From logic to games

lgor Walukiewicz
CNRS, LaBRI Bordeaux

Plan

0 Understanding the mu-calculus (parity games).
0 Advances in the mu-calculus.

O Hierarchy problems.

0 Parity games on infinite graphs: pushdown graphs, ...

© More complicated winning conditions.

.—p.1/6:

Part |

Part |

Understanding the mu-calculus:

parity games

eSyntax: P | —-P | X |a|aVP |aAB | {(a)a||aa | pX.a|vX.a

® Semantics in a transition system M = (V, {E,}ac act, PM, ..),
we need Val : Var — P(V)

[[ij\/fd —pM
[[ij\//;z =Val(X)
[(a)a]ye ={v : . Eu(v,) AV €[]y}

)/x\//;l :ﬂ{S cV: [[04(5)]]%1 C 5}

[uX.a

=

We will give a characterization of the semantics in terms of
two player games.

. —p.3/6:

® We are given a transition system M and a formula «.

® Player Eva wants to show that o holds in a state s: s F «y.
Player Adam wants to show that it does not hold.

® Game rules

sEaNp s F la|a

/ N\ / N\ | |
s F « skE [s F skFE [tF « tF «
(s,t) € E,

sEP Evewinsifsc PM; sE-P Evewinsifs¢g PM,

. —p.4/6

® We are given a transition system M and a formula «.

® Player Eva wants to show that o holds in a state s: s F «y.
Player Adam wants to show that it does not hold.

® Game rules

sEaNp s F lala

/ N\ / N\ | |
s F « skE [s F skFE [tF « tF «
(s,t) € E,

sEP Evewinsifsc PM; sE-P Evewinsifs¢g PM,

sF uX.a(X) sFvrvX.a(X)

| l
sFa(pX.a(X)) sFa(rX.a(X))

® The last two rules may be a source of infinite plays.

. —p.4/6:

® Reachability: (:}*P = uX. PV (-)X.

. —p.5/6:

® Reachability: (:}*P = uX. PV (-)X.

() ()

a=puX.PV ()X

.—p.5/6

® Reachability: (:}*P = uX. PV (-)X.

(%) -(%2)
a=puX.PV ()X

!
PV ()«

.—p.5/6

® Reachability: (:}*P = uX. PV (-)X.
() ()
a=uX.PV/{ / \

® Reachability: (:}*P = uX. PV (-)X.
> @ > @
a=uX.P \/

® Reachability: (:}*P = uX. PV (-)X.
® Existential until: 3(QUP) = uX. PV (Q A (-)X).
® Universal until: V(QUP) = uX. PV (Q N[]X).

@ Alternating reachability
puX. PV (Qa A ()X)V(QvAl]X)

o X. PV (-)X holds in s whenever from s one can reach a state
where P holds.

-(5) ()
a MXP\//\ //

.—Pp.7/6

o X. PV (-)X holds in s whenever from s one can reach a state
where P holds.

() ()
a MXP\//\ //

ovX. PV ()X holds in s also if there is an infinite path from s.

@ @

a=vX.PV

PV

.—Pp.7/6

® Almost always P on some path
pwYvX. (PANGOX)V ()Y

@ Infinitely often P on some path
vX.uY. (PANGOX)V ()Y

.—p.8/6.

skF puX.(a)X sFrvX.(a)X
! !
s F <a>piX.<a>X s F <a>(VlX.<a>X)
skF puX.(a)X sFrvX.(a)X

® Eve should win in the second game but not in the first.

.—p.9/6

pX.B(X) = U com 1™ X.6(X)

M

[[MOXﬂ(X)]] Val =()

WX B(X)] = Hﬁ(X)ﬂ%l[[[uTX.B(X)]]%Z/X]

X B0 = | 7 X B(X)[y if 7 is a limit ordinal

/<71

vX.B(X) = (o V" X-B(X)
[v°X.B(X) Ty =V
[X 8] =8 Vauig- x a1, /x

[X.B(X) 5 = () [X.B(X)] 1 if 7 is a limit ordinal

/<1

skE X (a)X skE vV X{(a)X
| |
s E (a}(u]‘lX.m)X) sk (a}(VLTX.m}X)
sE X (a)X sE VX{(a)X

® Eve should win in the second game but not in the first.

