
Forest Algebras

Miko laj Bojańczyk1

Igor Walukiewicz2

1 Institute of Informatics
Warsaw University
Banacha 2, 02-097 Warsaw, Poland

2 CNRS LaBRI
Université de Bordeaux
351, Cours de la Libération
33405 Talence, France

Abstract

There are at least as many interesting classes of regular tree lan-
guages as there are of regular word languages. However, much less is
known about the former ones. In particular, very few decidable char-
acterizations of tree language classes are known. For words, most
known characterizations are obtained using algebra. With this in
mind, the present paper proposes an algebraic framework for classi-
fying regular languages of finite unranked labeled trees.

If in a transformation semigroup we assume that the set being
acted upon has a semigroup structure, then the transformation semi-
group can be used to recognize languages of unranked trees. This
observation allows us to examine the relationship connecting tree lan-
guages with standard algebraic concepts such as aperiodicity idem-
potency, or commutativity. The new algebraic setting is used to give
several examples of decidable algebraic characterizations.

1 Introduction

There is a well-known decision problem in formal language theory:

Decide if a given a regular language of finite binary trees can be
defined by a formula of first-order logic with three relations: ancestor,
left and right successor.

If the language is a word language (there is only one successor relation in this
case) the problem is known to be decidable thanks to fundamental results
of Schützenberger [14] and McNaughton and Papert [11]. The problem is
also decidable for words when only the successor relation is available [18, 1].



2 M. Bojańczyk and I. Walukiewicz

However, no algorithm is known for the case of tree languages, see [9, 13, 3, 2]
for some results in this direction.

There is a large body of work on problems of the type: decide if a given
regular word language can be defined using such and such a logic [6, 12, 15,
19, 20, 22]. Most of the results have been obtained using algebraic techniques
of semigroup theory. Recently, there has even been some progress for tree
languages [21, 8, 5, 2]. There is, however, a feeling that we still do not
have the right algebraic tools to deal with tree languages. In this paper we
propose an algebraic framework, called forest algebras, and study the notion
of recognizability in this framework. We want it to be as close to the word
case as possible to benefit from the rich theory of semigroups. We show how
standard notions, such as aperiodicity, idempotency, or commutativity, can
be used in our framework to characterize classes of tree languages.

Forest algebras are defined for forests (ordered sequences) of unranked
trees, where a node may have more than two (ordered) successors. This
more general (more general than, say, binary trees) setting is justified by
cleaner definitions, where semigroup theory can be used more easily.

We begin our discussion of forest algebras with the free forest algebra.
Just as the free monoid is the set of words, the free forest algebra is going to
be the set of forests. For finite words, there is one natural monoid structure:
concatenation of words with the empty word as a neutral element. For
forests there is also a concatenation operation that puts one forest after
the other (see Figure 1). This operation though, has a very limited power
as the depth of the resulting forest is the maximum of the depths of the
arguments. One needs also some kind of vertical composition that makes
forests grow. This requires a notion of a context, which is a forest with a
single hole in some leaf. Contexts can be composed by putting one of them
in the hole of the other (see Figure 2). Moreover, by putting a forest in
the hole of a context we obtain again a forest. Summarizing, for unranked,
ordered, finite forests there are two natural monoids:

• Horizontal monoid. Forests with concatenation, and the empty tree
as a neutral element.

• Vertical monoid. Contexts with context composition, and the context
with a hole in the root as a neutral element.

The two monoids are linked by an action of contexts on forests: if p is a
context and t is a forest then pt is a forest obtained by putting t in the hole
of p in the same way as the contexts are composed.

In the case of words, a language of finite words induces a congruence,
the Myhill-Nerode equivalence relation, which has finite index whenever
the language is regular. The same concepts apply to forest algebras, except
that we get two congruences: one for the vertical semigroup and one for the



Forest Algebras 3

b

a c

A forest t1

c

c

c

A forest t2

b

a c

c

c

c

The resulting
forest t1 + t2

Figure 1. Forest concatenation

b

a * b

a a

A context p

c

*

c

A context q

b

a c

*

c b

a a

The resulting
context pq

Figure 2. Context composition

horizontal semigroup. A regular language of finite forests can be thus seen
as one where both congruences are of finite index.

An important property of a forest algebra is that it is a special case of
a transformation semigroup. Recall that a transformation semigroup is a
semigroup along with an action over a set. In the forest algebra, the acting
semigroup is the set of contexts, while that set acted upon is the set of
forests (which itself is equipped with a semigroup structure).

There is a well-developed theory of transformation semigroups that is
useful in classifying regular word languages. We hope that this theory might
extend to the case of trees and this paper presents first steps in this direction.
To illustrate how forest algebra can be used in classifying regular languages,
we show how two language classes—forest languages determined by the
labels occurring in a forest, and forest languages definable by a Σ1 formula—
can be described in terms of forest algebra. We also present a more involved
example: languages definable in the temporal logic EF.

Acknowledgments We would like to thank Olivier Carton, Jean-Eric Pin,
Thomas Schwentick, Luc Segoufin and Pascal Weil for their helpful com-
ments. Special thanks are due to Howard Straubing, for correcting several
errors in a previous version, and suggesting some improved definitions.

2 Preliminaries

The set of trees and forests over a finite alphabet A is defined as follows:



4 M. Bojańczyk and I. Walukiewicz

• an empty tree, denoted 0, is a tree (and therefore also a forest);

• if s, t are forests, then s+ t is a forest; moreover + is associative;

• If s is a forest, then as is a tree (and also a forest) for every a ∈ A.

The empty tree is a neutral element for the operation + of forest con-
catenation. This operation is in general non-commutative. A tree is a forest
of the form as, where s is a forest. We denote trees, as well as forests, by s,
t and u. Most of the time we will be working with forests and we will say
explicitly when a variable denotes a tree.

It will be convenient to interpret a forest as a partial function t : N+ → A
with a finite domain (the roots of this forest are the nodes from N). Elements
of this finite domain are called nodes of t. (The domain is closed under
nonempty prefixes, and if y < y′ are natural numbers with x · y′ in the
domain, then also x · y belongs to the domain.) This function assigns to
each node its label. If x, y are two nodes of t, we write x ≤ y (x < y) if
x is a (proper) prefix of y (i.e x is closer to the root than y). If x is a
maximal node satisfying x < y, then we call x the parent of y and we call y
a successor of x. (Each node has at most one parent, but may have many
successors.) Two nodes are siblings if they have the same parent. A leaf is
a node without successors. The subtree of t rooted in the node x, denoted
t|x, assigns the label t(x · y) to a node 0 · y. The successor forest of a node
is the forest of subtrees rooted in that node’s successors.

