From logic to games
 Igor Walukiewicz
 CNRS, LaBRI Bordeaux

Plan

o Understanding the mu-calculus (parity games).
o Advances in the mu-calculus.
o Hierarchy problems.
o Parity games on infinite graphs: pushdown graphs, ...
o More complicated winning conditions.

Part I

Understanding the mu-calculus:

parity games

The mu-calculus

- Syntax: $P|\neg P| X|\alpha| \alpha \vee \beta|\alpha \wedge \beta|\langle a\rangle \alpha|[a] \alpha| \mu X . \alpha \mid \nu X . \alpha$
- Semantics in a transition system $\mathcal{M}=\left\langle V,\left\{E_{a}\right\}_{a \in A c t}, P^{\mathcal{M}}, \ldots\right\rangle$; we need Val: Var $\rightarrow \mathcal{P}(V)$

$$
\begin{aligned}
\llbracket P \rrbracket_{\text {Val }}^{\mathcal{M}} & =P^{\mathcal{M}} \\
\llbracket X \rrbracket_{\text {Val }}^{\mathcal{M}} & =\operatorname{Val}(X) \\
\llbracket\langle a\rangle \alpha \rrbracket_{\text {Val }}^{\mathcal{M}} & =\left\{v: \exists v^{\prime} . E_{a}\left(v, v^{\prime}\right) \wedge v^{\prime} \in \llbracket \alpha \rrbracket_{\text {Val }}^{\mathcal{M}}\right\} \\
\llbracket \mu X . \alpha(X) \rrbracket_{\text {Val }}^{\mathcal{M}} & =\bigcap\left\{S \subseteq V: \llbracket \alpha(S) \rrbracket_{\text {Val }}^{\mathcal{M}} \subseteq S\right\}
\end{aligned}
$$

We will give a characterization of the semantics in terms of two player games.

- We are given a transition system \mathcal{M} and a formula α_{0}.
- Player Eva wants to show that α_{0} holds in a state s : $s \vDash \alpha_{0}$. Player Adam wants to show that it does not hold.
- Game rules

$s \vDash P \quad$ Eve wins if $s \in P^{\mathcal{M}} ; \quad s \vDash \neg P \quad$ Eve wins if $s \notin P^{\mathcal{M}}$.
- We are given a transition system \mathcal{M} and a formula α_{0}.
- Player Eva wants to show that α_{0} holds in a state $s: s \vDash \alpha_{0}$.

Player Adam wants to show that it does not hold.

- Game rules

$t \vDash \alpha$
$t \vDash \alpha$

$$
(s, t) \in E_{a}
$$

$s \vDash P \quad$ Eve wins if $s \in P^{\mathcal{M}} ; \quad s \vDash \neg P \quad$ Eve wins if $s \notin P^{\mathcal{M}}$.

- The last two rules may be a source of infinite plays.
o Reachability: $\langle\cdot\rangle^{*} P \equiv \mu X . P \vee\langle\cdot\rangle X$.
- Reachability: $\langle\cdot\rangle^{*} P \equiv \mu X . P \vee\langle\cdot\rangle X$.

$$
\alpha \equiv \mu X . P \vee\langle\cdot\rangle X
$$

- Reachability: $\langle\cdot\rangle^{*} P \equiv \mu X . P \vee\langle\cdot\rangle X$.

$$
\begin{gathered}
\alpha \equiv \mu X . P \vee\langle\cdot\rangle X \\
\downarrow \\
P \vee\langle\cdot\rangle_{\alpha}
\end{gathered}
$$

- Reachability: $\langle\cdot\rangle^{*} P \equiv \mu X . P \vee\langle\cdot\rangle X$.

$$
\begin{gathered}
\left(S_{0}\right) \longrightarrow S_{1} \longrightarrow \\
\alpha \equiv \mu X . P \vee\langle\cdot\rangle X \\
P \vee\langle\cdot\rangle_{\alpha} \\
P \vee\langle\cdot\rangle_{\alpha}
\end{gathered}
$$

- Reachability: $\langle\cdot\rangle^{*} P \equiv \mu X . P \vee\langle\cdot\rangle X$.

$$
\begin{aligned}
& S_{0} \longrightarrow s_{1} \longrightarrow s_{2} \\
& \alpha \equiv \underset{P \vee V}{\mu} X \cdot P \vee\langle\cdot\rangle X \xrightarrow[P \vee]{\downarrow}{ }_{P \vee\langle\cdot\rangle \alpha}^{\alpha}
\end{aligned}
$$