.~ p.11/6:

skE X (a)X sF VX (a)X
| |
s E (a}(u]‘lX.m)X) sk (a}(VLTX.m}X)
sE W X (a)X sE VX (a)X

® Eve should win in the second game but not in the first.

Assign rank | to y-regeneration and rank 2 to v-regeneration.

@ Make Eve win iff the smallest number appearing infinitely often
IS even.

,UXl VXQ /LXg VX4 .. Xl,XQ,...)

AN

2 3 4.

® 1/’s have odd ranks,
® 'S have even ranks,

@ if 3 Is a subformula of o then 3 has bigger rank than «.

@ The winning condition is the parity condition:
Eve wins Iif the smallest rank appearing infinitely often is even

Y X, (PAHX)V (Y X Y. (PAGOHX)V ()Y

.~ p.12/6:

@ The model checking problem (M, s E «ay) Is reduced to deciding
If Eve wins In a parity game:

(CE=E N
OB

@ The winning condition is the parity condition:
Eve wins if the smallest rank appearing infinitely often is even

@ Winning a game means to have a strategy that guarantees a
win no matter what the opponent does.

.—p.13/6:

Part ||

Advances In the mu-calculus

® Model checking.
@ Satisfiability and completeness.
® Expressive power

@ Alternation hierarchy.

© Model checking is linear time reducible to solving parity
games.

0 There is also linear time reduction in the opposite direction.
(There is a formula defining the winning positions)

0 So the two problems are equivalent up to linear time reductions.

® The problem is in UPNco-UP [Jurdzinski].
We do not know if the problem is in PTIME.

@ There is an subexponential algorithm n°")
[Jurdzinski, Paterson, Zwick]

® There are also algorithms working in time n©(@/2+1)

.—p.15/6:

0 The satisfiability problem for the mu-calculus is
EXPTIME-complete. [Emerson & Jutla]

0 There is a complete axiomatization of the logic

modal logic + axiomatization of fixpoints:

vX.a(X) = uX.—a(-X)

0 The logic has also some other nice properties like, for example:
finite model property [Kozen]
Interpolation property [Holdenberqg].

.—p.16/6:

® MSOL (monadic second order logic) is an extension of FOL
with set quantification.

R(z,y) eV |—p| Tz plye X [IX ¢

® Semantics: M,V E ¢:
-M,VEyeX ifV(y) eV(X);
— M,V EdX.p ifthereis S C M,s.t, M,V|S/X]|FE ¢.

Thm [Niwinski]: Over binary trees u-calc = MSOL.

Fact: p-calculus properties are bisimulation invariant
(if M,s Eaand (M,s) ~ (M,s') then M,s' E a.)

Thm [Janin & W.]: A property of transition systems is

expressible in the p-calculus iff it is expressible in MSOL and
bisimulation invariant.

.~ p.17/6:

® X[= IIj — formulas without fixpoints.

® !, — closure of IT}" under conjunction, disjunction,

substitutions and application of the least fixpoint operator p:
pX. aedl, if aeXl,

® [I"., — similar closure but of £’ (of course now it is closed

under v not p).

The goal is to study the power of alternation of fixpoints

0 Examples:
pYvX. (PA(H)X)V ()Y
pY. (vX. (PA()X)) V()Y

.—p.18/6:

0 Understanding the power of fixpoint alternation.

0 Application of diagonalization in a context when there is no
pairing and when formalism is decidable.

0 Related to complexity of model checking.

0 Has many different characterizations: automata indices, Borel
classes

.—p.19/6:

0 Instead of considering transition systems we focus on words.
@\Word: w: N — .

A=1(Q, %, *€Q,6:QxT—PQ), 2:Q—N)

®@Runof Aonaword w =agpay...:
ao ai
¢’ = qo ~ g1 Qo ¢i+1 € 0(qi, a;)

® Run is successful if 2(qq), Q2(q1), Q2(qe) . . . satisfies the parity

condition:
liminf, .. Q(q;) iseven

® /.(A) is the set of words accepted by A.

Def: L C X“ isreqular iff it is the language of some
automaton.