An A-context is an (A ∪ {∗})-forest, where ∗ is a special symbol not
in A. Moreover, ∗ occurs in exactly one leaf, which is called the hole. We
use letters p, q to denote contexts. When p is a context and t is a forest,
pt is the forest obtained from p by replacing the hole with t (see Figure 2).
Similarly we define the composition of two contexts p, q – this is the context
p · q that satisfies (p · q)t = p(qt) for every forest t. The neutral element
of context composition is a context, denoted 1, consisting only of a single
node labeled ∗.

3 Forest algebras

In this section we formally define a forest algebra. We give some examples
and explore some basic properties.

A forest algebra (H,V, act , inl , inr ) consists of two monoids H,V , along
with an action act : H × V → H of V on H and two operations inl , inr :
H → V . We denote the monoid operation in H by + and the monoid
operation in V by ·. The neutral elements of the two monoids will be
denoted respectively: 0 and 1. Instead of writing act(h, v), we write vh
(notice a reversal of arguments). A forest algebra must satisfy the following
axioms:



Forest Algebras 5

action (v · w)h = v(wh);

insertion inl(g)h = g + h and inr (g)h = h+ g;

faithfulness for every two distinct v, w ∈ V there is h ∈ H with vh 6= wh;

We call V the vertical monoid and H the horizontal monoid. Thanks to
the action axiom it is unambiguous to write vwh. Most of the time we will
omit the act , inl , inr from (H,V, act , inl , inr ) and write (H,V ), just as we
identify a monoid with its carrier set. We will also sometimes write h + 1
instead of inlh, and 1 + h instead of inrh.

Example 3.1. Let H be any monoid. Let V be the set HH of all trans-
formations of H into H, with composition as the operation. To obtain a
forest algebra from (H,V ) it suffices to add the action and inl , inr . We can
take the action of V on H to be just function application. The operations
inl and inr are then determined by the insertion axiom. Faithfulness can
be easily verified.

Note 3.2. As mentioned earlier, we have chosen to write the action on the
left, while the standard practice in the algebraic study of languages of words
is to write it on the right. That is, we write act(h, v) as vh, while in most
papers on monoids and word languages one would see hv. We feel that this
choice is justified by the difference in the way words and trees are denoted.
In the case of words, writing the action on the right is justified by the way
words are written (with the first letter on the left) as well as the way finite
automata read the input (from left to right). For example, if one wants to
calculate the action of a word abb on a state q of an automaton, one writes
qfafbfb; where fa, fb are the actions associated with the corresponding
letters. Using standard functional notation this would give fb(fb(fa(q))).
Hence, writing action on the right saves tiresome reversal of the word. For
trees the situation is different. Usually, one describes trees with terms. So
a(t1 + t2) denotes a tree with the root a and two subtrees t1 and t2. If we
were writing actions on the right, the value of this tree would be denoted
by (h1 + h2)va, where hi is the value of ti and va is the value of a. In
consequence, writing the action to the right corresponds to writing terms
in reverse Polish notation. Writing the action on the right would thus force
us either: to do the conversion into reverse Polish notation each time we
go from trees to algebra, or to write trees in reverse Polish notation. The
authors think that both options are more troublesome than the choice of
writing action on the left.

Note 3.3. Despite additive notation for monoid (H,+), we do not require +
to be commutative. Having H commutative would be equivalent to saying
that the order of siblings in a tree is not relevant. Although in all the



6 M. Bojańczyk and I. Walukiewicz

examples given in this paper + will be commutative, one can easily find
examples when it will not be the case. A prominent one is first-order logic
with order on siblings.

Note 3.4. The axioms of forest algebra imply the existence of strong links
between horizontal and vertical monoids. The first observation is that every
element of h of H is of the form v0 for some v ∈ V . Indeed, it is enough
to take inlh for v. Moreover, the mappings inl , inr : H → V are monoid
morphisms as inl(h1 + h2) = inl(h1)inl(h2) and inl(0) = 1.

A morphism between two forest algebras (H,V ) and (G,W ) is a pair of
monoid morphisms (α : H → G, β : V → W ) with additional requirements
ensuring that the operations are preserved:

α(vh) = β(v)α(h)
β(inl(h)) = inl(α(h)) and β(inr (h)) = inr (α(h))

Note 3.5. The morphism α is determined by β via

α(h) = α(h+ 0) = α(inl(h)0) = β(inl(h))α(0) ,

where α(0) must be the neutral element in G by the assumption on α being
a monoid morphism. So it is enough to give a morphism β and verify if
together with the uniquely determined α they preserve the operations.

Given an alphabet A, we define the free forest algebra over A, which is
denoted by A∆, as follows:

• The horizontal monoid is the set of forests over A.

• The vertical monoid is the set of contexts over A.

• The action is the substitution of forests in contexts.

• The inl function takes a forest and transforms it into a context with
a hole to the right of all the roots in the forest. Similarly for inr but
the hole is to the left of the roots.

Observe that inl and inr are uniquely determined by insertion axioms, once
the action is defined. The following lemma shows that free forest algebra is
free in the sense of universal algebra.

Lemma 3.6. The free forest algebra A∆ is a forest algebra. Moreover,
for every forest algebra (H,V ), every function f : A → V can be uniquely
extended to a morphism (α, β) : A∆ → (H,V ) such that β(a(∗)) = f(a) for
every a ∈ A.



Forest Algebras 7

Proof. That A∆ is a forest algebra can be easily verified. We define a
homomorphism by induction on the size of a tree/context:

α(0) = 0 β(∗) = 1
α(at) = f(a)(α(t)) β(a(p)) = f(a)β(p)

α(t1 + t2) = α(t1) + α(t2) β(t1 + p+ t2) = inl(α(t1))inr (α(t2))β(p)

Directly from the definition it follows that α, β is a unique possible extension
of f to a homomorphism. It can be checked that the two mappings are
well defined. It is clear that α preserves + operation. One shows that
β(pq) = β(p)β(q) by induction on the size of p. The preservation of the
action property: α(pt) = β(p)α(t) is also proved by induction on p. Finally,
β(inl(t)) = β(t+ ∗) = α(t1) + β(1) = inl(α(t))β(1) = inl(α(t)). q.e.d.

We now proceed to define languages recognized by forest algebras.

Definition 3.7. A set L of A-forests is said to be recognized by a surjective
morphism (α, β) : A∆ → (H,V ) if L is the inverse image α−1(G) of some
G ⊆ H. The morphism (α, β) is said to recognize L, the set G is called the
accepting set, and L is said to be recognized by (H,V ).

