno assumption. A predicate
is non-Zeno if on every bounded interval it changes the value only finitely
many times. An equivalent convenient definition is the following:

Definition 78 A predicate P C R* is non-Zeno if there is an unbounded
sequence 0 = 79 < 1 < T < --- of reals such that for every i € N: either
(75, 7ix1) € Por (13, 741) NP = (. We write Pyz(R") for the set of non-Zeno
predicates on R .

In this section we will describe logics and automata for real-time proper-
ties. As we will see the situation here is much less satisfactory than in the
cases we have discussed till now.

9.1 FOL and MSOL over reals

The signature of all the logics will be the same. It consists of a binary
predicate symbol < and unary predicate symbols Py, P, ... We will consider
three classes of models

e N is the class of models of the form M = (N, P(N), <, PM,...)
e R is the class of models of the form M = (R, P(R"), <, PM,...)
e Ry is the class of models of the form M = (R, Pyz(R"), <, PM,...)

The second element of the structure defines the range of second order vari-
ables and the interpretation of predicates. In particular in the case of Ryz
all predicates must be non-Zeno. In all three cases < is interpreted as the
standard relation on numbers.

The semantics of first-order and monadic second-order logics over these
classes of structures is standard. In particular the second component of
the structures plays no role in the semantics of first-order logic. In case of
MSOL the range of second order variables is restricted to the elements of the
second component of the structures. So, in case of Ryz it means that we
can quantify only over non-Zeno subsets of R*.
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As we have seen in Section 3, MSOL over N is decidable and has char-
acterizations in terms of automata and fixpoint calculi. Interestingly, the
decidability of Ryz can be reduced to the decidability of MSOL theory of
the binary tree [44]. This gives

Theorem 79 (Rabin)
MSOL theory of Ryz s decidable.

The picture for the class R is different (cf. [47, 13])

Theorem 80 (Shelah)
MSOL theory of R is undecidable. FOL theory of R is decidable.

Even in MSOL over reals we cannot express properties like “after no more
than 5 units of time the heater switches off”. To express such a property
it seems to be a good idea to add +1 predicate to the classes of models
considered above. So N1, R*! and R}, stand for the classes of models
extended with a binary predicate +1(z,y) saying that x + 1 = y.

Unfortunately, it is not difficult to see that an unrestricted use of +1
predicate makes all the considered logics over reals undecidable.

Fact 81 FOL over R*! or R}, is undecidable.

We finish this subsection with a proposal of limiting the use of +1 predi-
cate so that the decidability is regained. The logic L; [28] is an extension of
FOL without +1 predicates by the following construction:

If o(x) is a Ly formula and z is the only free variable in p(z) then
F)Si™ el@) (@235 ()

are formulas of ;. The variable x4 is the only free variable in
these formulas

The semantics is as the syntax suggests:

M,V E (F2)SDF o(z) iff there is ¢ such that M, V[t/z] F p(z)
and V(zg) <t < V(xg) + L.

We can also define ML; as an extension of L; with monadic quantification.

Theorem 82 (Hirshfeld, Rabinovich)
Both Ly and ML, are decidable over REIZ

The complexity of FOL over R, and hence also of Ly, is nonelementary.
The bound follows, as usual, from the complexity of FOL over finite words.
In [27] a decidable extension of L, is presented.
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9.2 Real-time automata

Here we want to present an automata model for specifying real-time proper-
ties. Unfortunately the model is not closed under complement. We will also
discuss some restrictions of this model.

Models over N are represented by w-words. Models over Rt are repre-
sented by timed words. Unfortunately the representation is not as good as
in the case of N.

A timed word over an alphabet 3 is an infinite sequence (aq, 79), (a1, 71), . . .
over ¥ x R* such that , 7; < 754, for every i € N. The idea is that the first
components describe the events that occur and the second the times at which
they occur.

There is no hope to have one-to-one correspondence between timed words
and models from R. We have a better chance with non-Zeno models from
Rnz. There are several ways of coding a model M € Ry as a timed
word. To have one-to-one correspondence between non-Zeno models and
timed words it is necessary to put some restrictions on timed words. One of
them is a progress requirement which says that for every ¢t € R* there should
be ¢ with 7, > . We will not discuss such a coding in detail because there
is no standard coding and a coding is not important for the results on timed
automata that we are going to present.

