
From logic to games
Igor Walukiewicz

CNRS, LaBRI Bordeaux

Plan
Understanding the mu-calculus (parity games).

Advances in the mu-calculus.

Hierarchy problems.

Parity games on infinite graphs: pushdown graphs, . . .

More complicated winning conditions.

. – p.1/61

Part I

Part I

Understanding the mu-calculus:

parity games

. – p.2/61

The mu-calculus

Syntax: P | ¬P | X | α | α∨ β | α∧ β | 〈a〉α | [a]α | µX.α | νX.α

Semantics in a transition system M = 〈V, {Ea}a∈Act , P
M, . . .〉;

we need Val : Var → P(V)

[[P]]MVal =PM

[[X]]MVal =Val(X)

[[〈a〉α]]MVal ={v : ∃v′. Ea(v, v
′) ∧ v′ ∈ [[α]]MVal}

[[µX.α(X)]]MVal =
⋂

{S ⊆ V : [[α(S)]]MVal ⊆ S}

We will give a characterization of the semantics in terms of
two player games.

. – p.3/61

Semantics via games

We are given a transition system M and a formula α0.

Player Eva wants to show that α0 holds in a state s: s � α0.
Player Adam wants to show that it does not hold.
Game rules

s � α ∨ β

s � α s � β

s � α ∧ β

s � α s � β

s � 〈a〉α

t � α

s � [a]α

t � α
(s, t) ∈ Ea

s � P Eve wins if s ∈ PM; s � ¬P Eve wins if s 6∈ PM.

. – p.4/61

Semantics via games

We are given a transition system M and a formula α0.

Player Eva wants to show that α0 holds in a state s: s � α0.
Player Adam wants to show that it does not hold.
Game rules

s � α ∨ β

s � α s � β

s � α ∧ β

s � α s � β

s � 〈a〉α

t � α

s � [a]α

t � α
(s, t) ∈ Ea

s � P Eve wins if s ∈ PM; s � ¬P Eve wins if s 6∈ PM.

s � µX.α(X)

s � α(µX.α(X))

s � νX.α(X)

s � α(νX.α(X))

The last two rules may be a source of infinite plays.
. – p.4/61

Examples

Reachability: 〈·〉∗P ≡ µX. P ∨ 〈·〉X.

. – p.5/61

Examples

Reachability: 〈·〉∗P ≡ µX. P ∨ 〈·〉X.

s0 s1 s2

α ≡µX.P ∨ 〈·〉X

. – p.5/61

Examples

Reachability: 〈·〉∗P ≡ µX. P ∨ 〈·〉X.

s0 s1 s2

α ≡µX.P ∨ 〈·〉X

P∨〈·〉α

. – p.5/61

Examples

Reachability: 〈·〉∗P ≡ µX. P ∨ 〈·〉X.

s0 s1 s2

α ≡µX.P ∨ 〈·〉X

P∨〈·〉α

α

P∨〈·〉α

. – p.5/61

Examples

Reachability: 〈·〉∗P ≡ µX. P ∨ 〈·〉X.

s0 s1 s2

α ≡µX.P ∨ 〈·〉X

P∨〈·〉α

α

P∨〈·〉α

α

P∨〈·〉α

. – p.5/61

More examples

Reachability: 〈·〉∗P ≡ µX. P ∨ 〈·〉X.

Existential until: ∃(QUP) ≡ µX. P ∨ (Q ∧ 〈·〉X).

Universal until: ∀(QUP) ≡ µX. P ∨ (Q ∧ []X).

Alternating reachability
µX. P ∨ (Q∃ ∧ 〈·〉X) ∨ (Q∀ ∧ []X)

∃

∀

∃

P

∀

P

∀

∃ ∀

. – p.6/61

Examples (µ vs. ν)

µX. P ∨ 〈·〉X holds in s whenever from s one can reach a state
where P holds.

s0 s1 s2

α ≡µX.P ∨ 〈·〉X

P∨〈·〉α

α

P∨〈·〉α

α

P∨〈·〉α

. – p.7/61

Examples (µ vs. ν)

µX. P ∨ 〈·〉X holds in s whenever from s one can reach a state
where P holds.

s0 s1 s2

α ≡µX.P ∨ 〈·〉X

P∨〈·〉α

α

P∨〈·〉α

α

P∨〈·〉α

νX. P ∨ 〈·〉X holds in s also if there is an infinite path from s.

