From logic to games Igor Walukiewicz CNRS, LaBRI Bordeaux

Plan

- Our Understanding the mu-calculus (parity games).
- Advances in the mu-calculus.
- Hierarchy problems.
- Parity games on infinite graphs: pushdown graphs, ...
- More complicated winning conditions.

Part I

Part I

Understanding the mu-calculus:

parity games

The mu-calculus

• Syntax: $P \mid \neg P \mid X \mid \alpha \mid \alpha \lor \beta \mid \alpha \land \beta \mid \langle a \rangle \alpha \mid [a] \alpha \mid \mu X. \alpha \mid \nu X. \alpha$

• Semantics in a transition system $\mathcal{M} = \langle V, \{E_a\}_{a \in Act}, P^{\mathcal{M}}, \ldots \rangle$; we need $Val : Var \to \mathcal{P}(V)$

$$\begin{bmatrix} P \end{bmatrix}_{Val}^{\mathcal{M}} = P^{\mathcal{M}} \\ \begin{bmatrix} X \end{bmatrix}_{Val}^{\mathcal{M}} = Val(X) \\ \begin{bmatrix} \langle a \rangle \alpha \end{bmatrix}_{Val}^{\mathcal{M}} = \{v : \exists v'. \ E_a(v, v') \land v' \in \llbracket \alpha \rrbracket_{Val}^{\mathcal{M}} \} \\ \begin{bmatrix} \mu X. \alpha(X) \end{bmatrix}_{Val}^{\mathcal{M}} = \bigcap \{S \subseteq V : \llbracket \alpha(S) \rrbracket_{Val}^{\mathcal{M}} \subseteq S \}$$

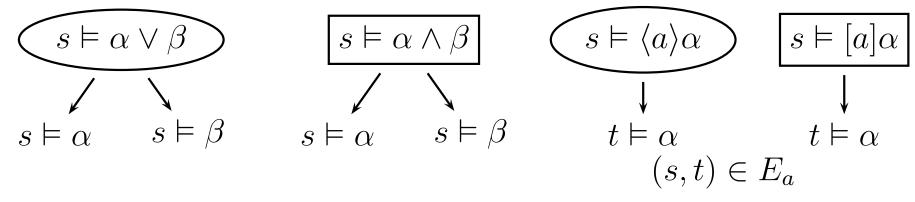
We will give a characterization of the semantics in terms of two player games.

Semantics via games

• We are given a transition system \mathcal{M} and a formula α_0 .

• Player Eva wants to show that α_0 holds in a state $s: s \models \alpha_0$. Player Adam wants to show that it does not hold.

Game rules



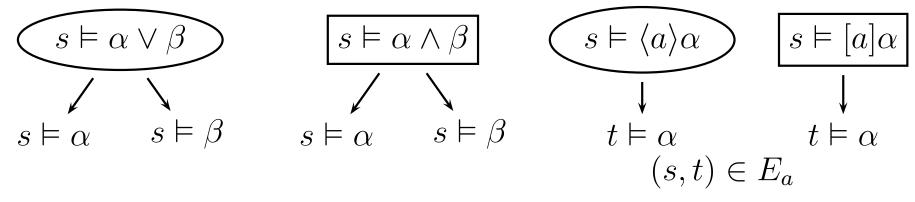
 $s \vDash P$ Eve wins if $s \in P^{\mathcal{M}}$; $s \vDash \neg P$ Eve wins if $s \notin P^{\mathcal{M}}$.

Semantics via games

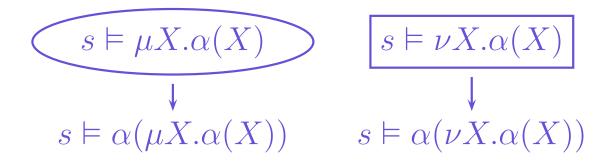
• We are given a transition system \mathcal{M} and a formula α_0 .

• Player Eva wants to show that α_0 holds in a state $s: s \models \alpha_0$. Player Adam wants to show that it does not hold.

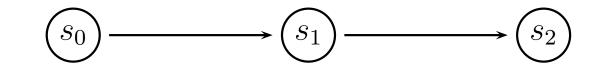
Game rules



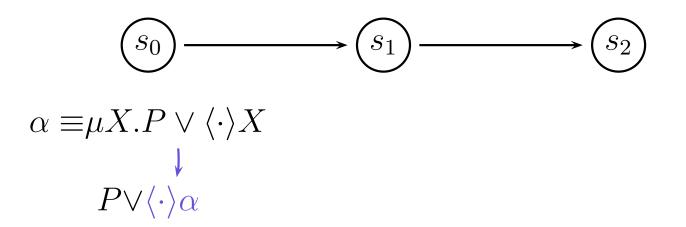
 $s \vDash P$ Eve wins if $s \in P^{\mathcal{M}}$; $s \vDash \neg P$ Eve wins if $s \notin P^{\mathcal{M}}$.

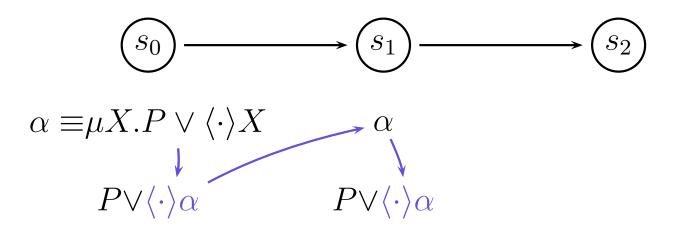


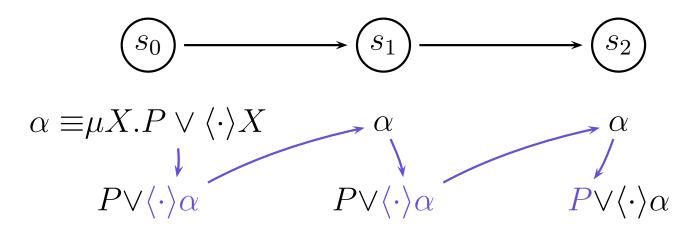
• The last two rules may be a source of infinite plays.