Generally, we are interested in the case when (H,V ) is finite; in this case
we say that L is recognizable.

Example 3.8. Consider the set L of forests with an even number of nodes.
We present here a finite forest algebra (H,V ) recognizing L. Both H and V
are {0, 1} with addition modulo 2. The action is also addition; this defines
the insertion functions uniquely. The recognizing morphism maps a context
onto 0 if it has an even number of nodes. The accepting set is {0}.

Example 3.9. A language L of A-forests is called label-testable if the mem-
bership t ∈ L depends only on the sets of labels that occur in t. The ap-
propriate forest algebra is defined as follows. Both H and V are the same
monoid: the set P (A) with union as the operation. This determines the ac-
tion, which must also be also union. We can take as a recognizing morphism
a function that maps a context to the set of its labels.

Note 3.10. Another way to look at a forest algebra is from the point of
view of universal algebra. In this setting, a forest algebra is a two-sorted
algebra (with the sorts being H and V ) along with two constants (neutral
elements for H and V ) and five operations: (i) monoid operations in H and
V , (ii) the action vh of V on H and (iii) the two insertion operations inl and



8 M. Bojańczyk and I. Walukiewicz

inr . Forest algebras cannot be defined equationally due to the faithfulness
requirement.

The universal algebra viewpoint gives us definitions of such concepts
as subalgebra, cartesian product, quotient, morphism. The requirement of
faithfulness is not preserved by homomorphic images and quotients. This
implies that every time we take a quotient we need to check if the result is
a faithful algebra.

3.1 Syntactic algebra for forest languages
Our aim now is to establish the concept of a syntactic forest algebra of a
forest language. This is going to be a forest algebra that recognizes the
language, and one that is optimal among those that do.

Definition 3.11. We associate with a forest language L two equivalence
relations on the free forest algebra A∆:

• Two A-forests s, t are L-equivalent if for every context p, either both
or none of the forests ps, pt belong to L.

• Two A-contexts p, q are L-equivalent if for every forest t, the forests
pt and qt are L-equivalent.

Lemma 3.12. Both L-equivalence relations are congruences with respect
to the operations of the forest algebra A∆.

Proof. We first show that L-equivalence for forests is a congruence with
respect to concatenation of forests. We will consider only concatenation to
the right. We show that if s and s′ are L-equivalent, then so are the forests
s+t and s′+t, for every forest t. Unraveling the definition of L-equivalence,
we must show that for every context p we have: p(s+t) ∈ L iff p(s′+t) ∈ L.
Taking q = p · inr (t) we get qs = p(inr (t)s) = p(s+ t). In consequence:

p(s+ t) ∈ L iff q(s) ∈ L iff q(s′) ∈ L iff p(s′ + t) ∈ L ,

where the middle equivalence follows from L-equivalence of s and s′. The
proof for the concatenation to the left is analogous.

We now proceed to show that L-equivalence for contexts is a congruence
with respect to context composition. We need to show that if two contexts p
and p′ are L-equivalent, then so are the contexts pq and p′q for any context
q (and similarly for the concatenation to the left). We need to show that
for every forest t and every context q′,

q′pqt ∈ L iff q′p′qt ∈ L .

The above equivalence follows immediately from the L-equivalence of p and
p′: it suffices to consider qt as a tree that is plugged into the contexts p and
p′.



Forest Algebras 9

In a similar way, one shows that L-equivalence is a congruence with
respect to the action pt and the insertions inl(t), inr (t). q.e.d.

Definition 3.13. The syntactic forest algebra for L is the quotient of A∆

with respect to L-equivalence, where the horizontal semigroup HL consists
of equivalence classes of forests over A, while the vertical semigroup V L

consists of equivalence classes of contexts over A. The syntactic morphism
(αL, βL) assigns to every element of A∆ its equivalence class in (HL, V L).

The above lemma guarantees that the quotient is well defined. In this
quotient, faithfulness holds thanks to the definition of L-equivalence over
contexts. The action and insertion axioms are also satisfied (as it is a
quotient of a forest algebra). Hence, it is a forest algebra. We claim that
this forest algebra satisfies the properties required from the syntactic forest
algebra of L.

Proposition 3.14. A language L of A-forests is recognized by a the syntac-
tic morphism (αL, βL). Moreover, any morphism (α, β) : A∆ → (H,V ) that
recognizes L can be extended by a morphism (α′, β′) : (H,V )→ (HL, V L)
so that β′ ◦ β = βL.

Proof. The first part follows immediately by taking as an accepting set the
set of L-equivalence classes of all the elements of L. The second statement
follows from the observation that if two A-forests or contexts have the same
image under (α, β) then they are L-equivalent. q.e.d.

Note that in general the syntactic forest algebra may be infinite. How-
ever, Proposition 3.14 shows that if a forest language is recognized by some
finite forest algebra, then its syntactic forest algebra must also be finite.
In this case the syntactic forest algebra can be also easily computed. The
procedure is the same as for syntactic monoids. Given a finite forest algebra
(H,V ) and a subset G ⊆ H one marks iteratively all the pairs of elements
that are not equivalent with respect to G. First, one marks all pairs con-
sisting of an element of G and of an element of H \ G. Then one marks a
pair (h1, h2) ∈ H × H if there is a v ∈ V such that (vh1, vh2) is already
marked. One marks also a pair of vertical elements (v1, v2) if there is a
horizontal element h with (v1h, v2h) already marked. This process contin-
ues until no new pairs can be marked. The syntactic forest algebra is the
quotient of the given algebra by the relation consisting of all the pairs that
are not marked. In Section 3.3 we will show that recognizability is equiva-
lent with being accepted by the standard form of automata. In particular
the proof of Proposition 3.19 gives a way of constructing a forest algebra
from automaton. Together with the above discussion this gives a method of
constructing a syntactic forest algebra for the language accepted by a given
tree automaton.



10 M. Bojańczyk and I. Walukiewicz

3.2 Forest algebras and tree languages
Forest algebras give a natural definition of recognizable forest languages
(Definition 3.7). However, tree languages are studied more often than forest
languages. In this section we describe how a forest algebra can be used to
recognize a language of unranked trees.

Definition 3.15. Given a tree language L over A and a letter a ∈ A, the a-
quotient, denoted a−1L, is the set of forests t that satisfy at ∈ L. A language
L of A-trees is tree-recognized by a morphism (α, β) : A∆ → (H,V ) if a−1L
is recognized by (α, β) for all a ∈ A.

Note that the above definition does not say anything about trees with
only one (root-leaf) node; but these are finitely many and irrelevant most
of the time. In particular, regular languages are closed under adding or
removing a finite number of trees.