s0 s1 s2

α ≡νX.P ∨ 〈·〉X

P∨〈·〉α

α

P∨〈·〉α

α

P∨〈·〉α

. – p.7/61

Examples (alternating fixpoints)

Almost always P on some path
µY.νX. (P ∧ 〈·〉X) ∨ 〈·〉Y

Infinitely often P on some path
νX.µY. (P ∧ 〈·〉X) ∨ 〈·〉Y

. – p.8/61

Infinite plays

s a

...
...

s � µX.〈a〉X s � νX.〈a〉X

s � 〈a〉µX.〈a〉X s � 〈a〉(νX.〈a〉X)

s � µX.〈a〉X s � νX.〈a〉X

Eve should win in the second game but not in the first.

. – p.9/61

Approximations

µX.β(X) =
⋃

τ∈Ord µ
τX.β(X)

[[µ0X.β(X)]]
M
Val =∅

[[µτ+1X.β(X)]] =[[β(X)]]M
Val[[[µτ X.β(X)]]M

Val
/X]

[[µτX.β(X)]]MVal =
⋃

τ ′<τ

[[µτ ′X.β(X)]]
M
Val if τ is a limit ordinal

νX.β(X) =
⋂

τ∈Ord ν
τX.β(X)

[[ν0X.β(X)]]
M
Val =V

[[ντ+1X.β(X)]] =[[β(X)]]M
Val[[[ντX.β(X)]]M

Val
/X]

[[ντX.β(X)]]MVal =
⋂

τ ′<τ

[[ντ ′X.β(X)]]
M
Val if τ is a limit ordinal

. – p.10/61

Infinite plays

s a

...
...

s �

1

µτ−1X.〈a〉X s �

2

ντX.〈a〉X

s �

3

〈a〉(µτ−1X.〈a〉X) s �

3

〈a〉(ντX.〈a〉X)

s �

1

µτX.〈a〉X s �

2

ντX.〈a〉X

Eve should win in the second game but not in the first.

Assign rank 1 to µ-regeneration and rank 2 to ν-regeneration.

Make Eve win iff the smallest number appearing infinitely often
is even.

. – p.11/61

Infinite plays

s a

...
...

s � 1µ
τ−1X.〈a〉X s � 2ν

τX.〈a〉X

s � 3〈a〉(µ
τ−1X.〈a〉X) s � 3〈a〉(ν

τX.〈a〉X)

s � 1µ
τX.〈a〉X s � 2ν

τX.〈a〉X

Eve should win in the second game but not in the first.

Assign rank 1 to µ-regeneration and rank 2 to ν-regeneration.

Make Eve win iff the smallest number appearing infinitely often
is even. . – p.11/61

Defining winning conditions

µX1. νX2. µX3. νX4 . . . ϕ(X1, X2, . . .)

1 2 3 4 · · ·

µ’s have odd ranks,

ν’s have even ranks,

if β is a subformula of α then β has bigger rank than α.

The winning condition is the parity condition:
Eve wins if the smallest rank appearing infinitely often is even

µ1Y.ν2X. (P ∧ 〈·〉X) ∨ 〈·〉Y ν0X.µ1Y. (P ∧ 〈·〉X) ∨ 〈·〉Y

. – p.12/61

Parity games

The model checking problem (M, s � α0) is reduced to deciding
if Eve wins in a parity game:

0 2

3

1

2

3

The winning condition is the parity condition:
Eve wins if the smallest rank appearing infinitely often is even

Winning a game means to have a strategy that guarantees a
win no matter what the opponent does.

. – p.13/61

Part II

Part II

Advances in the mu-calculus

Model checking.

Satisfiability and completeness.

Expressive power

Alternation hierarchy.

. – p.14/61

Model checking

Model checking is linear time reducible to solving parity
games.

There is also linear time reduction in the opposite direction.
(There is a formula defining the winning positions)

So the two problems are equivalent up to linear time reductions.

The problem is in UP∩co-UP [Jurdzinski].
We do not know if the problem is in PTIME.

There is an subexponential algorithm nO(
√

n)

[Jurdzinski, Paterson, Zwick]

There are also algorithms working in time nO(d/2+1).