- Reachability: $\langle\cdot\rangle^{*} P \equiv \mu X . P \vee\langle\cdot\rangle X$.
- Existential until: $\exists(Q \mathbb{U} P) \equiv \mu X . P \vee(Q \wedge\langle\cdot\rangle X)$.
- Universal until: $\forall(Q \mathbb{U} P) \equiv \mu X . P \vee(Q \wedge[] X)$.
- Alternating reachability

$$
\mu X . P \vee\left(Q_{\exists} \wedge\langle\cdot\rangle X\right) \vee\left(Q_{\forall} \wedge[] X\right)
$$

o $\mu X . P \vee\langle\cdot\rangle X$ holds in s whenever from s one can reach a state where P holds.

o $\mu X . P \vee\langle\cdot\rangle X$ holds in s whenever from s one can reach a state where P holds.

$0 \nu X . P \vee\langle\cdot\rangle X$ holds in s also if there is an infinite path from s.

Examples (alternating fixpoints)

o Almost always P on some path

$$
\mu Y . \nu X .(P \wedge\langle\cdot\rangle X) \vee\langle\cdot\rangle Y
$$

- Infinitely often P on some path

$$
\nu X . \mu Y .(P \wedge\langle\cdot\rangle X) \vee\langle\cdot\rangle Y
$$

o Eve should win in the second game but not in the first.

$$
\mu X . \beta(X)=\bigcup_{\tau \in O r d} \mu^{\tau} X . \beta(X)
$$

$$
\begin{aligned}
& \llbracket \mu^{0} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}}=\emptyset \\
& \llbracket \mu^{\tau+1} X . \beta(X) \rrbracket=\llbracket \beta(X) \rrbracket_{\text {Val } \left.\llbracket \mu^{\tau} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}} / X\right]}^{\llbracket \mu^{\tau} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}}}=\bigcup_{\tau^{\prime}<\tau} \llbracket \mu^{\tau^{\prime}} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}} \text { if } \tau \text { is a limit ordinal }
\end{aligned}
$$

$$
\nu X . \beta(X)=\bigcap_{\tau \in O r d} \nu^{\tau} X . \beta(X)
$$

$$
\llbracket \nu^{0} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}}=V
$$

$$
\llbracket \nu^{\tau+1} X . \beta(X) \rrbracket=\llbracket \beta(X) \rrbracket_{\text {Val }\left[\llbracket \nu^{\tau} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}} / X\right]}
$$

$$
\llbracket \nu^{\tau} X . \beta(X) \rrbracket_{\text {Val }}^{\mathcal{M}}=\bigcap_{\tau^{\prime}<\tau} \llbracket \nu^{\tau^{\prime}} X . \beta(X) \rrbracket_{V a l}^{\mathcal{M}} \text { if } \tau \text { is a limit ordinal }
$$

$$
\begin{gathered}
s \vDash \mu^{\tau} X .\langle a\rangle X \\
\downarrow \\
s \vDash\langle a\rangle\left(\mu^{\tau-1} X .\langle a\rangle X\right) \\
\downarrow \\
s \vDash \mu^{\tau-1} X .\langle a\rangle X \\
\downarrow \\
\vdots
\end{gathered}
$$

$$
s \vDash \nu^{\tau} X .\langle a\rangle X
$$

$$
\downarrow
$$

$$
s \vDash\langle a\rangle\left(\nu^{\tau} X .\langle a\rangle X\right)
$$

$$
\downarrow
$$

$$
s \vDash \nu^{\tau} X .\langle a\rangle X
$$

$$
\downarrow
$$

o Eve should win in the second game but not in the first.
(S) a

$$
\begin{aligned}
& s \vDash{ }_{1} \mu^{\tau} X .\langle a\rangle X \\
& \downarrow \\
& s \vDash{ }_{3}\langle a\rangle\left(\mu^{\tau-1} X .\langle a\rangle X\right) \\
& \downarrow \\
& s \vDash{ }_{1} \mu^{\tau-1} X .\langle a\rangle X
\end{aligned}
$$

- Eve should win in the second game but not in the first.

Assign rank 1 to μ-regeneration and rank 2 to ν-regeneration.
o Make Eve win iff the smallest number appearing infinitely often is even.

$$
\mu X_{1} \cdot \nu X_{2} \cdot \mu X_{3} \cdot \nu X_{4} \ldots \varphi\left(X_{1}, X_{2}, \ldots\right)
$$

0 μ 's have odd ranks,
0 ν 's have even ranks,
o if β is a subformula of α then β has bigger rank than α.