Example 3.16. A tree language of the form: “the root label is a ∈ A” is
tree-recognized by any forest algebra. This because all the quotients b−1L
for b ∈ A are either empty (when b 6= a) or contain all forests (when b = a).

The above definition of recognizability induces a definition of syntactic
forest algebra for a tree language L. Consider the intersection of all (a−1L)-
equivalences for a ∈ A. This is a congruence on A∆ as it is an intersection
of congruences. It is easy to check that the result is a faithful algebra.

Note 3.17. There is an alternative definition of tree-recognizability. In
the alternative definition, we say that a tree language L is tree-recognized
by a forest algebra (H,V ) if there is a forest language K recognized by
(H,V ) such that L is the intersection of K with the set of trees. Under this
alternative definition, there is no correct notion of syntactic algebra. For in-
stance, the tree language “trees whose root label is a” can be tree-recognized
by two forest algebras that have no common quotient tree-recognizing this
language. Indeed, these may be forest algebras for two different forest lan-
guages that agree on trees.

Note 3.18. Yet another alternative definition of tree-recognizability says
that L is tree-recognized iff it is recognized. In this case, the forest algebra
must keep track of what is a single tree, and what is a forest. As a result,
it becomes impossible to characterize some languages by properties of their
syntactic algebras. For instance, consider the tree language “all trees”.
The horizontal monoid of this language has three elements: H = {0, 1, 2+}
which keep track of the number of trees in the forest. The vertical monoid
has the transformations

V = {h 7→ h, h 7→ h+ 1, h 7→ h+ 2, h 7→ 1, h 7→ 2+} .



Forest Algebras 11

The first three are contexts with the hole in the root, and the last two have
the hole in a non root node. It is already inconvenient that the simplest
possible tree language needs a non-trivial algebra. Furthermore, this same
algebra recognizes the language “trees over {a, b} where a does not appear
in the root”. The recognizing morphism maps the label a to h 7→ h+ 2 and
the label b to h 7→ 1. One can suggest several logics that can describe the
first language but not the second, for all these logics characterizations in
terms of syntactic algebras will be impossible.

3.3 Automata over forests
We would like to show that our definition of recognizability is equivalent
with the standard notion of regular languages, i.e., languages accepted by
automata. There are numerous presentations of automata on finite un-
ranked trees and forests; here we will use one that matches our algebraic
definitions.

A forest automaton over an alphabet A is a tuple

A = 〈(Q, 0,+), A, δ : (A×Q→ Q), F ⊆ Q〉

where (Q, 0,+) is a finite monoid; intuitively a set of states with an opera-
tion of a composition of states.

The automaton assigns to every forest t a value tA ∈ Q, which is defined
by induction as follows:

• if t is an empty forest, then tA is 0;

• if t = as, then tA is defined to be δ(a, sA), in particular if t is a leaf
then tA = δ(a, 0);

• if t = t1 + · · ·+ tn then tA is defined to be tA1 + · · ·+ tAn ; observe that
the + operation in the last expression is done in (Q, 0,+).

A forest t is accepted by A if tA ∈ F .

Proposition 3.19. A forest language is recognized by a finite forest algebra
if and only if it is the language of forests accepted by some forest automaton.

Proof. Take a tree language L recognized by a morphism (α, β) : A∆ →
(H,V ). That is L = α−1(F ) for some F ⊆ H. For the “only if” part, we
need to show how it can be recognized by an automaton. Let A = 〈H,A, δ :
A×H → H,F 〉 where H is the horizontal monoid, F ⊆ H is as above, and
δ is defined by

δ(a, h) = β(a)h for a ∈ A .

By induction on the size of the forest one can show that tA = α(t). Thus
A recognizes the language of forests L.



12 M. Bojańczyk and I. Walukiewicz

For the other direction, suppose that we are given an automaton A =
〈(Q, 0,+), A, δ, F 〉. We consider a forest algebra (H,V ) where H is (Q, 0,+)
and V is the function space H → H with function composition as the
operation and the identity as the neutral element. The action is function
application and the insertions are uniquely determined. It is easy to see
that (H,V ) is a forest algebra. Consider now the unique homomorphism
(α, β) : A∆ → (H,V ) with

β(a) = δ(a) for a ∈ A ;

observe that each δ(a) is a function from H to H. This homomorphism
might not be surjective as required by Definition 3.7, in this case we only
keep the part of the algebra used by the homomorphism. By induction on
the height of the forest one can show that tA = α(t). q.e.d.

Actually, the above notion of automaton can be refined to a notion of
(H,V ) automaton for any forest algebra (H,V ). Such an automaton has
the form:

A = 〈H, A, δ : A→ V, F ⊆ H〉
thus the only change is that now states are from H and δ(b) is an element of
from V while before it was a function from Q→ Q. We can do this because
using the action act of the forest algebra, each v ∈ V defines a function
act(v) : H → H.

By the same reasoning as before, every language accepted by a (H,V )
automaton is recognized by the algebra (H,V ). Conversely, every language
recognized by (H,V ) is accepted by some (H,V ) automaton. This equiva-
lence shows essential differences between algebras and automata. Algebras
do not depend on alphabets, while alphabets are explicitly declared in the
description of an automaton. More importantly, the structure of the verti-
cal semigroup is not visible in an automaton: in an automaton we see only
generators of the vertical semigroup.

It may be worth to compare the above automata model with unranked
tree automata (UTA’s) [17, 10]. The only difference of any importance
between these models is that UTA’s have transition function of the form
δ : Σ×Q→ Reg(Q), i.e., to each pair of state and a letter, a UTA assigns a
regular language over the alphabet Q. A tree whose root is labeled a can be
assigned a state q if the sequence of states assigned to its children is in the
regular language δ(q, a). In our case regular languages are represented by
monoids. More precisely, we use one monoid structure on states to simul-
taneously recognize all regular word languages that appear in transitions.
The two automata models have the same expressive power, and effective
translations can be easily presented. Note that since we use monoids, there
may be an exponential growth when translating from a UTA to a forest
automaton.



Forest Algebras 13

3.4 Other possible variants of forest algebra

For words, one can use either monoids or semigroups to recognize word
languages. In the first case, the appropriate languages are of the form
L ⊆ A∗, while the second case disallows the empty word, and only languages
L ⊆ A+ are considered.

For forests, the number of choices is much greater. Not only do we have
two sorts (forests and contexts) instead of just one (words), but these sorts
are also more complex. This requires at least two choices:

• Is the empty forest a forest? Here, we say yes.

• Is the empty context a context? Here, we say yes.