. – p.15/61

Satisfiability and complete axiomatization

The satisfiability problem for the mu-calculus is
EXPTIME-complete. [Emerson & Jutla]

There is a complete axiomatization of the logic

modal logic + axiomatization of fixpoints:

µx.α(X) ≡ α(µX.α(X))
α(β) ⇒ β

µX.α(X) ⇒ β

νX.α(X) ≡ ¬µX.¬α(¬X)

The logic has also some other nice properties like, for example:
finite model property [Kozen]
interpolation property [Holdenberg].

. – p.16/61

Expressive power

MSOL (monadic second order logic) is an extension of FOL
with set quantification.

R(x, y) | ϕ ∨ ψ | ¬ϕ | ∃x. ϕ | y ∈ X | ∃X. ϕ

Semantics: M,V � ϕ:
– M,V � y ∈ X if V (y) ∈ V (X);
– M,V � ∃X.ϕ if there is S ⊆M , s.t., M,V [S/X] � ϕ.

Thm [Niwiński]: Over binary trees µ-calc ≡ MSOL.

Fact: µ-calculus properties are bisimulation invariant
(if M, s � α and (M, s) ≈ (M, s′) then M, s′ � α.)

Thm [Janin & W.]: A property of transition systems is
expressible in the µ-calculus iff it is expressible in MSOL and
bisimulation invariant.

. – p.17/61

The µ-calculus hierarchy

Σµ
0 = Πµ

0 — formulas without fixpoints.

Σµ
i+1 — closure of Πµ

i under conjunction, disjunction,
substitutions and application of the least fixpoint operator µ:

µX. α ∈ Σµ
i+1 if α ∈ Σµ

i+1

Πµ
i+1 — similar closure but of Σµ

i (of course now it is closed
under ν not µ).

The goal is to study the power of alternation of fixpoints

Examples:
µY.νX. (P ∧ 〈·〉X) ∨ 〈·〉Y
µY.(νX. (P ∧ 〈·〉X)) ∨ 〈·〉Y

. – p.18/61

Relevance of the hierarchy

Understanding the power of fixpoint alternation.

Application of diagonalization in a context when there is no
pairing and when formalism is decidable.

Related to complexity of model checking.

Has many different characterizations: automata indices, Borel
classes

. – p.19/61

Automata on infinite strings

Instead of considering transition systems we focus on words.
Word: w : N → Σ.

A = 〈Q, Σ, q0 ∈ Q, δ : Q× Σ → P(Q), Ω : Q→ N〉

Run of A on a word w = a0a1 . . . :

q0 = q0 q1 q2 qi+1 ∈ δ(qi, ai)
a0 a1

Run is successful if Ω(q0),Ω(q1),Ω(q2) . . . satisfies the parity
condition:

lim infn→∞Ω(qi) is even

L(A) is the set of words accepted by A.

Def: L ⊆ Σω is regular iff it is the language of some
automaton.

. – p.20/61

Example

Σ = {a, b, c} a appears finitely often and b inf often

Parity automaton (deterministic)

q1 q2

q3

a b

c

b

c
a

ca

b

q1 q1 q2 q3 q2 q1
a b c b a

The word is accepted if q1 appears finitely often and q2 appears
infinitely often.

. – p.21/61

Example

Σ = {a, b, c} a appears finitely often and b inf often

Parity automaton (deterministic)

q1 q2

q3

a b

c

b

c
a

ca

b

q1 q1 q2 q3 q2 q1
a b c b a

The word is accepted if q1 appears finitely often and q2 appears
infinitely often.

. – p.21/61

Hierarchy of acceptance conditions

Rem: If the range of Ω is {2, . . . , i} then Ω′(x) = Ω(x)− 2
defines the same winning condition.

Cor: Interesting ranges are {0, . . . , i} and {1, . . . , i+ 1}.

(1, 2k + 1) (0, 2k)

(1, 3) (0, 2)

(1, 2) (0, 1)

(1, 1) (0, 0)

. – p.22/61

Deciding hierarchies for words

Fact[Büchi]: Nondeterministic automata hierarchy collapses on
(0, 1) level (Büchi automata).

Fact[Wagner]: Deterministic automata hierarchy is strict.