- The winning condition is the parity condition:

Eve wins if the smallest rank appearing infinitely often is even

$$
\mu_{1} Y . \nu_{2} X .(P \wedge\langle\cdot\rangle X) \vee\langle\cdot\rangle Y \quad \nu_{0} X . \mu_{1} Y .(P \wedge\langle\cdot\rangle X) \vee\langle\cdot\rangle Y
$$

o The model checking problem ($\mathcal{M}, s \vDash \alpha_{0}$) is reduced to deciding if Eve wins in a parity game:

- The winning condition is the parity condition:

Eve wins if the smallest rank appearing infinitely often is even
o Winning a game means to have a strategy that guarantees a win no matter what the opponent does.

Part II

Advances in the mu-calculus

- Model checking.
- Satisfiability and completeness.
o Expressive power
- Alternation hierarchy.
o Model checking is linear time reducible to solving parity games.
o There is also linear time reduction in the opposite direction. (There is a formula defining the winning positions)
o So the two problems are equivalent up to linear time reductions.
- The problem is in UPคco-UP [Jurdzinski]. We do not know if the problem is in Ptime.
- There is an subexponential algorithm $n^{O(\sqrt{n})}$ [Jurdzinski, Paterson, Zwick]
- There are also algorithms working in time $n^{O(d / 2+1)}$.
o The satisfiability problem for the mu-calculus is EXPTIME-complete. [Emerson \& Jutla]
o There is a complete axiomatization of the logic modal logic + axiomatization of fixpoints:

$$
\begin{gathered}
\mu x \cdot \alpha(X) \equiv \alpha(\mu X \cdot \alpha(X)) \quad \frac{\alpha(\beta) \Rightarrow \beta}{\mu X \cdot \alpha(X) \Rightarrow \beta} \\
\nu X \cdot \alpha(X) \equiv \neg \mu X . \neg \alpha(\neg X)
\end{gathered}
$$

O The logic has also some other nice properties like, for example: finite model property [Kozen] interpolation property [Holdenberg].

- MSOL (monadic second order logic) is an extension of FOL with set quantification.

$$
R(x, y)|\varphi \vee \psi| \neg \varphi|\exists x . \varphi| y \in X \mid \exists X . \varphi
$$

o Semantics: $M, V \vDash \varphi$:
$-M, V \vDash y \in X \quad$ if $V(y) \in V(X)$;

- $M, V \vDash \exists X . \varphi$ if there is $S \subseteq M$, s.t., $M, V[S / X] \vDash \varphi$.

Thm [Niwiński]: Over binary trees μ-calc \equiv MSOL.

Fact: μ-calculus properties are bisimulation invariant (if $M, s \vDash \alpha$ and $(M, s) \approx\left(M, s^{\prime}\right)$ then $M, s^{\prime} \vDash \alpha$.)

Thm [Janin \& W.]: A property of transition systems is expressible in the μ-calculus iff it is expressible in MSOL and bisimulation invariant.

The μ-calculus hierarchy

- $\Sigma_{0}^{\mu}=\Pi_{0}^{\mu}$ - formulas without fixpoints.
- \sum_{i+1}^{μ} - closure of Π_{i}^{μ} under conjunction, disjunction, substitutions and application of the least fixpoint operator μ :

$$
\mu X . \alpha \in \Sigma_{i+1}^{\mu} \quad \text { if } \quad \alpha \in \Sigma_{i+1}^{\mu}
$$

- Π_{i+1}^{μ} - similar closure but of Σ_{i}^{μ} (of course now it is closed under ν not μ).

The goal is to study the power of alternation of fixpoints
o Examples:

$$
\begin{gathered}
\mu Y . \nu X .(P \wedge\langle\cdot\rangle X) \vee\langle\cdot\rangle Y \\
\mu Y .(\nu X .(P \wedge\langle\cdot\rangle X)) \vee\langle\cdot\rangle Y
\end{gathered}
$$

Relevance of the hierarchy

o Understanding the power of fixpoint alternation.
o Application of diagonalization in a context when there is no pairing and when formalism is decidable.