. — p.20/6:

¥ ={a,b,c} a appears finitely often and b inf often

0 Parity automaton (deterministic)

b
a

.~ p.21/6:

¥ ={a,b,c} a appears finitely often and b inf often

0 Parity automaton (deterministic)

b
c b
%
©

C

a b C b a
g1~ 1~ Q22— Qg3 42— q1

The word is accepted if ¢; appears finitely often and ¢, appears
Infinitely often.

.~ p.21/6:

Rem: Ifthe range of Qis {2,...,:i} then Q'(x) = Q(z) — 2
defines the same winning condition.

Cor: Interesting ranges are {0,...,i} and {1,...,i 4+ 1}.

.~ p.22/6:

Fact[Buchi]: Nondeterministic automata hierarchy collapses on
(0,1) level (Blichi automata).

Fact[Wagner]: Deterministic automata hierarchy is strict.
olLety, ={1,...,n} define:
M, ={w € ¥ : liminf w(n) IS even}

n—oo

N, ={w € ¥¥ : liminf w(n) is odd}

n—oo

Fact: M,isa (1,n)language butnota (0,n—1) language. Dually
for N,,.

.—p.23/6:

<Q — {Q17 <. 7%1}7 2n7Q1757 Q>

.Q(QZ) =1
®)(*,1) = g

3 2 5 2 \
d1 ~ g3 ~ (2 ~ (g5 ~ (2

® For N,, the same but §(*,7) = q;41.

d1 ~ 4 ~ g3 ~ (6 > q4

.— p.24/6:

0 Fix a deterministic automaton A = (Q, X, q, 9, 2).

® A graph of an automaton is (Q, E) with (¢,q') € Fiff ¢ € 6(q,a)
for some a.

@ A k-loop is a nontrivial loop the minimal priority being k.

® A state ¢ is a m-n flower if for every k € {m,...,n} thereis a

k-loop containing q.
\/
7> q Q} 1
: :

Thm [Niwinski & W.]: The complexity of L(.A) is determined by
the biggest size of a flower in A.

@ Hierarchy of nondeterministic automata on words collapses on
level (0,1).

® Hierarchy of deterministic automata on words is strict
(M,, languages).

® Over trees (¢ : {0,1}* — ¥) nondeterministic automata are
more powerful than deterministic ones.

. —p.26/6:

®@Treet:{0,1}" — .
+ ()3, Qy — partition of states
+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4

(90, ¢€) 0(qo,t()) = {(q1,0), (g2, 1)

0>

.~ p.27/6:

®@Treet:{0,1}" — .
A:<Q7 Qﬂa QV7 27 q07 5:QXZ_>P<QX{O’1’€})’ QQHN>

+ ()3, Qy — partition of states
+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4

(90, €) 0(qo, t(€)) = 1(q1,0), (g2, 1)

((]1, 0) (QQa 1)

.~ p.27/6:

®@Treet:{0,1}" — .
+ ()3, Qy — partition of states
+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4

(61075)\ 0(q1,t(0)) = {(g3,¢), (qs,1)
~
((]1,0) (QQa 1)

.~ p.27/6:

@Treet: {0,1}* — X.
A:<Q7 Qﬂa QV) 27 q07 5:QXZ_>P<QX{O71’€})’ QQHN>

+ ()3, Qy — partition of states
+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4 :

(QO7€)

/

(Q1’O) (Q271)

O\

(QB,O) (Q4,01)

.= p.27/6

®@Treet:{0,1}" — .
A:<Q7 Qﬂa QV7 27 q07 5:QXZ_>P<QX{O’1’€})’ QQHN>

+ ()3, Qy — partition of states
+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4

(QO75) 5(qQ7t(1)) — {<Q570)7(QG71):

/

((]1, 0) (QQa 1)

O\

(g3,0) (q4,01)

.~ p.27/6:

@Treet: {0,1}* — X.
A:<Q7 Qﬂa QV) 27 q07 5:QXZ_>P<QX{O’1’€})’ QQHN>

+ ()3, Qy — partition of states
+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4

(q0,€)

N

(Q1,0) (9271)

O\ "

(¢3,0) (@, 01) (g5,10) (gs,11)

.~ p.27/6:

®@Treet:{0,1}" — .