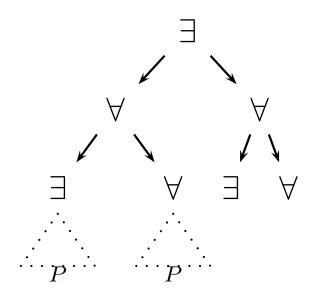
 $\alpha \equiv \mu X.P \lor \langle \cdot \rangle X$





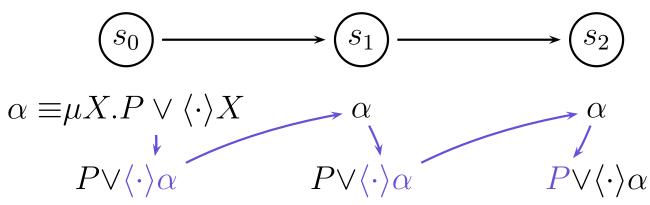


- Reachability: $\langle \cdot \rangle^* P \equiv \mu X. P \lor \langle \cdot \rangle X.$
- Existential until: $\exists (Q \mathbb{U} P) \equiv \mu X. P \lor (Q \land \langle \cdot \rangle X).$
- Universal until: $\forall (Q \mathbb{U} P) \equiv \mu X. P \lor (Q \land []X).$
- Alternating reachability $\mu X. \ P \lor (Q_{\exists} \land \langle \cdot \rangle X) \lor (Q_{\forall} \land [\]X)$



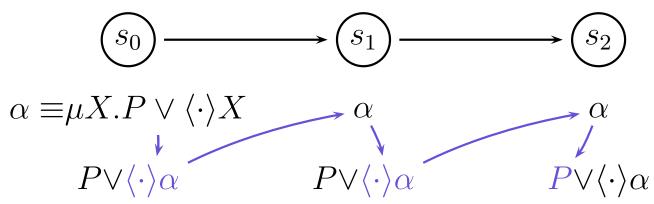
Examples (μ vs. ν)

• μX . $P \lor \langle \cdot \rangle X$ holds in *s* whenever from *s* one can reach a state where *P* holds.

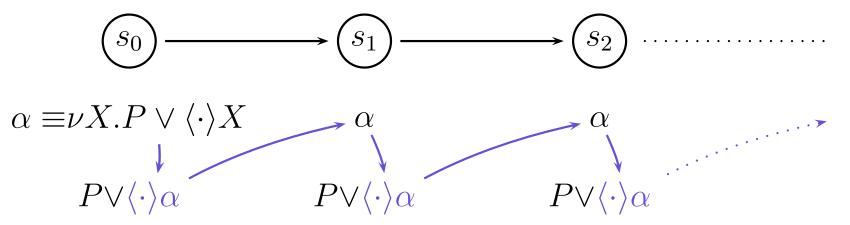


Examples (μ vs. ν)

• μX . $P \lor \langle \cdot \rangle X$ holds in *s* whenever from *s* one can reach a state where *P* holds.



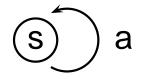
 $\circ \nu X$. $P \lor \langle \cdot \rangle X$ holds in *s* also if there is an infinite path from *s*.

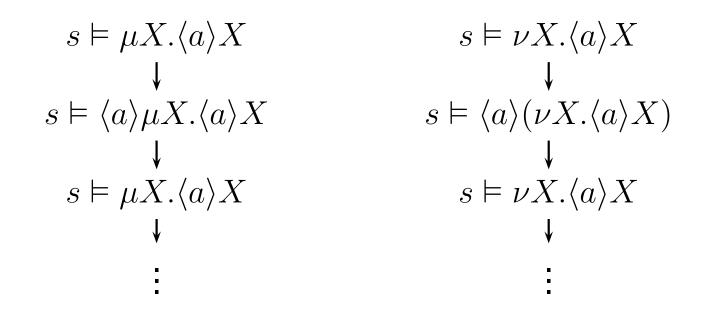


$\begin{array}{l} \bullet \text{ Almost always } P \text{ on some path} \\ \mu Y. \nu X. \ (P \wedge \langle \cdot \rangle X) \lor \langle \cdot \rangle Y \end{array} \end{array}$

• Infinitely often P on some path $\nu X.\mu Y. \ (P \land \langle \cdot \rangle X) \lor \langle \cdot \rangle Y$

Infinite plays





• Eve should win in the second game but not in the first.