- Related to complexity of model checking.
o Has many different characterizations: automata indices, Borel classes

0 Instead of considering transition systems we focus on words.
o Word: $w: \mathbb{N} \rightarrow \Sigma$.

$$
\mathcal{A}=\left\langle Q, \Sigma, q^{0} \in Q, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q), \Omega: Q \rightarrow \mathbb{N}\right\rangle
$$

- Run of \mathcal{A} on a word $w=a_{0} a_{1} \ldots$:

$$
q^{0}=q_{0} \xrightarrow{a_{0}} q_{1} \xrightarrow{a_{1}} q_{2} \cdots \cdots \cdots . \quad q_{i+1} \in \delta\left(q_{i}, a_{i}\right)
$$

- Run is successful if $\Omega\left(q_{0}\right), \Omega\left(q_{1}\right), \Omega\left(q_{2}\right) \ldots$ satisfies the parity condition:

$$
\liminf _{n \rightarrow \infty} \Omega\left(q_{i}\right) \quad \text { is even }
$$

- $L(\mathcal{A})$ is the set of words accepted by \mathcal{A}.

Def: $L \subseteq \Sigma^{\omega}$ is regular iff it is the language of some automaton.

$$
\Sigma=\{a, b, c\} \quad a \text { appears finitely often and } b \text { inf often }
$$

o Parity automaton (deterministic)

$$
\Sigma=\{a, b, c\} \quad a \text { appears finitely often and } b \text { inf often }
$$

o Parity automaton (deterministic)

$q_{1} \xrightarrow{a} q_{1} \xrightarrow{b} q_{2} \xrightarrow{c} q_{3} \xrightarrow{b} q_{2} \xrightarrow{a} q_{1} \cdots \cdots$
The word is accepted if q_{1} appears finitely often and q_{2} appears infinitely often.

Rem: If the range of Ω is $\{2, \ldots, i\}$ then $\Omega^{\prime}(x)=\Omega(x)-2$ defines the same winning condition.
Cor: Interesting ranges are $\{0, \ldots, i\}$ and $\{1, \ldots, i+1\}$.

Fact[Büchi]: Nondeterministic automata hierarchy collapses on $(0,1)$ level (Büchi automata).

Fact[Wagner]: Deterministic automata hierarchy is strict.
oLet $\Sigma_{n}=\{1, \ldots, n\}$ define:

$$
\begin{aligned}
M_{n} & =\left\{w \in \Sigma_{n}^{\omega}: \liminf _{n \rightarrow \infty} w(n) \text { is even }\right\} \\
N_{n} & =\left\{w \in \Sigma_{n}^{\omega}: \liminf _{n \rightarrow \infty} w(n) \text { is odd }\right\}
\end{aligned}
$$

Fact: $\quad M_{n}$ is a $(1, n)$ language but not a $(0, n-1)$ language. Dually for N_{n}.

$$
\left\langle Q=\left\{q_{1}, \ldots, q_{n}\right\}, \Sigma_{n}, q_{1}, \delta, \Omega\right\rangle
$$

- $\Omega\left(q_{i}\right)=i$
- $\delta(*, i)=q_{i}$
$q_{1} \xrightarrow{3} q_{3} \xrightarrow{2} q_{2} \xrightarrow{5} q_{5} \xrightarrow{2} q_{2}$
o For N_{n} the same but $\delta(*, i)=q_{i+1}$.
$q_{1} \xrightarrow{3} q_{4} \xrightarrow{2} q_{3} \xrightarrow{5} q_{6} \xrightarrow{2} q_{4}$
o Fix a deterministic automaton $\mathcal{A}=\langle Q, \Sigma, q, \delta, \Omega\rangle$.
- A graph of an automaton is $\langle Q, E\rangle$ with $\left(q, q^{\prime}\right) \in E$ iff $q^{\prime} \in \delta(q, a)$ for some a.
- A k-loop is a nontrivial loop the minimal priority being k.
o A state q is a $m-n$ flower if for every $k \in\{m, \ldots, n\}$ there is a k-loop containing q.

Thm [Niwiński \& W.]: The complexity of $L(\mathcal{A})$ is determined by the biggest size of a flower in \mathcal{A}.

- Hierarchy of nondeterministic automata on words collapses on level $(0,1)$.
o Hierarchy of deterministic automata on words is strict (M_{n} languages).
- Over trees $\left(t:\{0,1\}^{*} \rightarrow \Sigma\right)$ nondeterministic automata are more powerful than deterministic ones.