A:<Q7 Qﬂa QV) 27 q07 5:QXZ_>P<QX{O71’€})’ QQHN>

+ ()3, Qy — partition of states

+ Move (¢, d) — go to direction d changing state to ¢'.

® Acceptance game G 4

(q0,€)

N

(Q170) (9271)

O\ "

(¢3,0) (@, 01) (g5,10) (gs,11)

O This game is uniguely determined by .4 and ¢.

.~ p.27/6:

®@Treet:{0,1}" — .

A: <Q7 QH) Q‘v’a 27 q07 5:Q>< ZHP(QX {07176})7 QQHN>
+ ()3, Qy — partition of states
+ Acceptance game G 44!

(q0,¢€)

.—p.28/6:

®@Treet:{0,1}" — .

A: <Q7 QH) Q‘v’a 27 q07 5:Q>< ZHP(QX {07176})7 QQHN>
+ ()3, Qy — partition of states
+ Acceptance game G 44!

(g0 ¢€)

.—p.28/6:

®@Treet:{0,1}" — .

A: <Q7 QH) Q‘v’a 27 q07 5:Q>< ZHP(QX {07176})7 QQHN>
+ ()3, Qy — partition of states
+ Acceptance game G 44!

(40 ¢€)

.—p.28/6:

®@Treet:{0,1}" — .

A: <Q7 QH) Q‘v’a 27 q07 5:Q>< ZHP(QX {07176})7 QQHN>
+ ()3, Qy — partition of states
+ Acceptance game G 44!

(40 ¢€)

.—p.28/6:

®@Treet:{0,1}" — .

A:<Q7 QH) QV) 27 q07 5:QXZ_>P(QX{O7]‘76})7 QQHN>

+ ()3, Qy — partition of states
+ Acceptance game G 44!

(40 ¢€)

(QY7O) (Q271)
O\ /N

(g3,0) (q4,01) (g5,10) (g, 11)

+ Eve wins a play (qo, v0), (q1,v1), ... if
liminf, .. 2(g;) IS even

Def: ¢ < L(A) iff Eve has a winning strategy from (¢, ¢°).

.—p.28/6:

0 There is a descendant labeled by b:

(¢,a) — 1(q,0), (¢, 1)} (q,0) = {(T,¢e)}

Both states are existential.

(¢,00) (q,01) (q,10) (q,11)
]

(T, 00)

0 There is b on every path of the tree:

The same automaton but now states are universal.

. —p.29/6:

® Automata hierarchy:
A(1,17) alternating automata with 2 : Q@ — {1,...,4}
A(0,7— 1) alternating automata with 2 : Q — {0,...,i — 1}

0 Languages definable by > formulas are exactly the languages
recognizable by A(1,7) automata.

Thm [Niwinski]: ¢ = A(1,4), II¥ = A(0,i — 1).

Rem: 11§ =vu = A(0,1) = Blchi

Thm [Bradfield, Arnold]: The p-calculus hierarchy is
Infinite.

Rem: Over words the hierarchy collapses on vu-level.

.~ p.30/6

@ Along with the hierarchy of alternating automata:
A: <Q7 QH) QV7 27 q07 5:Q>< ZHP(QX {07176})7 QQHN>

@ There Is also an index hierarchy of nondeterministic automata:
A=(Q=0s,), %, ¢, 0:QxE—=P(QxQ), 2:Q —N)

N(0,7) or N(1,1)

® And of deterministic automata:
A=(Q=0=), 5 ¢, 0:QxE—-0QxQ, 2:Q—N)

D(0,7) or D(1,1)

.—p.32/6:

Thm [Niwinski & W.]: The levels A(0,0) and A(1,1) of the
hierarchy are decidable.

Thm [Niwinski & W.]: The level A(0,1) N A(1,2) is decidable.

Thm [Urbanski]: The level A(0,1) = N(0,1) is decidable for
deterministic automata.

Thm [Niwinski & W.]: All levels of N hierarchy are decidable
for deterministic automata.

Rem: For deterministic automata A hierarchy collapses on
A(1,2) level.