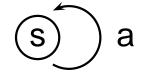
Approximations

$$\begin{split} \mu X.\beta(X) &= \bigcup_{\tau \in Ord} \mu^{\tau} X.\beta(X) \\ \llbracket \mu^{0} X.\beta(X) \rrbracket_{Val}^{\mathcal{M}} = \emptyset \\ \llbracket \mu^{\tau+1} X.\beta(X) \rrbracket = \llbracket \beta(X) \rrbracket_{Val}^{\mathcal{M}}_{Val} \llbracket \mu^{\tau} X.\beta(X) \rrbracket_{Val}^{\mathcal{M}} / X] \\ \llbracket \mu^{\tau} X.\beta(X) \rrbracket_{Val}^{\mathcal{M}} = \bigcup_{\tau' < \tau} \llbracket \mu^{\tau'} X.\beta(X) \rrbracket_{Val}^{\mathcal{M}} \quad \text{if } \tau \text{ is a limit ordinal} \end{split}$$

$$\nu X.\beta(X) = \bigcap_{\tau \in Ord} \nu^{\tau} X.\beta(X)$$

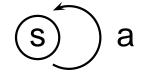
 $\begin{bmatrix} \nu^0 X.\beta(X) \end{bmatrix}_{Val}^{\mathcal{M}} = V$ $\begin{bmatrix} \nu^{\tau+1} X.\beta(X) \end{bmatrix} = \begin{bmatrix} \beta(X) \end{bmatrix}_{Val}^{\mathcal{M}} \begin{bmatrix} \nu^{\tau} X.\beta(X) \end{bmatrix}_{Val}^{\mathcal{M}} X.\beta(X) \end{bmatrix}_{Val}^{\mathcal{M}} = \bigcap_{\tau' < \tau} \begin{bmatrix} \nu^{\tau'} X.\beta(X) \end{bmatrix}_{Val}^{\mathcal{M}} \text{ if } \tau \text{ is a limit ordinal}$

Infinite plays



• Eve should win in the second game but not in the first.

Infinite plays



Eve should win in the second game but not in the first.

Assign rank 1 to μ -regeneration and rank 2 to ν -regeneration.

Make Eve win iff the smallest number appearing infinitely often is even.

Defining winning conditions

 $\mu X_1. \nu X_2. \mu X_3. \nu X_4 \dots \varphi(X_1, X_2, \dots)$ $\sum_{1 \ 2 \ 3 \ 4 \ \cdots}$

- $\bullet \mu$'s have odd ranks,
- ν 's have even ranks,
- if β is a subformula of α then β has bigger rank than α .

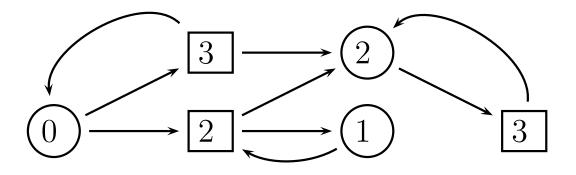
The winning condition is the parity condition: Eve wins if the smallest rank appearing infinitely often is even

 $\mu_1 Y.\nu_2 X. (P \land \langle \cdot \rangle X) \lor \langle \cdot \rangle Y$

$$\nu_0 X.\mu_1 Y. (P \land \langle \cdot \rangle X) \lor \langle \cdot \rangle Y$$

Parity games

• The model checking problem ($\mathcal{M}, s \vDash \alpha_0$) is reduced to deciding if Eve wins in a parity game:



The winning condition is the parity condition: Eve wins if the smallest rank appearing infinitely often is even

• Winning a game means to have a strategy that guarantees a win no matter what the opponent does.

Part II

Part II

Advances in the mu-calculus

Model checking.

• Satisfiability and completeness.

Expressive power

• Alternation hierarchy.

Model checking is linear time reducible to solving parity games.

- There is also linear time reduction in the opposite direction. (There is a formula defining the winning positions)
- So the two problems are equivalent up to linear time reductions.
- The problem is in UP∩co-UP [Jurdzinski]. We do not know if the problem is in PTIME.
- There is an subexponential algorithm $n^{O(\sqrt{n})}$ [Jurdzinski, Paterson, Zwick]
- There are also algorithms working in time $n^{O(d/2+1)}$.

The satisfiability problem for the mu-calculus is EXPTIME-complete. [Emerson & Jutla]

There is a complete axiomatization of the logic modal logic + axiomatization of fixpoints:

$$\mu x.\alpha(X) \equiv \alpha(\mu X.\alpha(X)) \qquad \frac{\alpha(\beta) \Rightarrow \beta}{\mu X.\alpha(X) \Rightarrow \beta}$$
$$\nu X.\alpha(X) \equiv \neg \mu X. \neg \alpha(\neg X)$$

The logic has also some other nice properties like, for example: finite model property [Kozen] interpolation property [Holdenberg].

Expressive power

MSOL (monadic second order logic) is an extension of FOL with set quantification.

$$\begin{split} R(x,y) \mid \varphi \lor \psi \mid \neg \varphi \mid \exists x. \ \varphi \mid y \in X \mid \exists X. \ \varphi \\ \bullet \text{ Semantics: } M, V \vDash \varphi: \\ -M, V \vDash y \in X \quad \text{if } V(y) \in V(X); \\ -M, V \vDash \exists X. \varphi \quad \text{if there is } S \subseteq M, \text{ s.t., } M, V[S/X] \vDash \varphi. \end{split}$$

Thm [Niwiński]: Over binary trees μ -calc \equiv MSOL.

Fact: μ -calculus properties are bisimulation invariant (if $M, s \vDash \alpha$ and $(M, s) \approx (M, s')$ then $M, s' \vDash \alpha$.)

Thm [Janin & W.]: A property of transition systems is expressible in the μ -calculus iff it is expressible in MSOL and bisimulation invariant.

- $\Sigma_0^{\mu} = \Pi_0^{\mu}$ formulas without fixpoints.
- \sum_{i+1}^{μ} closure of \prod_{i}^{μ} under conjunction, disjunction, substitutions and application of the least fixpoint operator μ : $\mu X. \ \alpha \in \sum_{i+1}^{\mu}$ if $\alpha \in \sum_{i+1}^{\mu}$
- \prod_{i+1}^{μ} similar closure but of Σ_i^{μ} (of course now it is closed under ν not μ).