Alternating automata on trees

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

$$
\left(q_{0}, \varepsilon\right) \longleftrightarrow \delta\left(q_{0}, t(\varepsilon)\right)=\left\{\left(q_{1}, 0\right),\left(q_{2}, 1\right)\right.
$$

Alternating automata on trees

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

Alternating automata on trees

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

o Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

o Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Move $\left(q^{\prime}, d\right)$ - go to direction d changing state to q^{\prime}.
o Acceptance game $G_{\mathcal{A}, t}$:

0 This game is uniquely determined by \mathcal{A} and t.

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Acceptance game $G_{\mathcal{A}, t}$:

o Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Acceptance game $G_{\mathcal{A}, t}$:

o Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Acceptance game $G_{\mathcal{A}, t}$:

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Acceptance game $G_{\mathcal{A}, t}$:

- Tree $t:\{0,1\}^{*} \rightarrow \Sigma$.
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
$+Q_{\exists}, Q_{\forall}$ - partition of states
+ Acceptance game $G_{\mathcal{A}, t}$:

+ Eve wins a play $\left(q_{0}, v_{0}\right),\left(q_{1}, v_{1}\right), \ldots$ if
$\liminf _{n \rightarrow \infty} \Omega\left(q_{i}\right)$ is even
Def: $\quad t \in L(\mathcal{A})$ iff Eve has a winning strategy from $\left(\varepsilon, q^{0}\right)$.

0 There is a descendant labeled by b :

$$
(q, a) \mapsto\{(q, 0),(q, 1)\} \quad(q, b) \mapsto\{(\mathrm{T}, \varepsilon)\}
$$

Both states are existential.

o There is b on every path of the tree:
The same automaton but now states are universal.
o Automata hierarchy:
A(1,i)
$A(0, i-1) \quad$ alternating automata with $\Omega: Q \rightarrow\{0, \ldots, i-1\}$

- Languages definable by Σ_{i}^{μ} formulas are exactly the languages recognizable by $A(1, i)$ automata.

$$
\text { Thm [Niwiński]: } \quad \Sigma_{i}^{\mu}=A(1, i), \quad \Pi_{i}^{\mu}=A(0, i-1) .
$$

Rem: $\quad \Pi_{2}^{\mu}=\nu \mu=A(0,1)=$ Büchi
Thm [Bradfield, Arnold]: The μ-calculus hierarchy is infinite.

Rem: Over words the hierarchy collapses on $\nu \mu$-level.

Hierarchies

More Hierarchies

o Along with the hierarchy of alternating automata:
$\mathcal{A}=\left\langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times\{0,1, \varepsilon\}), \Omega: Q \rightarrow \mathbb{N}\right\rangle$
o There is also an index hierarchy of nondeterministic automata:

$$
\mathcal{A}=\left\langle Q=Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow \mathcal{P}(Q \times Q), \Omega: Q \rightarrow \mathbb{N}\right\rangle
$$

$$
N(0, i) \text { or } N(1, i)
$$

o And of deterministic automata:

$$
\mathcal{A}=\left\langle Q=Q_{\exists}, Q_{\forall}, \Sigma, q^{0}, \delta: Q \times \Sigma \rightarrow Q \times Q, \Omega: Q \rightarrow \mathbb{N}\right\rangle
$$

$$
D(0, i) \text { or } D(1, i)
$$

Thm [Niwiński \& W.]: The levels $A(0,0)$ and $A(1,1)$ of the hierarchy are decidable.

Thm [Niwiński \& W.]: The level $A(0,1) \cap A(1,2)$ is decidable.
Thm [Urbański]: The level $A(0,1)=N(0,1)$ is decidable for deterministic automata.

Thm [Niwiński \& W.]: All levels of N hierarchy are decidable for deterministic automata.

Rem: For deterministic automata A hierarchy collapses on $A(1,2)$ level.
Rem: Deterministic automata are weaker than nondeterministic. It is decidable if a regular language is accepted by a deterministic automaton.

Part III
 Games on infinite graphs

- Games on pushdown graphs.
- Higher order pushdowns.
o Recursive program schemes.
o Pushdown machine (deterministic):
$\left\langle Q, \Sigma, \Gamma, q_{0} \in Q, \delta: Q \times \Sigma \times \Gamma \rightarrow Q \times\{p o p, \operatorname{push}(z): z \in \Gamma\}, F \subseteq Q\right\rangle$.
o Configuration: $(q, w) \in Q \times \Gamma^{*}$.
- Configuration graph
onodes: configurations
otransitions:
$(q, z w) \rightarrow\left(q^{\prime}, w\right)$ if there is $a \in \Sigma$ and $\delta(q, a, z)=\left(q^{\prime}, p o p\right)$
$(q, z w) \rightarrow\left(q^{\prime}, z^{\prime} z w\right)$ if there is $a \in \Sigma$ and $\delta(q, a, z)=\left(q^{\prime}, p u s h\left(z^{\prime}\right)\right)$
o Rem: The input alphabet and accepting states do not play any role. Determinism is also not important.