Let Σn = {1, . . . , n} define:

Mn ={w ∈ Σω
n : lim inf

n→∞
w(n) is even}

Nn ={w ∈ Σω
n : lim inf

n→∞
w(n) is odd}

Fact: Mn is a (1, n) language but not a (0, n−1) language. Dually

for Nn.

. – p.23/61

Recognizing Mn

〈Q = {q1, . . . , qn},Σn, q1, δ,Ω〉
Ω(qi) = i
δ(∗, i) = qi

q1 q3 q2 q5 q2
3 2 5 2

For Nn the same but δ(∗, i) = qi+1.

q1 q4 q3 q6 q4
3 2 5 2

. – p.24/61

Flowers

Fix a deterministic automaton A = 〈Q,Σ, q, δ,Ω〉.

A graph of an automaton is 〈Q,E〉 with (q, q′) ∈ E iff q′ ∈ δ(q, a)
for some a.

A k-loop is a nontrivial loop the minimal priority being k.

A state q is a m-n flower if for every k ∈ {m, . . . , n} there is a
k-loop containing q.

qn

m

m+ 1

Thm [Niwiński & W.]: The complexity of L(A) is determined by
the biggest size of a flower in A. . – p.25/61

From words to trees

Hierarchy of nondeterministic automata on words collapses on
level (0, 1).

Hierarchy of deterministic automata on words is strict
(Mn languages).

Over trees (t : {0, 1}∗ → Σ) nondeterministic automata are
more powerful than deterministic ones.

a

. – p.26/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε) δ(q0, t(ε)) = {(q1, 0), (q2, 1)}

This game is uniquely determined by A and t.

. – p.27/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε) δ(q0, t(ε)) = {(q1, 0), (q2, 1)}

(q1, 0) (q2, 1)

This game is uniquely determined by A and t.

. – p.27/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε)

(q1, 0) (q2, 1)

δ(q1, t(0)) = {(q3, ε), (q4, 1)}

This game is uniquely determined by A and t.

. – p.27/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε)

(q1, 0) (q2, 1)

(q3, 0) (q4, 01)

This game is uniquely determined by A and t.

. – p.27/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε)

(q1, 0) (q2, 1)

(q3, 0) (q4, 01)

δ(q2, t(1)) = {(q5, 0), (q6, 1)}

This game is uniquely determined by A and t.

. – p.27/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε)

(q1, 0) (q2, 1)

(q3, 0) (q4, 01) (q5, 10) (q6, 11)

This game is uniquely determined by A and t.

. – p.27/61

Alternating automata on trees

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

+ Q∃, Q∀ — partition of states
+ Move (q′, d) — go to direction d changing state to q′.

Acceptance game GA,t:

(q0, ε)

(q1, 0) (q2, 1)

(q3, 0) (q4, 01) (q5, 10) (q6, 11)

This game is uniquely determined by A and t.
. – p.27/61

Acceptance

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉
+ Q∃, Q∀ — partition of states
+ Acceptance game GA,t:

(q0, ε)

(q1, 0) (q2, 1)

(q3, 0) (q4, 01) (q5, 10) (q6, 11)

+ Eve wins a play (q0, v0), (q1, v1), . . . if
lim infn→∞Ω(qi) is even

Def: t ∈ L(A) iff Eve has a winning strategy from (ε, q0).

. – p.28/61

Acceptance

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉
+ Q∃, Q∀ — partition of states
+ Acceptance game GA,t:

(q∃0 , ε)

(q1, 0) (q2, 1)

(q3, 0) (q4, 01) (q5, 10) (q6, 11)

+ Eve wins a play (q0, v0), (q1, v1), . . . if
lim infn→∞Ω(qi) is even

Def: t ∈ L(A) iff Eve has a winning strategy from (ε, q0).

. – p.28/61

Acceptance

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉
+ Q∃, Q∀ — partition of states
+ Acceptance game GA,t:

(q∃0 , ε)

(q∀1 , 0) (q2, 1)

(q3, 0) (q4, 01) (q5, 10) (q6, 11)

+ Eve wins a play (q0, v0), (q1, v1), . . . if
lim infn→∞Ω(qi) is even

Def: t ∈ L(A) iff Eve has a winning strategy from (ε, q0).