The goal is to study the power of alternation of fixpoints

Examples:

$$\mu Y.\nu X. \ (P \land \langle \cdot \rangle X) \lor \langle \cdot \rangle Y$$

$$\mu Y.(\nu X. \ (P \land \langle \cdot \rangle X)) \lor \langle \cdot \rangle Y$$

Our of the power of fixpoint alternation.

Output Application of diagonalization in a context when there is no pairing and when formalism is decidable.

Related to complexity of model checking.

Has many different characterizations: automata indices, Borel classes

Automata on infinite strings

• Instead of considering transition systems we focus on words. • Word: $w : \mathbb{N} \to \Sigma$.

$$\mathcal{A} = \langle Q, \ \Sigma, \ q^0 \in Q, \delta : Q \times \Sigma \to \mathcal{P}(Q), \ \Omega : Q \to \mathbb{N} \rangle$$

• Run of
$$\mathcal{A}$$
 on a word $w = a_0 a_1 \dots$:
 $q^0 = q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} q_2 \dots q_{i+1} \in \delta(q_i, a_i)$

• Run is successful if $\Omega(q_0), \Omega(q_1), \Omega(q_2) \dots$ satisfies the parity condition:

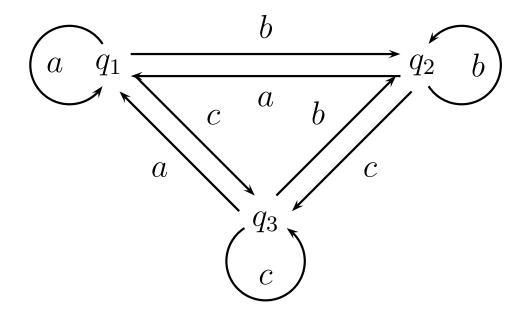
 $\liminf_{n\to\infty}\Omega(q_i) \quad \text{is even}$

• $L(\mathcal{A})$ is the set of words accepted by \mathcal{A} .

Def: $L \subseteq \Sigma^{\omega}$ is regular iff it is the language of some automaton.

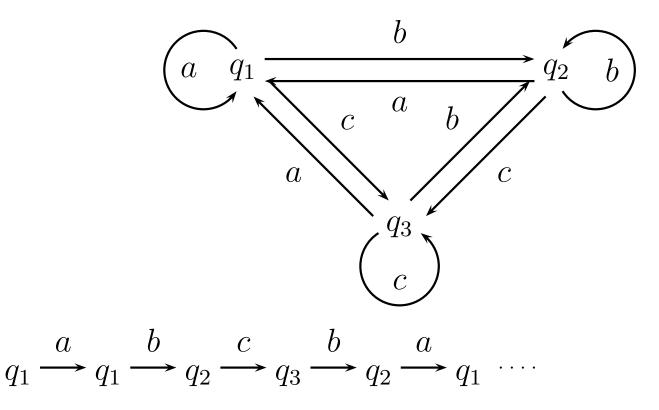
 $\Sigma = \{a, b, c\}$ a appears finitely often and b inf often

Parity automaton (deterministic)



 $\Sigma = \{a, b, c\}$ a appears finitely often and b inf often

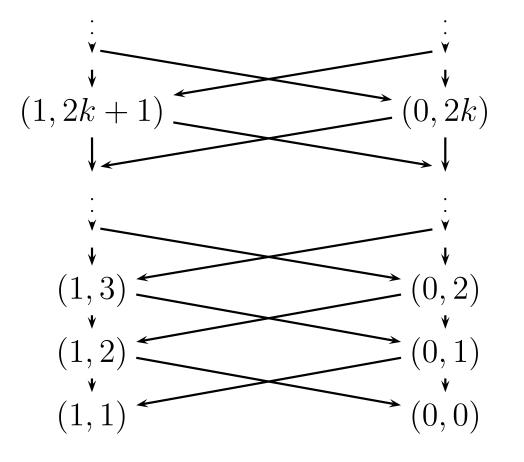
Parity automaton (deterministic)



The word is accepted if q_1 appears finitely often and q_2 appears infinitely often.

Hierarchy of acceptance conditions

- **Rem:** If the range of Ω is $\{2, \ldots, i\}$ then $\Omega'(x) = \Omega(x) 2$ defines the same winning condition.
- **Cor:** Interesting ranges are $\{0, \ldots, i\}$ and $\{1, \ldots, i+1\}$.



Fact[Büchi]: Nondeterministic automata hierarchy collapses on (0, 1) level (Büchi automata).

Fact[Wagner]: Deterministic automata hierarchy is strict.

• Let $\Sigma_n = \{1, \ldots, n\}$ define:

$$M_n = \{ w \in \Sigma_n^{\omega} : \liminf_{n \to \infty} w(n) \text{ is even} \}$$
$$N_n = \{ w \in \Sigma_n^{\omega} : \liminf_{n \to \infty} w(n) \text{ is odd} \}$$

Fact: M_n is a (1, n) language but not a (0, n-1) language. Dually for N_n .