Rem: Deterministic automata are weaker than
nondeterministic. It is decidable if a regular language is accepted
by a deterministic automaton.

.~ p.33/6

Part ||

Games on Infinite graphs

® Games on pushdown graphs.
® Higher order pushdowns.

® Recursive program schemes.

. —p.34/6:

® Pushdown machine (deterministic):
(@Q,5,T,q0 € Q6 : QxEXT — Qx{pop, push(z) : z €'}, F C Q).

® Configuration: (¢, w) € @@ x I'*.

@ Configuration graph
enodes: configurations
etransitions:
(q, zw) — (¢',w) if thereis a € X and d(q, a, z) = (¢, pop)

(q, zw) — (¢, 2’ zw) if there is a € ¥ and d(q, a, z) = (¢’, push(z’))

@ Rem: The input alphabet and accepting states do not play
any role. Determinism is also not important.

.~ p.35/6

Pushdown system: P = (Q,T,A)

Rewrite rules: ACQxT xQ x ({e}UT?)

gz —q gz — g2z

Pushdown graph: G(P)
Vertices: () x I'*
Edges: quw — ¢’w’ according to the rules applied to prefixes.

@ (, Is always the initial state and _L is the initial stack symbol.

TM graph: rules of the form agb — ¢'a’b or agb — ab’q’ without
restrictions on the place of application.

.~ p.36/6

gL — glal — qlaal - glaaal — -+ — glaF L — - -

[— |

¢l —gqal —qaal — - —qla" 1L —---

@ We have that:
qo IS a vertex of Adam and ¢; of Eve;

Q(qo) = 0and Q(q1) = 1.
0 Eve has a winning strategy in this game.

® The game solving problem: Given P with a partition (Qg, Q)
of states, and a function (2 :) — N decide who has a winning
strategy from the initial vertex of G(P).

Thm: The problem of solving parity pushdown games is
ExpTIME-COMplete.

.—p.37/6:

® EF logic
pl-alanf|I)a [IFa
INo dGa!

@CTL
EF -+ (El(CklUOCQ) | El—l(CklUOéQ))

e M,v F dF« iff there is v’ reachable from v with M, v E «

e M,v F dGa iff there is a path from v s.t. for every v’ on it we
have M,V E «.

® ;i-calculus
P|-P|X|a|laVp |aAP]| {(a)a|laa | pX.a|vX.a

.~ p.38/6

Thm: Model checking problem for the p-calculus is
EXPTIME-complete.

Thm: The model checking problem for EF-logic is in PSPACE.
It is PSPACE-hard [Bouajjani, Esparza, Maler]

Thm: The same problem for CTL formulas is
EXPTIME-complete.

Rem: The problem is with 3 aU (.

.~ p.39/6

® Take ASPACE(n) machine M and input w. Construct P,:
P, has alt. reach. prop. Iff w € L(M

Ei/\f
]
: a HAﬂ
ANV T A

configurations accumulated conifigurations

© How to check that a sequence of accumulated configurations is
correct?

. — p.40/6:

® Simpler problem: Given a word w of length n decide if the stack
is of the form w”_L for some k.

qa —q, q, qL —qr

q,0 —q,_; Qo0 —qr

x\q

.— p.41/6:

p-calc EXPTIME-compl
Alt reach | EXPTIME-compl
CTL EXPTIME-compl
LTL EXPTIME-compl
EF PSPACE-comp
reach PTIME

.— p.42/6:

0 2-stack Is a stack of stacks. There are operations on top-most
stack and of copying the top-most stack.

® A system where all paths are of the form ¢t q¢5q5

q1|al — qq|aal — e = qi]d¥]—
¢2la”] — @[] — - = gldad]...[a"]-
gslallaal ... [a®] — qslad]...[d"] — -+ — @la®] — ¢sL

0 2-stack gives additional power. If considered as an accepting
device 2-store automaton would recognize {a*b"c* : k € N},

.—p.43/6:

® 2nd order pushdown system (@, T', Inst)
e A configuration is a sequence [sq][ssa] ... [sg] € (I')*
e Instructions:

¢ Twv ™2 ¢'Tw]fwlv

A pbopo /
q wuv — qv

o Similarly for higher orders: stacks become of type ((I'*)*")

. — p.44/6:

® The n-th level of Caucal hierarchy consists of e-closures of
n-level pushdown graphs.