Rewriting rules

Pushdown system: $\quad P=(Q, \Gamma, \Delta)$
Rewrite rules: $\quad \Delta \subseteq Q \times \Gamma \times Q \times\left(\{\varepsilon\} \cup \Gamma^{2}\right)$

$$
q z \hookrightarrow q^{\prime} \quad q z \hookrightarrow q^{\prime} z^{\prime} z
$$

Pushdown graph: $\quad G(P)$
Vertices: $Q \times \Gamma^{*}$
Edges: $q w \rightarrow q^{\prime} w^{\prime}$ according to the rules applied to prefixes.
O q_{0} is always the initial state and \perp is the initial stack symbol.
TM graph: rules of the form $a q b \mapsto q^{\prime} a^{\prime} b$ or $a q b \hookrightarrow a b^{\prime} q^{\prime}$ without restrictions on the place of application.

$$
q_{0}^{0} \perp \longrightarrow q_{0}^{0} a \perp \rightarrow q_{0}^{0} a a \perp \rightarrow q_{0}^{0} a a a \perp \longrightarrow \cdots \longrightarrow q_{0}^{0} a^{k} \perp \longrightarrow \cdots
$$

o We have that:
q_{0} is a vertex of Adam and q_{1} of Eve;
$\Omega\left(q_{0}\right)=0$ and $\Omega\left(q_{1}\right)=1$.
o Eve has a winning strategy in this game.
o The game solving problem: Given P with a partition $\left(Q_{E}, Q_{A}\right)$ of states, and a function $\Omega: Q \rightarrow \mathbb{N}$ decide who has a winning strategy from the initial vertex of $G(P)$.
Thm: The problem of solving parity pushdown games is Exptime-complete.

- EF logic

$$
\begin{gathered}
p|\neg \alpha| \alpha \wedge \beta|\exists\rangle a| \exists F \alpha \\
!\text { No } \exists G \alpha!
\end{gathered}
$$

o CTL

$$
\mathrm{EF}+\left(\exists\left(\alpha_{1} U \alpha_{2}\right) \mid \exists \neg\left(\alpha_{1} U \alpha_{2}\right)\right)
$$

- $M, v \vDash \exists F \alpha$ iff there is v^{\prime} reachable from v with $M, v^{\prime} \vDash \alpha$
$\bullet M, v \vDash \exists G \alpha$ iff there is a path from v s.t. for every v^{\prime} on it we have $M, v^{\prime} \vDash \alpha$.

O μ-calculus

$$
P|\neg P| X|\alpha| \alpha \vee \beta|\alpha \wedge \beta|\langle a\rangle \alpha|[a] \alpha| \mu X . \alpha \mid \nu X . \alpha
$$

Thm: Model checking problem for the μ-calculus is EXPTIME-complete.

Thm: The model checking problem for EF-logic is in PSPACE. It is PSPACE-hard [Bouajjani, Esparza, Maler]

Thm: The same problem for CTL formulas is EXPTIME-complete.

Rem: The problem is with $\exists \alpha U \beta$.

- Take ASPACE (n) machine M and input w. Construct P_{w} :
P_{w} has alt. reach. prop.

$$
\text { iff } \quad w \in L(M) .
$$

o How to check that a sequence of accumulated configurations is correct?

Checking consecutive configurations

o Simpler problem: Given a word w of length n decide if the stack is of the form $w^{k} \perp$ for some k.

$$
\begin{array}{rlrl}
q a & \rightarrow q, q_{n}^{a} & q \perp \rightarrow q_{F} \\
q_{n}^{a} b & \rightarrow q_{n-1}^{a} & q_{0}^{a} a \rightarrow q_{F}
\end{array}
$$

μ-calc	EXPTIME-compl
Alt reach	EXPTIME-compl
CTL	EXPTIME-compl
LTL	EXPTIME-compl
EF	PSPACE-compl
reach	PTIME

0 2-stack is a stack of stacks. There are operations on top-most stack and of copying the top-most stack.