Recognizing M_n

$$\langle Q = \{q_1, \dots, q_n\}, \Sigma_n, q_1, \delta, \Omega \rangle$$

$$\circ \Omega(q_i) = i$$

$$\circ \delta(*, i) = q_i$$

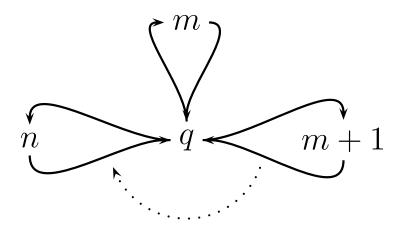
$$q_1 \xrightarrow{3} q_3 \xrightarrow{2} q_2 \xrightarrow{5} q_5 \xrightarrow{2} q_2 \cdots \cdots$$

• For N_n the same but $\delta(*, i) = q_{i+1}$.

$$q_1 \xrightarrow{3} q_4 \xrightarrow{2} q_3 \xrightarrow{5} q_6 \xrightarrow{2} q_4 \cdots$$

Flowers

- Fix a deterministic automaton $\mathcal{A} = \langle Q, \Sigma, q, \delta, \Omega \rangle$.
- A graph of an automaton is $\langle Q, E \rangle$ with $(q, q') \in E$ iff $q' \in \delta(q, a)$ for some a.
- A k-loop is a nontrivial loop the minimal priority being k.
- A state q is a m-n flower if for every $k \in \{m, \ldots, n\}$ there is a k-loop containing q.

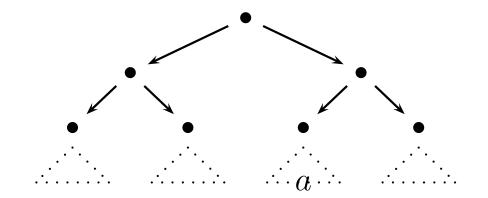


Thm [Niwiński & W.]: The complexity of L(A) is determined by the biggest size of a flower in A.

 ${\color{black} \bullet}$ Hierarchy of nondeterministic automata on words collapses on level (0,1).

• Hierarchy of deterministic automata on words is strict $(M_n \text{ languages})$.

• Over trees ($t : \{0, 1\}^* \to \Sigma$) nondeterministic automata are more powerful than deterministic ones.



Alternating automata on trees

 $\delta(q_0, t(\varepsilon)) \stackrel{\mathsf{l}}{=} \{ (q_1, 0), (q_2, 1) \}$

• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

 (q_0,ε)

• Acceptance game $G_{\mathcal{A},t}$:

Alternating automata on trees

• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

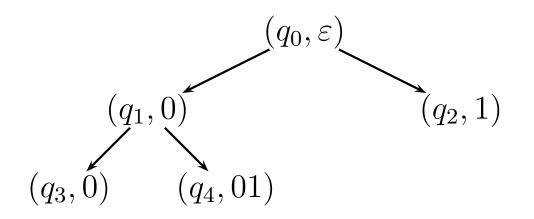
+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

• Acceptance game $G_{\mathcal{A},t}$: $(q_1, 0)$ $\delta(q_1, t(0)) = \{(q_3, \varepsilon), (q_4, 1)\}$

• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

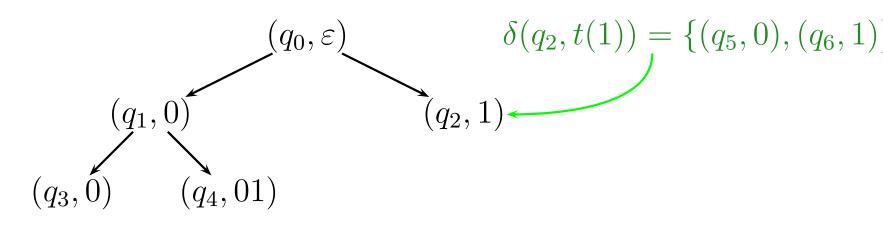
• Acceptance game $G_{\mathcal{A},t}$:



• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

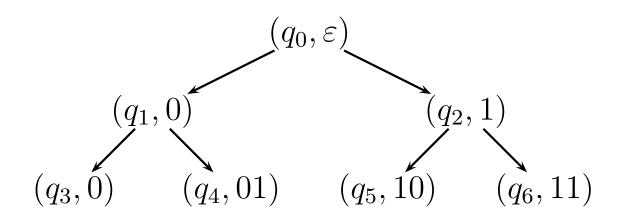
• Acceptance game $G_{\mathcal{A},t}$:



• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

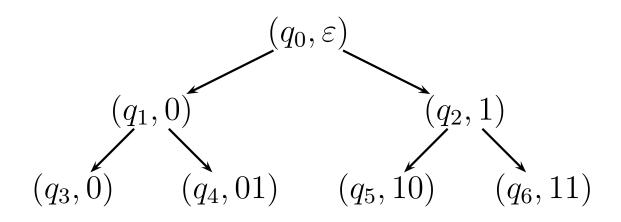
• Acceptance game $G_{\mathcal{A},t}$:



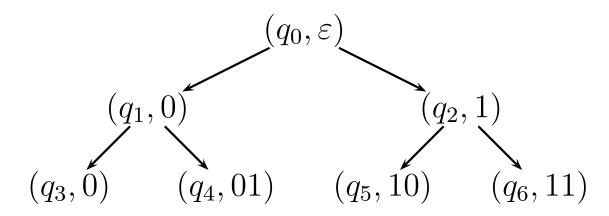
• Tree $t : \{0,1\}^* \to \Sigma$. $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to \mathcal{P}(Q \times \{0,1,\varepsilon\}), \Omega : Q \to \mathbb{N} \rangle$

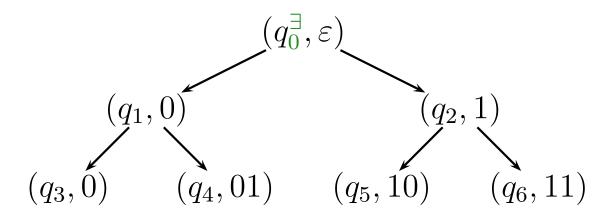
+ Q_{\exists}, Q_{\forall} — partition of states + Move (q', d) — go to direction d changing state to q'.