We can also put some other restrictions on a position of the hole in the
context, for example that it cannot have siblings, or that it cannot be in
the root. Each combination of answers to the above questions gives rise to
an appropriate definition of a forest algebra, as long as the correct axioms
are formulated.

We do not lay any claim to the superiority of our choices. The others
are just as viable, but this does not mean that they are all equivalent.
The difference becomes visible when one tries to characterize algebras by
equations. For example, the equation vh = vg in our setting implies h = g
because this equation should be valid for all assignments of elements to
variables, and in particular we can assign the identity context to v. But then,
h = g says that the horizontal monoid is trivial. If we did not allow contexts
with the hole in a root, this equation would describe forest languages where
membership of a forest depends only on the labels of its roots.

One may also ask what would happen if we had dropped the vertical
structure. We could work with pairs of the form (H,Z) where Z is just
a set and not a semigroup, but still we could have an action of Z on H.
Such pairs correspond to automata where the alphabet is not fixed. For
such objects we do not need to require insertion axioms as these axioms
talk about the structure of the vertical semigroup which is not present here.
All the theory could be developed in this setting but once again equations
would have different meaning in this setting. In particular we would not
have any way to refer explicitly to vertical composition. We refrain from
doing this because we think that the structure of the vertical semigroup is
important.

4 Simple applications

In this section we present two straightforward characterizations of forest
languages. Both are effective, meaning that the conditions on the forest al-
gebra can be effectively tested. The first characterization—of label testable



14 M. Bojańczyk and I. Walukiewicz

languages—illustrates how a property of the context monoid can have im-
portant implications for the forest monoid. The second characterization—of
languages definable by a Σ1 formula—shows that we can also consider lan-
guage classes that are not closed under boolean operations.

In the following we will very often express properties of algebras by
equations. An equation is a pair of terms in the signature of forest algebras
over two types of variables: horizontal variables (h, g, . . . ), and vertical
variables (v, w,. . . ). These terms should be well typed in an obvious sense
and should have the same type: both should be either of the forest type, or
of the context type. An algebra satisfies an equation if for any valuation
assigning elements of the horizontal monoid to horizontal variables, and
elements of the vertical monoid to vertical variables, the two terms have the
same value. In this way an equation expresses a propery of algebras.

We say a forest language is label testable if the membership in the lan-
guage depends only on the set of labels that appear in the forest.

Theorem 4.1. A language is label testable if and only if its syntactic al-
gebra satisfies the equations:

vv = v vw = wv .

Proof. The only if part is fairly obvious, we only concentrate on the if part.
Let then L be a language recognized by a morphism (α, β) : A∆ → (H,V ),
with the target forest algebra satisfying the equations in the statement of
the theorem. We will show that for every forest t the value α(t) depends
only on the labels appearing in t.

We start by showing that the two equations from the statement of the
theorem imply another three. The first is the idempotency of the horizontal
monoid:

h+ h = h .

This equation must hold in any forest algebra satisfying our assumption
because of the following reasoning which uses the idempotency of the vertical
monoid:

h+ h = (h+ 1)(h+ 1)0 = (h+ 1)0 = h .

(In the above, h+ 1 denotes the context inl(h).) The second is the commu-
tativity of the horizontal monoid:

h+ g = g + h .

The argument uses commutativity of the vertical monoid:

h+ g = (h+ 1)(g + 1)0 = (g + 1)(h+ 1)0 = g + h .



Forest Algebras 15

Finally, we have an equation that allows us to flatten the trees:

v(h) = h+ v0 .

The proof uses once again the commutativity of the vertical monoid:

v(h) = v(h+ 1)0 = (h+ 1)v0 = h+ v0 .

The normal form of a forest will be a forest a10+· · ·+an0, where each tree
contains only one node, labeled ai. Furthermore, the labels a1, . . . , an are
exactly the labels used in t, sorted without repetition under some arbitrary
order on the set A. Using the three equations above one can show that
every forest has the same value under α as its normal form. Starting from
the normal form one can first use idempotency to “produce” as many copies
of each label as the number of its appearances in the tree. Then using the
last equation and the commutativity one can reconstruct the tree starting
from leaves and proceeding to the root. q.e.d.

Note 4.2. If we omit the equation vv = v, we get languages that can be
defined by a boolean combination of clauses of the forms: ”label a occurs
at least k times”, or ”the number of occurrences of label a is k mod n”.

We now present the second characterization. A Σ1 formula is a formula
of first-order logic, where only existential quantifiers appear in the quantifier
prenex normal form. The logic we have in mind uses the signature allowing
label tests (a node x has label a) and the descendant order (a node x is a
descendant of a node y). The following result shows which forest languages
can be defined in Σ1:

Theorem 4.3. Let L be a forest language, and let (α, β) be its syntactic
morphism. A language L is definable in Σ1 if and only if vh ∈ α(L) implies
vwh ∈ α(L).

Proof. The only if implication is an immediate consequence of the fact that
languages defined in Σ1 are closed under adding nodes. We will now show
the if implication. Below, we will say that a forest s is a piece of a forest t
if s can be obtained from t by removing nodes (i.e. the transitive closure of
the relation which reduces a forest pqs to a forest ps).

Let L be a language recognized by a morphism (α, β) : A∆ → (H,V ),
with α satisfying the property in the statement of the theorem. For each
h ∈ H, let Th be the set of forests that are assigned h by α, but have no
proper piece with this property. Using a pumping argument, one can show
that each set Th is finite. We claim that a forest belongs to L if and only
if it contains a piece t ∈ Th, with h ∈ α(L). The theorem follows from this
claim, since the latter property can be expressed in Σ1.



16 M. Bojańczyk and I. Walukiewicz

The only if part of the claim is obvious: if a forest t belongs to L, then by
definition it contains a piece from Tα(t), since α(t) belongs to α(L). For the
if part of the claim, we need to use the property of α stated in the theorem:
if t contains a piece s with α(s) ∈ α(L), then by iterative application of the
implication vh ∈ α(L) ⇒ vwh ∈ α(L), we can show that α(t) also belongs
to α(L), and hence t belongs to L. q.e.d.

5 Characterization of EF

In this section we show how forest algebras can be used to give a decidable
characterization of a known temporal logic for trees. The logic in question,
called EF, is a fragment of CTL where EF is the only temporal operator al-
lowed. Decidability of this fragment for the case of binary trees is known [5],
and several alternative proofs have already appeared [23, 7]. Here, we would
like to show how our setting—which talks about forests—can be used to
show decidability of a logic over trees.

5.1 The logic EF

EF is a temporal logic that expresses properties of trees. The name EF is
due to the unique temporal operator in the logic — EF — which stands for
Exists (some path) Further down (on this path). Formulas of EF are defined
as follows:

• If a is a letter, then a is a formula true in trees whose root label is a.