. – p.28/61

Acceptance

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉
+ Q∃, Q∀ — partition of states
+ Acceptance game GA,t:

(q∃0 , ε)

(q∀1 , 0) (q2, 1)

(q3, 0) (q5, 10) (q6, 11)(q4, 01)

+ Eve wins a play (q0, v0), (q1, v1), . . . if
lim infn→∞Ω(qi) is even

Def: t ∈ L(A) iff Eve has a winning strategy from (ε, q0).

. – p.28/61

Acceptance

Tree t : {0, 1}∗ → Σ.

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉
+ Q∃, Q∀ — partition of states
+ Acceptance game GA,t:

(q∃0 , ε)

(q∀1 , 0) (q2, 1)

(q3, 0) (q5, 10) (q6, 11)(q4, 01)

+ Eve wins a play (q0, v0), (q1, v1), . . . if
lim infn→∞Ω(qi) is even

Def: t ∈ L(A) iff Eve has a winning strategy from (ε, q0).
. – p.28/61

Examples

There is a descendant labeled by b:

(q, a) 7→ {(q, 0), (q, 1)} (q, b) 7→ {(>, ε)}
Both states are existential.

(q, ε)

(q, 0)

(q, 00)

(>, 00)

(q, 01)

(q, 1)

(q, 10) (q, 11)

There is b on every path of the tree:

The same automaton but now states are universal.
. – p.29/61

Properties of the hierarchies

Automata hierarchy:
A(1, i) alternating automata with Ω : Q→ {1, . . . , i}

A(0, i− 1) alternating automata with Ω : Q→ {0, . . . , i− 1}

Languages definable by Σµ
i formulas are exactly the languages

recognizable by A(1, i) automata.

Thm [Niwiński]: Σµ
i = A(1, i), Πµ

i = A(0, i− 1).

Rem: Πµ
2 = νµ = A(0, 1) = Büchi

Thm [Bradfield, Arnold]: The µ-calculus hierarchy is
infinite.

Rem: Over words the hierarchy collapses on νµ-level.
. – p.30/61

Hierarchies

Σµ
k+1 = A(1, 2k + 1) A(0, 2k) = Πµ

k+1

Σµ
3 = A(1, 3) A(0, 2) = Πµ

3

Σµ
2 = A(1, 2) A(0, 1) = Πµ

2

Σµ
1 = A(1, 1) A(0, 0) = Πµ

1

. – p.31/61

More Hierarchies

Along with the hierarchy of alternating automata:
A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q× {0, 1, ε}), Ω : Q→ N〉

There is also an index hierarchy of nondeterministic automata:
A = 〈Q= Q∃, Q∀, Σ, q0, δ : Q× Σ → P(Q×Q), Ω : Q→ N〉

N(0, i) or N(1, i)

And of deterministic automata:
A = 〈Q= Q∃, Q∀, Σ, q0, δ : Q× Σ → Q×Q, Ω : Q→ N〉

D(0, i) or D(1, i)

. – p.32/61

Hierarchy: results

Thm [Niwiński & W.]: The levels A(0, 0) and A(1, 1) of the
hierarchy are decidable.

Thm [Niwiński & W.]: The level A(0, 1) ∩ A(1, 2) is decidable.

Thm [Urbański]: The level A(0, 1) = N(0, 1) is decidable for
deterministic automata.

Thm [Niwiński & W.]: All levels of N hierarchy are decidable
for deterministic automata.

Rem: For deterministic automata A hierarchy collapses on
A(1, 2) level.

Rem: Deterministic automata are weaker than
nondeterministic. It is decidable if a regular language is accepted
by a deterministic automaton.

. – p.33/61

Part III

Part III

Games on infinite graphs

Games on pushdown graphs.

Higher order pushdowns.

Recursive program schemes.

. – p.34/61

Graphs of pushdown machines

Pushdown machine (deterministic):
〈Q,Σ,Γ, q0 ∈ Q, δ : Q×Σ×Γ → Q×{pop, push(z) : z ∈ Γ}, F ⊆ Q〉.

Configuration: (q, w) ∈ Q× Γ∗.

Configuration graph
nodes: configurations
transitions:

(q, zw) → (q′, w) if there is a ∈ Σ and δ(q, a, z) = (q′, pop)

(q, zw) → (q′, z′zw) if there is a ∈ Σ and δ(q, a, z) = (q′, push(z′))

Rem: The input alphabet and accepting states do not play
any role. Determinism is also not important.