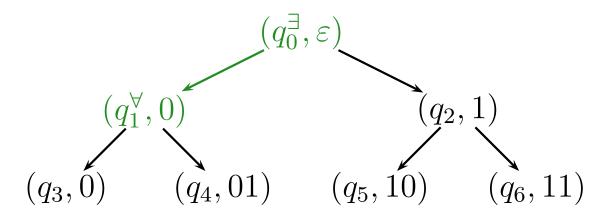
• Acceptance game $G_{\mathcal{A},t}$:

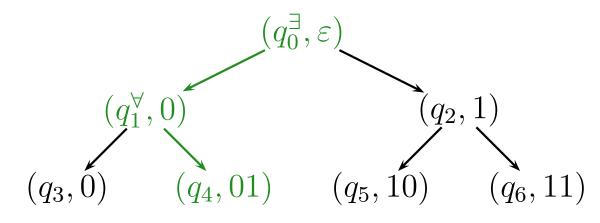


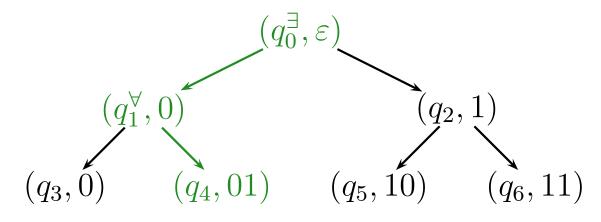
• This game is uniquely determined by \mathcal{A} and t.









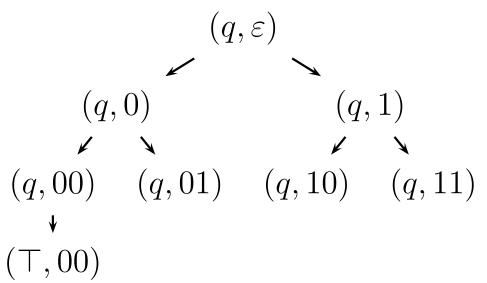


+ Eve wins a play $(q_0, v_0), (q_1, v_1), \dots$ if $\liminf_{n \to \infty} \Omega(q_i)$ is even

Def: $t \in L(\mathcal{A})$ iff Eve has a winning strategy from (ε, q^0) .

There is a descendant labeled by b:

 $(q,a) \mapsto \{(q,0), (q,1)\}$ $(q,b) \mapsto \{(\top,\varepsilon)\}$ Both states are existential.



• There is *b* on every path of the tree:

The same automaton but now states are universal.

Automata hierarchy:

- A(1,i) alternating automata with $\Omega: Q \to \{1,\ldots,i\}$
- A(0, i-1) alternating automata with $\Omega: Q \to \{0, \dots, i-1\}$

• Languages definable by Σ_i^{μ} formulas are exactly the languages recognizable by A(1,i) automata.

Thm [Niwiński]:
$$\Sigma_{i}^{\mu} = A(1, i), \qquad \Pi_{i}^{\mu} = A(0, i - 1).$$

Rem:
$$\Pi_2^{\mu} = \nu \mu = A(0, 1) =$$
 Büchi

Thm [Bradfield, Arnold]: The μ -calculus hierarchy is infinite.

Rem: Over words the hierarchy collapses on $\nu\mu$ -level.

Hierarchies



• Along with the hierarchy of alternating automata: $\mathcal{A} = \langle Q, Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \rightarrow \mathcal{P}(Q \times \{0, 1, \varepsilon\}), \Omega : Q \rightarrow \mathbb{N} \rangle$

• There is also an index hierarchy of nondeterministic automata: $\mathcal{A} = \langle Q = Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \rightarrow \mathcal{P}(Q \times Q), \Omega : Q \rightarrow \mathbb{N} \rangle$

N(0,i) or N(1,i)

• And of deterministic automata: $\mathcal{A} = \langle Q = Q_{\exists}, Q_{\forall}, \Sigma, q^0, \delta : Q \times \Sigma \to Q \times Q, \Omega : Q \to \mathbb{N} \rangle$

D(0,i) or D(1,i)

Thm [Niwiński & W.]: The levels A(0,0) and A(1,1) of the hierarchy are decidable.

Thm [Niwiński & W.]: The level $A(0,1) \cap A(1,2)$ is decidable.

Thm [Urbański]: The level A(0,1) = N(0,1) is decidable for deterministic automata.

Thm [Niwiński & W.]: All levels of *N* hierarchy are decidable for deterministic automata.

Rem: For deterministic automata A hierarchy collapses on A(1,2) level.

Rem: Deterministic automata are weaker than nondeterministic. It is decidable if a regular language is accepted by a deterministic automaton.

Part III

Part III Games on infinite graphs

• Games on pushdown graphs.

• Higher order pushdowns.

• Recursive program schemes.

• Pushdown machine (deterministic): $\langle Q, \Sigma, \Gamma, q_0 \in Q, \delta : Q \times \Sigma \times \Gamma \rightarrow Q \times \{pop, push(z) : z \in \Gamma\}, F \subseteq Q \rangle$.

• Configuration: $(q, w) \in Q \times \Gamma^*$.

Configuration graph
nodes: configurations
transitions:
(q, zw) → (q', w) if there is a ∈ Σ and δ(q, a, z) = (q', pop)
(q, zw) → (q', z'zw) if there is a ∈ Σ and δ(q, a, z) = (q', push(z'))

• Rem: The input alphabet and accepting states do not play any role. Determinism is also not important.