D’ AN
l

N
e

®
LN . e e
i o/ \\-\—\—\—\ ¥ ¥ \}
o o o
.
| .
| \,

. — p.45/6:

® The n-th level of Caucal hierarchy consists of e-closures of
n-level pushdown graphs.

Rem: 1-stlevel graphs are prefix-recognizable graphs.

Thm [Carayol & Wohrle]: n-th level Caucal graphs are
precisely those that are MSOL interpretable in n-tree.

® A 2-tree over the set I'is ((I'*)*, {succ, : z € '}, succy) where

e (v|w|,v|wz]) € succ,
o (v|w], v|[w]|w]) € succy

. — p.46/6:

Thm[Engelfriet]: Alternating reachability problem for n-th level
pushdown-graphs is n-ExptiMe-hard.

Thm[Cachat]: The p-calculus model-checking problem for n-th
level pushdown graphs is solvable in n-ExpTiME.

Rem: Not clear what is the complexity for other logics of
programs.

.~ p.47/6:

® For a function f : N — N we define a tree T:

<

a a a a

IE b v

Y
\

Y

|
@ Define Towero(n) = n and Tower;.,(n) = 27ower(™) Moreover
Tower,(n) = Tower,(n).

O T'rower, tree is an k-level graph that is not (k£ — 1)-level.

O T'rower, tree is not in the Caucal hierarchy. It has decidable

MSO theory (follows from morphic predicates of Carton and
Thomas).

© We do not know how to decide the levels of the hierarchy.

@ Fr =g (a(F(bx)))x

0 Equations generate infinite trees (infinite terms).
C

Fgc=qg- —
g g\ /b c hb—ph—>cC

a—g _)g/
\QQ

\
a
Thm[Courcelle]: The meanings of (1st order) recursive
schemes = pushdown graphs.

® Example of a second order scheme:

Fix = f(F(Dy)r) (Y) Dyy = (vy)

. — p.49/6:

Thm[Knapik, Niwinski, Urzyczyn, W.]: Meanings of 2nd order
schemes = trees of 2nd order pushdown systems with panic.

Thm[Knapik, Niwinski, Urzyczyn, W.]: For every 2nd order
scheme, the tree defined by this scheme has decidable MSO
theory.

Question: Does panic increase expressive power?

Question: Decidability of the equivalence between schemes.

.~ p.50/6

Part IV
Complicating wining conditions

® Stack height conditions.
® Stack height and parity conditions.
® Visibly pushdown conditions.

® Quantitative conditions.

.—p.51/6:

In contrast to the finite-state case, there are now natural
winning conditions which are no more monadic

second-order definable and occur at higher Borel levels
than B(X5). [Thomas, STACS'95]

PR
@42 —@ 3

G= Vg, Va, R, \:V — C, Acc C C¥)

® ht(v) the height of the stack at position v

.—p.52/6:

Unboundedness conditions

® Unboundedness condition The height of the stack is
unbounded: ve Acc iff Vn.Fi.ht(v;) > n.

® Strict unboundedness condition The liminf of the stack height is
Infinity: ve Acc Iff VYn.3iVj > . ht(v;) > n.

A

.~ p.53/6

G={(Vg, Va, R, \:V — C, Acc C C¥)
@ Strateqgy for player 0is o : V* x V; — V such that
o(vvy) € R(vg)

® A strategy o for Eve is winning from v if all plays from v
respecting the strategy are winning for Eve.

(TN
OB L

@ Positional/memoryless strategy for Eve is a function o : Vo — V
such that o(v) € R(v).

Thm: Inthe game with unboundedness conditions Eve
has a memoryless winning strategy.

. — p.54/6:

o If there Is a winning strategy for Eve in unboundedness game
there iIs a memoryless winning strategy. This strategy ¢ never
VISits a vertex twice.

@ If o I1s winning for unboundedness then it is also winning for
strict unboundedness.

Cor: The game is winning for unboundedness iff it is winning for
strict unboundedness.

Rem: The same for disjunction of unboundedness and a parity
condition.