Let Z be a set of clocks (variables ranging over R™). Consider clock
constraints given by the grammar:

CCZ)=x<c|c<z|c<z|z<c|CC2Z)NCC(Z)

where v € Z is a clock and ¢ € N is a constant. A clock interpretation is a
function V' : Z — R*. The satisfaction relation V' F « for a clock constraint
« is defined in a expected way. For a set of clocks ) C Z, let V[Y := 0] be
the clock interpretation which is identical to V' on clocks not in ) and equal
to 0 on clocks in Y. For every ¢ € RT, the interpretation V + ¢ gives the
value V' (z) + t for every clock x.

A timed automaton is a tuple:

A=(Q,%,2,¢°,6 CQx L xCC(Z) x P(Z) x Q, Acc C Q)

where () is a finite set of states, X is a finite alphabet, Z is a finite set of
clocks, ¢° is the initial state, and Acc is the set of accepting runs as in the case
of ordinary w-word automata. The transition relation is slightly complicated.
Additionally to the usual components it has a clock constraint to be satisfied
and a set of clocks to be reset.

A configuration of a timed automaton is a pair (¢, V') consisting of a state
of A and a valuation of the clocks. For a fixed automaton we define three
relations on configurations:
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o (V)5 (q,V") fort e RT and V' =V +1,

o (¢,V) % (¢, V") if there is (g,a,0,Y,¢') € § with V F o and V' =
VY :=0].

e (¢,V) % (", V) if (¢, V) 5 (¢, V") and (¢, V") % (¢, V") for some V"

A run of A on a timed word (ay, 7o), (a1,71), ... is a sequence:

(qm%) Z_§> (QI;VI) ‘Z_ll> (q27‘/2) ‘Z_22> o
such that: gy = ¢° is the initial state; V{ is the initial valuation assigning 0
to every clock; ty = 79 and ;.1 = 7,41 — 7;. A run is accepting if the sequence
of states from the run is in Acc. The language recognized by A is the set of
timed words accepted by A.

Example: Consider a one letter alphabet ¥ = {a}. Let L; be the language
of timed words (a, 7y), (a, 71), ... such that 7;,+1 = 7; for some i and j. So, we
require that there are two occurrences of the letter with exactly one time unit
difference. The language is recognized by the automaton on Figure 3. The
initial state of the automaton is ¢o. The acceptance condition Acc consists
of all the sequences with infinitely many occurrences of ¢3. [J

a C o x;a:0 T —— D a
()

a

Figure 3: Timed automaton recognizing L.

The main result about timed automata is the decidability of the emptiness
problem [2].

Theorem 83 (Alur, Dill)
The following problem is PSPACE complete: given A decide if A accepts
some timed word.

Strangely enough the universality problem, i.e., whether an automaton
accepts all timed words, is highly undecidable.

Theorem 84 (Alur, Dill)
The universality problem is I1}-complete.

This suggests that there is a difficulty with complementing timed au-
tomata. Indeed we have:
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Fact 85 There is no timed automaton recognizing the complement of the
language L, from the example above.

One solution to the problem with complement is to restrict to determinis-
tic timed automata. These are automata that from any state at any moment
have at most one transition for each letter in the alphabet. Unfortunately the
class of languages recognized by deterministic timed automata is not closed
under projection. Deterministic automata are discussed in [2].

In [3] a notion of event-time automaton is proposed. In this model we
have clocks associated with letters of the alphabet. With each letter a we
have a clock z, telling how much time elapsed since the last occurrence of
a and a clock y, telling in how much time the next a will occur. So y, is a
kind of prophecy clock. The important difference with the ordinary timed
automata is that there are no explicit ways of resetting clocks. We have:

Theorem 86 (Alur, Fix, Henzinger)

Deterministic and nondeterministic versions of event-time automata have the
same expressive power. Fvery event clock automaton is equivalent to some
standard clock automaton. The emptiness problem for event clock automata

15 decidable in PSPACE.

Unfortunately, event-clock automata are not closed under projection.
Still [26] shows a correspondence between a (hierarchical) extension of event-
timed automata model and some monadic second-order logic over timed se-
quences.

There are numerous other extensions/modifications of timed automata
model, for some recent papers see [12, 14, 9]. These variations give us better
understanding of the situation for reals but they also show that we do not
yet have the same set of canonical notions as in the case of words or trees.
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