Rewriting rules

Pushdown system: $P = (Q, \Gamma, \Delta)$

Rewrite rules: $\Delta \subseteq Q \times \Gamma \times Q \times (\{\varepsilon\} \cup \Gamma^2)$ $qz \mapsto q' \qquad qz \mapsto q'z'z$

Pushdown graph: G(P)

Vertices: $Q \times \Gamma^*$

Edges: $qw \rightarrow q'w'$ according to the rules applied to prefixes.

 $\bullet q_0$ is always the initial state and \perp is the initial stack symbol.

TM graph: rules of the form $aqb \rightarrow q'a'b$ or $aqb \rightarrow ab'q'$ without restrictions on the place of application.

Pushdown game: an example

$$\begin{array}{cccc} q_0^{\mathbf{0}} \bot \longrightarrow q_0^{\mathbf{0}} a \bot \longrightarrow q_0^{\mathbf{0}} a a \bot \longrightarrow q_0^{\mathbf{0}} a a a \bot \longrightarrow \cdots \longrightarrow q_0^{\mathbf{0}} a^k \bot \longrightarrow \cdots \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$$

• We have that: q_0 is a vertex of Adam and q_1 of Eve; $\Omega(q_0) = 0$ and $\Omega(q_1) = 1$.

Eve has a winning strategy in this game.

• The game solving problem: Given P with a partition (Q_E, Q_A) of states, and a function $\Omega : Q \to \mathbb{N}$ decide who has a winning strategy from the initial vertex of G(P).

Thm: The problem of solving parity pushdown games is EXPTIME-complete.

EF, CTL, μ -calculus

EF logic

$$p \mid \neg \alpha \mid \alpha \land \beta \mid \exists \langle \rangle a \mid \exists F \alpha$$

$$! \mathsf{No} \exists G \alpha !$$

OTL

$\mathsf{EF} + \left(\exists (\alpha_1 U \alpha_2) \mid \exists \neg (\alpha_1 U \alpha_2) \right)$

• $M, v \vDash \exists F \alpha$ iff there is v' reachable from v with $M, v' \vDash \alpha$ • $M, v \vDash \exists G \alpha$ iff there is a path from v s.t. for every v' on it we have $M, v' \vDash \alpha$.

• μ -calculus $P \mid \neg P \mid X \mid \alpha \mid \alpha \lor \beta \mid \alpha \land \beta \mid \langle a \rangle \alpha \mid [a] \alpha \mid \mu X.\alpha \mid \nu X.\alpha$

Thm: Model checking problem for the μ -calculus is EXPTIME-complete.

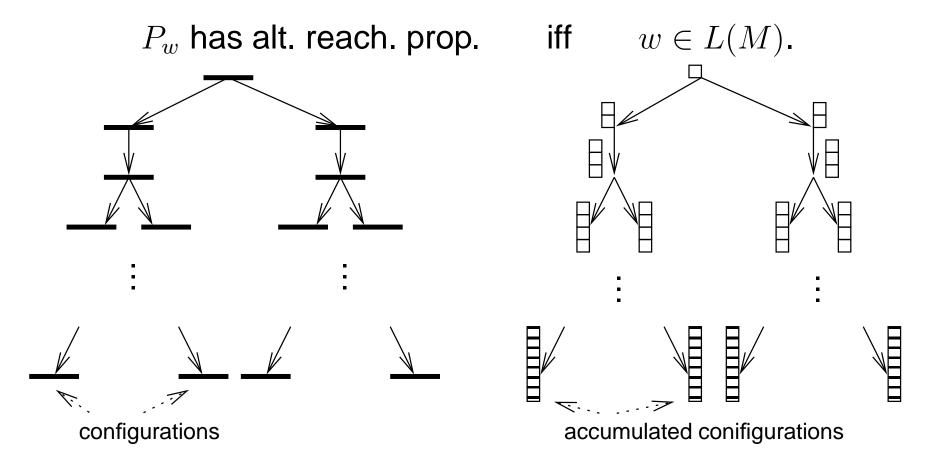
Thm: The model checking problem for EF-logic is in PSPACE. It is PSPACE-hard [Bouajjani, Esparza, Maler]

Thm: The same problem for CTL formulas is EXPTIME-complete.

Rem: The problem is with $\exists \alpha U\beta$.

Alt reachability: EXPTIME-hard

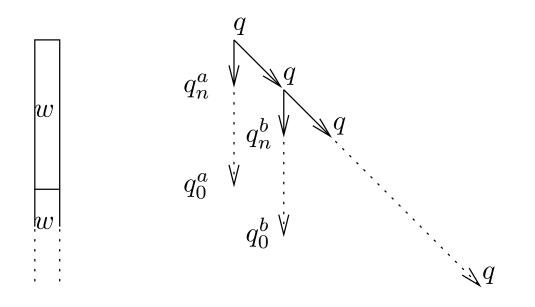
• Take ASPACE(n) machine M and input w. Construct P_w :



O How to check that a sequence of accumulated configurations is correct?

• Simpler problem: Given a word w of length n decide if the stack is of the form $w^k \perp$ for some k.

$$qa \to q, \ q_n^a \qquad \qquad q \bot \to q_F$$
$$q_n^a b \to q_{n-1}^a \qquad \qquad q \bot \to q_F$$



Summary of pushdown model checking

μ -calc	EXPTIME-compl
Alt reach	EXPTIME-compl
CTL	EXPTIME-compl
LTL	EXPTIME-compl
EF	PSPACE-compl
reach	PTIME

O 2-stack is a stack of stacks. There are operations on top-most stack and of copying the top-most stack.