- A system where all paths are of the form $q_{1}^{k} q_{2}^{k} q_{3}^{k}$

$$
\begin{array}{llllll}
q_{1}[a] & \rightarrow & q_{1}[a a] & \rightarrow & \cdots & \rightarrow \\
q_{1}\left[a^{k}\right] \rightarrow \\
q_{2}\left[a^{k}\right] & \rightarrow & q_{2}\left[a^{k-1}\right]\left[a^{k}\right] & \rightarrow & \cdots & \rightarrow \\
q_{2}[a][a a] \ldots\left[a^{k}\right] \\
q_{3}[a][a a] \ldots\left[a^{k}\right] & \rightarrow & q_{3}[a a] \ldots\left[a^{k}\right] & \rightarrow & \ldots & \rightarrow \\
q_{3}\left[a^{k}\right] \rightarrow q_{3} \perp
\end{array}
$$

o 2-stack gives additional power. If considered as an accepting device 2 -store automaton would recognize $\left\{a^{k} b^{k} c^{k}: k \in \mathbb{N}\right\}$.

- 2nd order pushdown system $\langle Q, \Gamma$, Inst \rangle
-A configuration is a sequence $\left[s_{1}\right]\left[s_{2}\right] \ldots\left[s_{k}\right] \in\left(\Gamma^{*}\right)^{*}$ o Instructions:

$$
\begin{aligned}
& q^{\prime}[w] v \stackrel{\text { push }}{1}(a) \\
& \\
& q^{\prime}[a w] v \xrightarrow{p o p_{1}} q^{\prime}[w] v \\
& q^{\prime}[w] v \xrightarrow{p u s h_{2}} q^{\prime}[w][w] v \\
& q^{\prime}[w] v \xrightarrow{p o p_{2}} q^{\prime} v
\end{aligned}
$$

-Similarly for higher orders: stacks become of type $\left(\left(\Gamma^{*}\right)^{* . . .}\right)$

Caucal hierarchy

- The n-th level of Caucal hierarchy consists of ε-closures of n-level pushdown graphs.

- The n-th level of Caucal hierarchy consists of ε-closures of n-level pushdown graphs.

Rem: 1-st level graphs are prefix-recognizable graphs.
Thm [Carayol \& Wöhrle]: n-th level Caucal graphs are precisely those that are MSOL interpretable in n-tree.

- A 2-tree over the set Γ is $\left\langle\left(\Gamma^{*}\right)^{*},\left\{\right.\right.$ succ $\left._{z}: z \in \Gamma\right\}$, succ $\left._{2}\right\rangle$ where
- $(v[w], v[w z]) \in \operatorname{succ}_{z}$
$\boldsymbol{\bullet}(v[w], v[w][w]) \in \operatorname{succ}_{2}$

Thm[Engelfriet]: Alternating reachability problem for n-th level pushdown-graphs is n-EXPTIME-hard.

Thm[Cachat]: The μ-calculus model-checking problem for n-th level pushdown graphs is solvable in n-ЕХртIME.

Rem: Not clear what is the complexity for other logics of programs.
o For a function $f: \mathbb{N} \rightarrow \mathbb{N}$ we define a tree T_{f} :

- Define $\operatorname{Tower}_{0}(n)=n$ and $\operatorname{Tower}_{k+1}(n)=2^{\operatorname{Tower}(n)}$. Moreover $\operatorname{Tower}_{\omega}(n)=\operatorname{Tower}_{n}(n)$.
o $T_{\text {Tower }_{k}}$ tree is an k-level graph that is not $(k-1)$-level.
$o T_{\text {Tower }_{\omega}}$ tree is not in the Caucal hierarchy. It has decidable MSO theory (follows from morphic predicates of Carton and Thomas).
o We do not know how to decide the levels of the hierarchy.
- $\mathcal{F} x \Rightarrow g(a(\mathcal{F}(b x))) x$
o Equations generate infinite trees (infinite terms).

$$
\mathcal{F} g c=g \longrightarrow c
$$

Thm[Courcelle]: The meanings of (1st order) recursive schemes \equiv pushdown graphs.

- Example of a second order scheme:

$$
\mathcal{F} \psi x \Rightarrow f(\mathcal{F}(\mathcal{D} \psi) x)(\psi x) \quad \mathcal{D} \psi y \Rightarrow \psi(\psi y)
$$

Thm[Knapik, Niwiński, Urzyczyn, W.]: Meanings of 2nd order schemes \equiv trees of 2nd order pushdown systems with panic.

Thm[Knapik, Niwiński, Urzyczyn, W.]: For every 2nd order scheme, the tree defined by this scheme has decidable MSO theory.

Question: Does panic increase expressive power?

Question: Decidability of the equivalence between schemes.

Part IV

Complicating wining conditions

- Stack height conditions.
o Stack height and parity conditions.
- Visibly pushdown conditions.
- Quantitative conditions.