• EF formulas are closed under boolean connectives.

• If ϕ is an EF formula, then EFϕ is an EF formula true in trees having
a proper subtree satisfying ϕ.

We write t � ϕ to denote that a formula ϕ is true in a tree t.
Restricting to proper subtrees in the definition of EF gives us more power,

since the non-proper operator can be defined as ϕ ∨ EFϕ.
We need to deal with a mismatch due to the fact that EF is defined

over trees and our algebraic setting works with forests. For this, we need to
define how forest languages can be defined in EF.

Definition 5.1. A tree language L is definable in EF iff there is an EF
formula α with L = {t : t � α}. A forest language L is definable in EF if for
some a ∈ A the tree language {at : t ∈ L} is definable in EF.

Notice that the choice of a in the above definition does not matter. The
following observation shows that we can use forest definability to decide tree
definability.

Lemma 5.2. A tree language L is EF definable iff for every a ∈ A the forest
language a−1L is EF definable (as a language of forests).



Forest Algebras 17

Proof. Suppose L is a tree language defined by a formula ϕ. This formula is
boolean combination for formulas starting with EF and formulas of the form
b for some b ∈ A. It is easy to see that ϕ can rewritten as a conjunction of
implications

∧
b∈A b⇒ ϕb, where ϕb, for all b ∈ A, is a boolean combination

of formulas starting with EF. Then ϕa defines the forest language a−1L.
For the other direction suppose that for each a ∈ A the forest language

a−1L is EF-definable. So there is a formula ϕa and a letter b ∈ A such that
bt � ϕa iff t ∈ a−1L. We can, if necessary, modify ϕa into ϕ′a with the
property that bt � ϕa if and only if at � ϕ′a. The tree language L is then
defined by

∧
a∈A a⇒ ϕ′a. q.e.d.

As the main result of this section, we present two equations and show
that a forest language is definable by an EF formula if and only if its syntactic
forest algebra satisfies these equations. In particular, it is decidable if a
regular tree language can be defined in EF.

Theorem 5.3. A forest language is definable in EF if and only if its syntac-
tic forest algebra satisfies the following equations, called the EF equations:

g + h = h+ g (1.1)
vh = h+ vh . (1.2)

Equation (1.1) states that the horizontal monoid is commutative. In
other words, membership of a forest in the language does not depend on
order of siblings. Equation (1.2) is specific to EF and talks about interaction
between two monoids. This equation also shows an advantage of our setting:
the equation can be that simple because we need not to worry about the
degree of vertices, and we can compare not only trees but also forests. The
proof of the theorem is split across the following two subsections.

Note 5.4. One can also consider the logic EF∗, where the EF modality is
replaced by its non-strict version EF∗. A formula EF∗ϕ is equivalent to
ϕ ∨ EFϕ. As mentioned before, this logic is strictly weaker than EF. For
example, one cannot express in EF∗ that a tree consists only of one leaf.
Recently, a decidable characterization of EF∗ was given in [23, 7]. The logic
EF∗ϕ is not as well-behaved in our algebraic setting as EF. The problem is
that one cannot tell if a forest language is definable in EF∗ just by looking at
its syntactic forest algebra. For an example, consider the language defined
by the formula EF∗(b ∧ EF∗c), over the alphabet {a, b, c}. The syntactic
forest algebra for this language can also recognize the language of flat forests
(where every tree consists only of the root). But the latter language is not
EF∗ definable.



18 M. Bojańczyk and I. Walukiewicz

5.2 Correctness
We show that the syntactic algebra of a forest language definable in EF
must satisfy the EF equations. The basic idea is to prove that any language
definable in EF is recognized by a forest algebra satisfying the EF equations.
We will then be able to conclude that the syntactic algebra must also satisfy
these equations, as it is a morphic image of any algebra recognizing the
language.

Assume then that a forest language L over an alphabet A is defined
by a formula ϕ. The EF-closure of ϕ, denoted clEF(ϕ), is the set of all
subformulas of ϕ of the form EFψ for some ψ.

Given a forest t and a ∈ A we define a forest type of t (with respect to
our fixed ϕ):

FTϕ(t) = {ψ ∈ clEF(ϕ) : at � ψ} .
It is clear that this definition does not depend on the choice of a, so we do
not include it in the notation.

We now define an equivalence relation on forests by saying that two
forest are ϕ-equivalent if their FTϕ values are the same. We denote this
relation by ∼ϕ. The relation can be extended to contexts by saying that two
contexts p, q are ∼ϕ equivalent if for every nonempty forest t, the forests pt
and qt are ∼ϕ equivalent.

Lemma 5.5. The relation ∼ϕ is a congruence of the free forest algebra A∆.

Proof. It is clear that ∼ϕ is an equivalence relation on forests and contexts.
We need to show that it is a congruence. The first preparatory step is to
show by induction on the size of a context p that for any two forests t1 ∼ϕ t2
we have pt1 ∼ϕ pt2.

Using this we can now show that ∼ϕ preserves the action. Suppose that
p1 ∼ϕ p2 and t1 ∼ϕ t2. Then p1t1 ∼ϕ p1t2 ∼ϕ p2t2; where the second
equivalence follows directly from the definition of ∼ϕ for contexts.

Next, we deal with monoid operations in H and V . From the definition
it easily follows that if s1 ∼ϕ t1 and s2 ∼ϕ t2 then s1 + s2 ∼ϕ t1 + t2. For
the contexts take p1 ∼ϕ p2 and q1 ∼ϕ q2. For an arbitrary tree t we have:
q1p1t ∼ϕ q1p2t ∼ϕ q2p2t. The first equivalence follows from the property
proved in above, as p1t ∼ϕ p2t.

Finally, we deal with the insertion operations. Take s1 ∼ϕ s2 and an
arbitrary tree t. We have (inl(s1))t = s1 + t ∼ϕ s2 + t = (inl(s2))t. q.e.d.

Lemma 5.6. The quotient A∆/ ∼ϕ is a forest algebra, and it recognizes
L. Equations (1.1) and (1.2) are satisfied in the quotient.

Proof. For A∆/ ∼ϕ to be a forest algebra we must check if it is faithful. To
check faithfulness take p, q which are not in ∼ϕ relation. Then there is a
tree t such that pt 6∼ϕ qt which gives: [p][t] = [pt] 6∼ϕ [qt] = [q][t].