. – p.35/61

Rewriting rules

Pushdown system: P = (Q,Γ,∆)

Rewrite rules: ∆ ⊆ Q× Γ×Q× ({ε} ∪ Γ2)

qz � q′ qz � q′z′z

Pushdown graph: G(P)

Vertices: Q× Γ∗

Edges: qw→ q′w′ according to the rules applied to prefixes.

q0 is always the initial state and ⊥ is the initial stack symbol.

TM graph: rules of the form aqb � q′a′b or aqb � ab′q′ without
restrictions on the place of application.

. – p.36/61

Pushdown game: an example

q0
0⊥ q0

0a⊥ q0
0aa⊥ q0

0aaa⊥ · · · q0
0a

k⊥ · · ·

q1
1⊥ q1

1a⊥ q1
1aa⊥ · · · q1

1a
k−1⊥ · · ·

We have that:
q0 is a vertex of Adam and q1 of Eve;
Ω(q0) = 0 and Ω(q1) = 1.

Eve has a winning strategy in this game.

The game solving problem: Given P with a partition (QE, QA)
of states, and a function Ω : Q→ N decide who has a winning
strategy from the initial vertex of G(P).

Thm: The problem of solving parity pushdown games is
EXPTIME-complete.

. – p.37/61

EF, CTL, µ-calculus

EF logic
p | ¬α | α ∧ β | ∃〈〉a | ∃Fα

!No ∃Gα!

CTL
EF +

(

∃(α1Uα2) | ∃¬(α1Uα2)
)

M, v � ∃Fα iff there is v′ reachable from v with M, v′ � α

M, v � ∃Gα iff there is a path from v s.t. for every v ′ on it we
have M, v′ � α.

µ-calculus
P | ¬P | X | α | α ∨ β | α ∧ β | 〈a〉α | [a]α | µX.α | νX.α

. – p.38/61

Results

Thm: Model checking problem for the µ-calculus is
EXPTIME-complete.

Thm: The model checking problem for EF-logic is in PSPACE.
It is PSPACE-hard [Bouajjani, Esparza, Maler]

Thm: The same problem for CTL formulas is
EXPTIME-complete.

Rem: The problem is with ∃ αUβ.

. – p.39/61

Alt reachability: EXPTIME-hard

Take ASPACE(n) machine M and input w. Construct Pw:

Pw has alt. reach. prop. iff w ∈ L(M).

configurations accumulated conifigurations

...
... ...

...

How to check that a sequence of accumulated configurations is
correct?

. – p.40/61

Checking consecutive configurations

Simpler problem: Given a word w of length n decide if the stack
is of the form wk⊥ for some k.

qa→q, qa
n q⊥ →qF

qa
nb→qa

n−1 qa
0a→qF

q
a
n

q
a
0

q
b
0

q

q
b
n

q

q

q

w

w

. – p.41/61

Summary of pushdown model checking

µ-calc EXPTIME-compl

Alt reach EXPTIME-compl

CTL EXPTIME-compl

LTL EXPTIME-compl

EF PSPACE-compl

reach PTIME

. – p.42/61

Higher-order example

2-stack is a stack of stacks. There are operations on top-most
stack and of copying the top-most stack.

A system where all paths are of the form qk
1q

k
2q

k
3

q1[a] → q1[aa] → · · · → q1[a
k]→

q2[a
k] → q2[a

k−1][ak] → · · · → q2[a][aa] . . . [a
k] →

q3[a][aa] . . . [a
k] → q3[aa] . . . [a

k] → · · · → q3[a
k] → q3⊥

2-stack gives additional power. If considered as an accepting
device 2-store automaton would recognize {akbkck : k ∈ N}.

. – p.43/61

2nd order pushdown system

2nd order pushdown system 〈Q,Γ, Inst〉
A configuration is a sequence [s1][s2] . . . [sk] ∈ (Γ∗)∗

Instructions:

q′[w]v
push

1
(a)

−→ q′[aw]v

q′[aw]v
pop

1−→ q′[w]v

q′[w]v
push

2−→ q′[w][w]v

q′[w]v
pop

2−→ q′v

Similarly for higher orders: stacks become of type ((Γ∗)∗...
∗

)

. – p.44/61

Caucal hierarchy

The n-th level of Caucal hierarchy consists of ε-closures of
n-level pushdown graphs.

. . .