.~ p.55/6

O There is a winning strategy for Eve in unboundedness game iff
there is a memoryless winning strategy.

@ Modify a pushdown system P in such a way that states seen
with the current stack contents are recorded in the top of the
stack.

N

q1, (1 2)w Q, (1@2)w @3, (q1q2q32)w qa2, (q1q2q32)w

® Make a position losing if the current state is the same as
recorded on in the top of the stack

unboundedness in P = safety in P’

.~ p.56/6

)L — ¢lal — ghaal - ghaaal — -+ — ghaF L — - -

o |

¢ L —gqgial —qlaal ~— -+ —qgia" 1L — -

O Infinite memory is need to win.

.—p.57/6:

Cor: Winning conditions that are unions of explosion and parity
conditions admit memoryless strategies. Intersection of Bichi
and explosion conditions may need infinite memory.

Thm[Cachat & Duparc & Thomas]: Strict unboundedness
condition is X3-complete in the Borel hierarchy.

Thm[Cachat & Duparc & Thomas, Bouquet & Serre & W.,
Gimbert]: Games with winning conditions that are
combinations of parity and explosion conditions can be solved in
EXPTIME.

Thm[Serre]: For every finite level of the Borel hierarchy there is
a winning condition complete for this level and such that games
with this conditions are decidable.

.~ p.58/6

@ Winning conditions can be defined by pushdown automata:

the sequence of visited states must be accepted by the automaton

0 Games with such winning conditions are undecidable
(universality of a context-free language).

@ Visibly pushdown automata: input letters determine stack
actions.

Thm [LAding, Madhusudan, Serre]: Pushdown games with
winning conditions given by visibly pushdown automata are
decidable. Strict explosion condition is expressible in this
framework.

.~ p.59/6

® Mean pay-off games: limsup,, ... = >°" | Q(v;)

@ The result of the play Iis a real number and not win/lose. The
objective is to maximize/minimize the value.

Thm [Ehrenfeucht & Mycielski]: Finite mean pay-off games
are solvable.

@ Priority mean pay-off games:
evertices labeled by (m,r) € N x R

e For the sequence (mg,r9), (mq,71),... calculate
k = limint,,_ . m,,.

eletig,7;,... the positions j where m; = k.
e The result is limsup,, ., + > i 74,

Thm [Gimbert & Zielonka]: Finite priority mean pay-off games
are solvable.

.~ p.60/6

© The main motivation is the verification problem.

ME o
}
G — parity game

0 The research splits into two tracks:

o Study of the properties of the logic.
algorithmic and expressive properties

o Study of games.
game presentations and winning conditions.

.—p.61/6:

	
	Part I
	The mu-calculus
	Semantics via games
	Examples
	More examples
	Examples ($m $ vs. $
 $)
	Examples (alternating fixpoints)
	Infinite plays
	Approximations
	Infinite plays
	Defining winning conditions
	Parity games
	Part II
	Model checking
	Satisfiability and complete axiomatization
	Expressive power
	The $m $-calculus hierarchy
	Relevance of the hierarchy
	Automata on infinite strings
	Example
	Hierarchy of acceptance conditions
	Deciding hierarchies for words
	Recognizing M_n
	Flowers
	From words to trees
	Alternating automata on trees
	Acceptance
	Examples
	Properties of the hierarchies
	Hierarchies
	More Hierarchies
	Hierarchy: results
	Part III
	Graphs of pushdown machines
	Rewriting rules
	Pushdown game: an example
	EF, CTL, $m $-calculus
	Results
	Alt reachability: EXPTIME-hard
	Checking consecutive configurations
	Summary of pushdown model checking
	Higher-order example
	2nd order pushdown system
	Caucal hierarchy
	Caucal hierarchy
	Complexity of program logics
	Infiniteness of Caucal hierarchy
	Recursive program schemes
	Characterization
	Part IV
	Push-down games
	Unboundedness conditions
	Memoryless strategies for unboundedness
	Unboundedness $equiv $ strict unboundedness
	Reduction: unboundedness to safety
	Unboundedness and parity
	Unboundedness: Summary
	VPDA conditions
	Other types of conditions
	Conclusions