Forest Algebras 19

The language L is recognized by a canonical homomorphism assigning
to each context its equivalence class, and the accepting set consisting of
equivalence classes of trees from L. To show that it is correct we need
to show that if two trees are equivalent then either both or none of them
satisfies ϕ. This follows from the observation that ϕ is equivalent to a
formula of the form a ⇒ ϕ′ where ϕ′ is a boolean combination of some
formulas form clEF(ϕ).

A straightforward inspection shows that the equations are satisfied. For
example, the fact that the trees vh and h + vh have the same FTϕ value
follows directly from the definition of the value. q.e.d.

As the syntactic algebra for L is a morphic image of any other algebra
recognizing L (cf. Proposition 3.14), all equations satisfied in A∆/ ∼ϕ must
hold also in the syntactic algebra.

Corollary 5.7. The syntactic algebra of an EF definable forest language
satisfies the equations (1.1) and (1.2).

5.3 Completeness
In this section we show that if a forest algebra satisfies the two EF equations,
then every forest language recognized by this algebra can be defined in EF.
This gives the desired result, since the syntactic algebra of L recognizes L.

From now on we fix a forest algebra (H,V ) that recognizes a forest
language L via a morphism

(α, β) : A∆ → (H,V ) .

We assume that the forest algebra (H,V ) satisfies the two EF equations (1.1)
and (1.2). We will show that L can be defined using an EF formula.

We first show that the EF equations imply two other properties:

h = h+ h (1.3)
w(vw)ω = (vw)ω . (1.4)

These state idempotency of the horizontal monoid, and L-triviality of the
vertical monoid, respectively. We need to explain the ω notation, though.
In each finite semigroup (and hence in each monoid) S, there is a power
n ∈ N such that all elements s ∈ S satisfy sn = snsn. We refer to this
power as ω, and use it in equations. In particular, every finite semigroup
satisfies the equation: sω = sωsω. The reader is advised to substitute “a
very large power” for the term ω when reading the equations.

The idempotency of the horizontal monoid follows directly from the
equation vh = h+ vh, by taking v to be the neutral element of the vertical
monoid. Observe that we always have 1h = h, as h = u0 for some u and then
1(u0) = (1u)0 = u0. The proof for the other equation is more complicated.



20 M. Bojańczyk and I. Walukiewicz

Lemma 5.8. For each v, w ∈ V , we have w(vw)ω = (vw)ω

Proof. First we show that the EF equations imply aperiodicity for the con-
text monoid:

vω = vvω .

Indeed, by applying the first equation repeatedly to vωvω, we obtain:

vω = vωvω = vω + vvω + vvvω + · · ·+ vωvω

Likewise for vvωvω:

vvω = vvωvω = vvω + vvvω + vvvvω + · · ·+ vωvω + vvωvω

If we cancel out vvωvω = vvω, and use idempotency and commutativity of
H, we obtain the desired equality vω = vvω.

We now proceed to show the statement of the lemma.

w(vw)ω = (vw)ω + w(vw)ω = vw(vw)ω + w(vw)ω = vw(vw)ω = (vw)ω .

In the first and third equation we use vh = h+ vh, while in the second and
fourth we use aperiodicity. q.e.d.

The main idea of the proof is to do an induction with respect to what
forests can be found inside other forests. Given g, h ∈ H, we write g ≤ h
there is some context u ∈ V such that h = ug. We write g ∼ h if ≤ holds
both ways. Here are three simple properties of these relations. The first is
a direct consequence of the second EF equation. The other two require a
short calculation.

Lemma 5.9. If g ≤ h then g + h = h.

Lemma 5.10. If g ∼ h then g = h. In particular, ≤ is a partial order.

Proof. Assume that g 6= h. If g ∼ h then there are contexts v, w such that
h = wg and g = vh. Iterating this process ω-times we obtain

h = wvh = (wv)ωh

But then, by applying Lemma 5.8, we get

h = (wv)ωh = v(wv)ωh = g .

q.e.d.

Lemma 5.11. If g1 ≤ h1 and g2 ≤ h2 then g1 + g2 ≤ h1 + h2.



Forest Algebras 21

Proof. By assumption h1 = v1g1 and h2 = v2g2. Then, by using commuta-
tivity of H and equation (1.2), we get

h1 + h2 = v1g1 + v2g2 = v1g1 + g1 + v2g2 + g2 ≥ g1 + g2 .

The last inequality is a consequence of the property g+h ≥ g which follows
from the definition of the order as g + h = (1 + h)g. q.e.d.

The next proposition is the main induction in the completeness proof:

Proposition 5.12. For every h ∈ H, there is an EF formula ϕh such that
for every forest t and letter a we have

at � ϕh iff α(t) = h .

Proof. The proof is by induction on the depth of h in the order ≤, i.e. on
the number of f satisfying f < h (as usual, < denotes the strict version of
≤).

Consider first the base case, when h is minimal for ≤; which by the way
implies that h = 0 is the identity of the horizontal monoid. How can a
forest t satisfy α(t) = h? All leaves need to have labels a ∈ A satisfying
α(a) = h; this can be easily tested in EF. Second, all internal nodes need to
have labels a ∈ A satisfying α(a)h = h; this can also be tested in EF. These
conditions are clearly necessary, but thanks to idempotency h+h = h, they
are also sufficient. It remains to say how these conditions can be expressed
in EF . The formula ∃tt says that a node has a proper subtree, i.e., that a
node is an internal node. So, the formula

∧
b∈B ¬∃b∧∃tt expresses the fact

that no internal node has the label from a set B. Similarly one can say that
no leaf has a label form B.

We now proceed with the induction step. We take some h ∈ H and
assume that the proposition is true for all f < h. We claim that a forest t
satisfies α(t) = h iff the following three conditions hold:

• The forest t contains a witness. There are two types of witness. The
first type, is a forest of a form s1 + s2 with α(s1) + α(s2) = h but
α(s1), α(s2) < h. The second type is a tree of the form as, with
α(s) < h and β(a)α(s) = h.

• For all subtrees as of t with s containing a witness, β(a)(h) = h holds.

• For all subtrees as of t with α(s) < h we have β(a)α(s) ≤ h; moreover,
for all subtrees s1 and s2 of t, with α(s1) < h and α(s2) < h we have
α(s1 + s2) ≤ h.



22 M. Bojańczyk and I. Walukiewicz

These conditions can be easily written in EF using formulas ϕf for all f < h.
So it remains to show that they are equivalent to α(t) = h.

Suppose that the three conditions hold. By the first condition α(t) ≥ h.
If α(t) were strictly greater than h then there would be a minimal size
subtree s of t with α(s) 6≤ h. It cannot be of the form s1 + s2 because, by
Lemma 5.11, if α(s1), α(s2) ≤ h then α(s1) + α(s2) ≤ h. So this minimal
tree should be of the form as. It cannot be the case that α(s) = h because
of the second property. If α(s) < h then the third property guarantees
β(a)α(s) ≤ h, a contradiction.