. – p.45/61

Caucal hierarchy

The n-th level of Caucal hierarchy consists of ε-closures of
n-level pushdown graphs.

Rem: 1-st level graphs are prefix-recognizable graphs.

Thm [Carayol & Wöhrle]: n-th level Caucal graphs are
precisely those that are MSOL interpretable in n-tree.

A 2-tree over the set Γ is 〈(Γ∗)∗, {succz : z ∈ Γ}, succ2〉 where
(v[w], v[wz]) ∈ succz

(v[w], v[w][w]) ∈ succ2

. – p.46/61

Complexity of program logics

Thm[Engelfriet]: Alternating reachability problem for n-th level
pushdown-graphs is n-EXPTIME-hard.

Thm[Cachat]: The µ-calculus model-checking problem for n-th
level pushdown graphs is solvable in n-EXPTIME.

Rem: Not clear what is the complexity for other logics of
programs.

. – p.47/61

Infiniteness of Caucal hierarchy

For a function f : N → N we define a tree Tf :

a a a a

b b

b

b

b

b

n

f(n)

Define Tower 0(n) = n and Tower k+1(n) = 2Tower(n). Moreover
Towerω(n) = Towern(n).
TTowerk

tree is an k-level graph that is not (k − 1)-level.

TTowerω
tree is not in the Caucal hierarchy. It has decidable

MSO theory (follows from morphic predicates of Carton and
Thomas).

We do not know how to decide the levels of the hierarchy. . – p.48/61

Recursive program schemes

Fx⇒ g (a(F(bx))) x

Equations generate infinite trees (infinite terms).

Fgc = g
c

a g
b c

a g

b b c

a

Thm[Courcelle]: The meanings of (1st order) recursive
schemes ≡ pushdown graphs.

Example of a second order scheme:
Fψx⇒ f (F(Dψ)x) (ψx) Dψy ⇒ ψ(ψy)

. – p.49/61

Characterization

Thm[Knapik, Niwiński, Urzyczyn, W.]: Meanings of 2nd order
schemes ≡ trees of 2nd order pushdown systems with panic.

Thm[Knapik, Niwiński, Urzyczyn, W.]: For every 2nd order
scheme, the tree defined by this scheme has decidable MSO
theory.

Question: Does panic increase expressive power?

Question: Decidability of the equivalence between schemes.

. – p.50/61

Part IV

Part IV

Complicating wining conditions

Stack height conditions.

Stack height and parity conditions.

Visibly pushdown conditions.

Quantitative conditions.

. – p.51/61

Push-down games

In contrast to the finite-state case, there are now natural
winning conditions which are no more monadic
second-order definable and occur at higher Borel levels
than B(Σ0

2). [Thomas, STACS’95]

0 2

3

1

2

3

G = 〈VE , VA, R, λ : V → C, Acc ⊆ Cω〉

ht(v) the height of the stack at position v

. – p.52/61

Unboundedness conditions

Unboundedness condition The height of the stack is
unbounded: ~v ∈ Acc iff ∀n.∃i.ht(vi) > n.

Strict unboundedness condition The liminf of the stack height is
infinity: ~v ∈ Acc iff ∀n.∃i.∀j > i. ht(vj) > n.

. – p.53/61

Memoryless strategies for unboundedness

G = 〈VE , VA, R, λ : V → C, Acc ⊆ Cω〉
Strategy for player 0 is σ : V ∗ × V0 → V such that

σ(~vv0) ∈ R(v0)

A strategy σ for Eve is winning from v if all plays from v
respecting the strategy are winning for Eve.

0 2

3

1

2

3

Positional/memoryless strategy for Eve is a function σ : V0 → V
such that σ(v) ∈ R(v).

Thm: In the game with unboundedness conditions Eve
has a memoryless winning strategy.

. – p.54/61

Unboundedness ≡ strict unboundedness

If there is a winning strategy for Eve in unboundedness game
there is a memoryless winning strategy. This strategy σ never
visits a vertex twice.

If σ is winning for unboundedness then it is also winning for
strict unboundedness.

Cor: The game is winning for unboundedness iff it is winning for
strict unboundedness.

Rem: The same for disjunction of unboundedness and a parity
condition.

. – p.55/61

Reduction: unboundedness to safety

There is a winning strategy for Eve in unboundedness game iff
there is a memoryless winning strategy.