In contrast to the finite-state case, there are now natural winning conditions which are no more monadic second-order definable and occur at higher Borel levels than $\mathcal{B}\left(\Sigma_{2}^{0}\right)$. [Thomas, STACS'95]

- ht (v) the height of the stack at position v

Unboundedness conditions

- Unboundedness condition The height of the stack is unbounded: $\vec{v} \in A c c \quad$ iff $\quad \forall n . \exists i . h t\left(v_{i}\right)>n$.
0 Strict unboundedness condition The liminf of the stack height is infinity: $\quad \vec{v} \in A c c$ iff $\quad \forall n . \exists i . \forall j>i . h t\left(v_{j}\right)>n$.

$$
\mathcal{G}=\left\langle V_{E}, V_{A}, R, \lambda: V \rightarrow C, A c c \subseteq C^{\omega}\right\rangle
$$

- Strategy for player 0 is $\sigma: V^{*} \times V_{0} \rightarrow V$ such that $\sigma\left(\vec{v} v_{0}\right) \in R\left(v_{0}\right)$
o A strategy σ for Eve is winning from v if all plays from v respecting the strategy are winning for Eve.

- Positional/memoryless strategy for Eve is a function $\sigma: V_{0} \rightarrow V$ such that $\sigma(v) \in R(v)$.
Thm: In the game with unboundedness conditions Eve has a memoryless winning strategy.

Unboundedness \equiv strict unboundedness

O If there is a winning strategy for Eve in unboundedness game there is a memoryless winning strategy. This strategy σ never visits a vertex twice.

0 If σ is winning for unboundedness then it is also winning for strict unboundedness.

Cor: The game is winning for unboundedness iff it is winning for strict unboundedness.

Rem: The same for disjunction of unboundedness and a parity condition.
o There is a winning strategy for Eve in unboundedness game iff there is a memoryless winning strategy.
o Modify a pushdown system P in such a way that states seen with the current stack contents are recorded in the top of the stack.

o Make a position losing if the current state is the same as recorded on in the top of the stack unboundedness in $P \equiv$ safety in P^{\prime}

$$
q_{0}^{\left.q_{0}^{0} \perp \longrightarrow q_{0}^{0} a \perp \rightarrow q_{0}^{1} a a \perp \rightarrow q_{0}^{1} a a a \perp \rightarrow \cdots \longrightarrow q_{1}^{1}\right|_{1} ^{1} a \perp \leftarrow q_{1}^{1} a \perp \leftarrow \cdots \leftarrow q_{1}^{1} a^{k-1} \perp \leftarrow \cdots}
$$

0 Infinite memory is need to win.

Cor: Winning conditions that are unions of explosion and parity conditions admit memoryless strategies. Intersection of Büchi and explosion conditions may need infinite memory.
Thm[Cachat \& Duparc \& Thomas]: Strict unboundedness condition is Σ_{3}-complete in the Borel hierarchy.
Thm[Cachat \& Duparc \& Thomas, Bouquet \& Serre \& W., Gimbert]: Games with winning conditions that are combinations of parity and explosion conditions can be solved in EXPTIME.
Thm[Serre]: For every finite level of the Borel hierarchy there is a winning condition complete for this level and such that games with this conditions are decidable.
o Winning conditions can be defined by pushdown automata:
the sequence of visited states must be accepted by the automaton
o Games with such winning conditions are undecidable (universality of a context-free language).
o Visibly pushdown automata: input letters determine stack actions.

Thm [Löding, Madhusudan, Serre]: Pushdown games with winning conditions given by visibly pushdown automata are decidable. Strict explosion condition is expressible in this framework.

Other types of conditions

- Mean pay-off games: $\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \Omega\left(v_{i}\right)$
o The result of the play is a real number and not win/lose. The objective is to maximize/minimize the value.
Thm [Ehrenfeucht \& Mycielski]: Finite mean pay-off games are solvable.
o Priority mean pay-off games:
- vertices labeled by $(m, r) \in \mathbb{N} \times \mathbb{R}$
-For the sequence $\left(m_{0}, r_{0}\right),\left(m_{1}, r_{1}\right), \ldots$ calculate

$$
k=\liminf _{n \rightarrow \infty} m_{n} .
$$

- Let i_{0}, i_{1}, \ldots the positions j where $m_{j}=k$.
-The result is $\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} r_{i_{n}}$.
Thm [Gimbert \& Zielonka]: Finite priority mean pay-off games are solvable.
o The main motivation is the verification problem.

o The research splits into two tracks:
oStudy of the properties of the logic. algorithmic and expressive properties
oStudy of games. game presentations and winning conditions.