Suppose now that α(t) = h. It is clear that a minimal subtree of t which
has the value h is a witness tree satisfying the first property. The second
property is obvious. Regarding the third property, it is also clear that for
every subtree of the form as if α(s) < h then β(a)α(s) ≤ h. It remains
to check that for every two subtrees s1, s2 with α(s1), α(s2) < h we have
α(s1) + α(s2) ≤ h. Take two such subtrees and a minimal tree containing
both of them. If it is, say s2, then α(s1) < α(s2) and α(s1) + α(s2) =
α(s2) < h. Otherwise, s1 and s2 are disjoint, and the minimal subtree has
the form b(t1 + t2 + t3) with t1 containing s1, and t2 containing s2 (due to
commutativity, the order of siblings does not matter). Now we have α(s1) ≤
α(t1) and α(s2) ≤ α(t2) which gives α(s1 + s2) ≤ α(t1 + t2) ≤ α(t) = h by
Lemma 5.11. q.e.d.

6 Conclusions and future work

This work is motivated by decidability problems for tree logics. As men-
tioned in the introduction, surprisingly little is known about this subject.
We hope that this paper represents an advance, if only by making more
explicit the algebraic questions that are behind these problems. Below we
discuss some possibilities for future work.

Wherever there is an algebraic structure for recognizing languages, there
is an Eilenberg theorem. This theorem gives a bijective mapping between
classes of languages with good closure properties (language varieties) and
classes of monoids with good closure properties (monoid varieties). It would
be interesting to see how this extends to trees, i.e. study varieties forest al-
gebras. Indeed, we have used equations to characterize EF, in particular the
appropriate class of forest algebras will satisfy all closure properties usually
required of a variety. The next step is to a develop variety theory, and check
what classes of forest algebras can be defined using equations. Under a cer-
tain definition, it can be shown that first-order definable languages form a
variety, so does CTL∗, and chain logic. There are also logics that do not
correspond to varieties; we have given EF∗ as an example. This situation is
well known in the word case: for some logics one needs to work in monoids,
for others in semigroups. In the case of trees the choice is bigger. For exam-



Forest Algebras 23

ple, a characterization of EF∗ requires to forbid contexts consisting of just
a hole. Another example is a characterization of first-order logic with two
variables [4] where the empty tree is excluded.

A related topic concerns C-varieties [16]. This is a notion from semigroup
theory, which — among others — does away with the tedious distinction
between semigroup and monoid varieties. It would be interesting to unify
the variants mentioned above in a notion of C-variety of forest algebras.

There are of course classes of tree languages — perhaps even more so
in trees than words — that are not closed under boolean operations: take
for instance languages defined by deterministic top down automata, or Σ1

definable languages presented here. In the case of words, ordered semigroups
extend the algebraic approach to such classes. It would be interesting to
develop a similar concept of ordered forest algebras.

The logics considered in this paper cannot refer to the order on siblings
in a tree. It would be worthwhile to find correct equations for logics with
the order relation on siblings. It is also not clear how to cope with trees of
bounded branching. One can also ask what is the right concept of forest
algebras for languages of infinite trees.

References

[1] D. Beauquier and J-E. Pin. Factors of words. In ICALP’89, volume
372 of LNCS, pages 63 – 79, 1989.

[2] M. Benedikt and L. Segoufin. Regular languages definable in FO. In
STACS’05, volume 3404 of LNCS, pages 327 – 339, 2005. See the
corrected version on the authors web page.

[3] M. Bojańczyk. Decidable Properties of Tree Languages. PhD thesis,
Warsaw University, 2004.

[4] M. Bojanczyk. Two-way unary temporal logic over trees. In LICS’07,
2007. To appear.

[5] M. Bojanczyk and I. Walukiewicz. Characterizing EF and EX tree
logics. Theoretical Computer Science, 358(2-3):255–272, 2006.

[6] J. Cohen, D. Perrin, and J-E. Pin. On the expressive power of temporal
logic. Journal of Computer and System Sciences, 46(3):271–294, 1993.

[7] Z. Esik and I. Szabolcs. Some varieties of finite tree automata related to
restricted temporal logics. Fundamenta Informaticae, 2007. To appear.

[8] Z. Esik and P. Weil. On certain logically defined tree languages. In
FSTTCS’03, volume 2914 of LNCS, pages 195–207, 2003.



24 M. Bojańczyk and I. Walukiewicz

[9] U. Heuter. First-order properties of trees, star-free expressions, and
aperiodicity. In STACS’88, volume 294 of LNCS, pages 136–148, 1988.

[10] L. Libkin. Logics for unranked trees: an overview. Logical Methods in
Computer Science, 2:1–31, 2006.

[11] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press,
1971.

[12] J-E. Pin. Logic, semigroups and automata on words. Annals of Math-
ematics and Artificial Intelligence, 16:343–384, 1996.

[13] A. Potthoff. First-order logic on finite trees. In Theory and Practice of
Software Development, volume 915 of LNCS, pages 125–139, 1995.

[14] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

[15] H. Straubing. Finite Automata, Formal Languages, and Circuit Com-
plexity. Birkhäuser, Boston, 1994.

[16] H. Straubing. On logical descriptions of regular languages. In
LATIN’02, volume 2286 of LNCS, pages 528 – 538, 2002.

[17] J.W. Tatcher. Characterizing deriviation trees of context-free gram-
mars through a generalization of finite automata theory. J. Counput.
Syst. Sci., 1:317–322, 1967.

[18] D. Thérien and A. Weiss. Graph congruences and wreath products.
Journal of Pure and Applied Algebra, 36:205–215, 1985.

[19] D. Thérien and T. Wilke. Temporal logic and semidirect products: An
effective characterization of the Until hierarchy. In FOCS’96, pages
256–263, 1996.

[20] D. Thérien and T. Wilke. Over words, two variables are as powerful
as one quantifier alternation. In ACM Symposium on the Theory of
Computing, pages 256–263, 1998.

[21] T. Wilke. Algebras for classifying regular tree languages and an appli-
cation to frontier testability. In ICALP’93, volume 700 of LNCS, pages
347–358, 1993.

[22] T. Wilke. Classifying discrete temporal properties. In STACS’99, vol-
ume 1563 of LNCS, pages 32–46, 1999.

[23] Z. Wu. A note on the characterization of TL[EF]. Information Pro-
cessing Letters, 102(2-3):28–54, 2007.