Modify a pushdown system P in such a way that states seen
with the current stack contents are recorded in the top of the
stack.

q1, (q1z)w q2, (q1q2z)w q3, (q1q2q3z)w q2, (q1q2q3z)w

· · ·

Make a position losing if the current state is the same as
recorded on in the top of the stack

unboundedness in P ≡ safety in P ′

. – p.56/61

Unboundedness and parity

q0
0⊥ q0

0a⊥ q1
0aa⊥ q1

0aaa⊥ · · · q1
0a

k⊥ · · ·

q1
1⊥ q1

1a⊥ q1
1aa⊥ · · · q1

1a
k−1⊥ · · ·

· · ·

Infinite memory is need to win.
. – p.57/61

Unboundedness: Summary

Cor: Winning conditions that are unions of explosion and parity
conditions admit memoryless strategies. Intersection of Büchi
and explosion conditions may need infinite memory.

Thm[Cachat & Duparc & Thomas]: Strict unboundedness
condition is Σ3-complete in the Borel hierarchy.

Thm[Cachat & Duparc & Thomas, Bouquet & Serre & W.,
Gimbert]: Games with winning conditions that are
combinations of parity and explosion conditions can be solved in
EXPTIME.

Thm[Serre]: For every finite level of the Borel hierarchy there is
a winning condition complete for this level and such that games
with this conditions are decidable.

. – p.58/61

VPDA conditions

Winning conditions can be defined by pushdown automata:

the sequence of visited states must be accepted by the automaton

Games with such winning conditions are undecidable
(universality of a context-free language).

Visibly pushdown automata: input letters determine stack
actions.

Thm [Löding, Madhusudan, Serre]: Pushdown games with
winning conditions given by visibly pushdown automata are
decidable. Strict explosion condition is expressible in this
framework.

. – p.59/61

Other types of conditions

Mean pay-off games: lim supn→∞
1
n

∑n
i=1 Ω(vi)

The result of the play is a real number and not win/lose. The
objective is to maximize/minimize the value.

Thm [Ehrenfeucht & Mycielski]: Finite mean pay-off games
are solvable.

Priority mean pay-off games:
vertices labeled by (m, r) ∈ N× R

For the sequence (m0, r0), (m1, r1), . . . calculate
k = lim infn→∞mn.

Let i0, i1, . . . the positions j where mj = k.

The result is lim supn→∞
1
n

∑n
i=1 rin.

Thm [Gimbert & Zielonka]: Finite priority mean pay-off games
are solvable.

. – p.60/61

Conclusions

The main motivation is the verification problem.

M
?

� α

G parity game

The research splits into two tracks:

Study of the properties of the logic.
algorithmic and expressive properties

Study of games.
game presentations and winning conditions.

. – p.61/61

	
	Part I
	The mu-calculus
	Semantics via games
	Examples
	More examples
	Examples ($m $ vs. $
 $)
	Examples (alternating fixpoints)
	Infinite plays
	Approximations
	Infinite plays
	Defining winning conditions
	Parity games
	Part II
	Model checking
	Satisfiability and complete axiomatization
	Expressive power
	The $m $-calculus hierarchy
	Relevance of the hierarchy
	Automata on infinite strings
	Example
	Hierarchy of acceptance conditions
	Deciding hierarchies for words
	Recognizing M_n
	Flowers
	From words to trees
	Alternating automata on trees
	Acceptance
	Examples
	Properties of the hierarchies
	Hierarchies
	More Hierarchies
	Hierarchy: results
	Part III
	Graphs of pushdown machines
	Rewriting rules
	Pushdown game: an example
	EF, CTL, $m $-calculus
	Results
	Alt reachability: EXPTIME-hard
	Checking consecutive configurations
	Summary of pushdown model checking
	Higher-order example
	2nd order pushdown system
	Caucal hierarchy
	Caucal hierarchy
	Complexity of program logics
	Infiniteness of Caucal hierarchy
	Recursive program schemes
	Characterization
	Part IV
	Push-down games
	Unboundedness conditions
	Memoryless strategies for unboundedness
	Unboundedness $equiv $ strict unboundedness
	Reduction: unboundedness to safety
	Unboundedness and parity
	Unboundedness: Summary
	VPDA conditions
	Other types of conditions
	Conclusions