• A system where all paths are of the form $q_1^k q_2^k q_3^k$

$$q_{1}[a] \longrightarrow q_{1}[aa] \longrightarrow \cdots \longrightarrow q_{1}[a^{k}] \rightarrow$$

$$q_{2}[a^{k}] \longrightarrow q_{2}[a^{k-1}][a^{k}] \longrightarrow \cdots \longrightarrow q_{2}[a][aa] \dots [a^{k}]$$

$$q_{3}[a][aa] \dots [a^{k}] \longrightarrow q_{3}[aa] \dots [a^{k}] \longrightarrow \cdots \longrightarrow q_{3}[a^{k}] \rightarrow q_{3} \bot$$

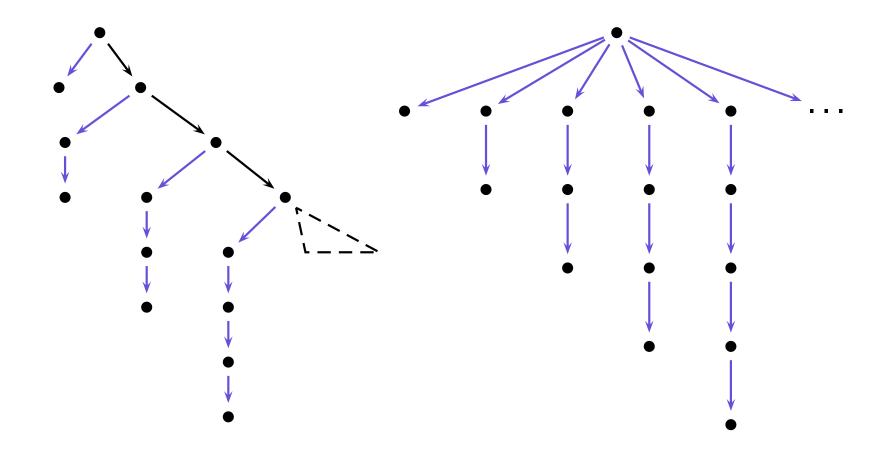
• 2-stack gives additional power. If considered as an accepting device 2-store automaton would recognize $\{a^k b^k c^k : k \in \mathbb{N}\}$.

• 2nd order pushdown system $\langle Q, \Gamma, Inst \rangle$ • A configuration is a sequence $[s_1][s_2] \dots [s_k] \in (\Gamma^*)^*$ • Instructions:

• Similarly for higher orders: stacks become of type ($(\Gamma^*)^{*...*}$)

Caucal hierarchy

• The *n*-th level of Caucal hierarchy consists of ε -closures of *n*-level pushdown graphs.



• The *n*-th level of Caucal hierarchy consists of ε -closures of *n*-level pushdown graphs.

Rem: 1-st level graphs are prefix-recognizable graphs.

Thm [Carayol & Wöhrle]: *n*-th level Caucal graphs are precisely those that are MSOL interpretable in *n*-tree.

• A 2-tree over the set Γ is $\langle (\Gamma^*)^*, \{succ_z : z \in \Gamma\}, succ_2 \rangle$ where • $(v[w], v[wz]) \in succ_z$ • $(v[w], v[w][w]) \in succ_2$

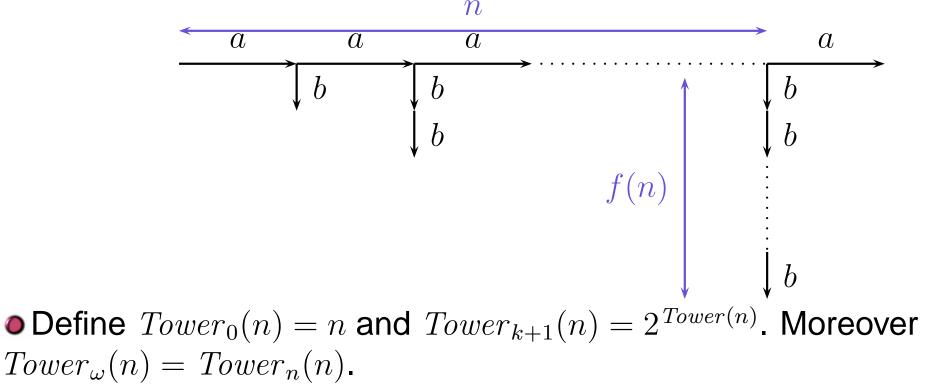
Thm[Engelfriet]: Alternating reachability problem for n-th level pushdown-graphs is n-EXPTIME-hard.

Thm[Cachat]: The μ -calculus model-checking problem for *n*-th level pushdown graphs is solvable in *n*-EXPTIME.

Rem: Not clear what is the complexity for other logics of programs.

Infiniteness of Caucal hierarchy

• For a function $f : \mathbb{N} \to \mathbb{N}$ we define a tree T_f :



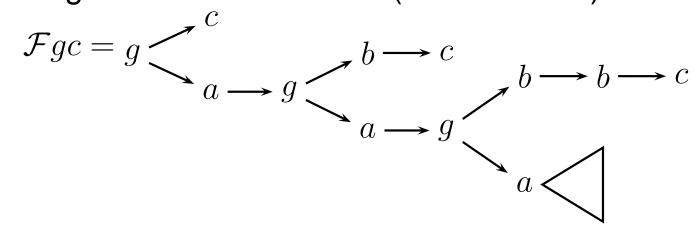
• T_{Tower_k} tree is an k-level graph that is not (k-1)-level.

• $T_{Tower_{\omega}}$ tree is not in the Caucal hierarchy. It has decidable MSO theory (follows from morphic predicates of Carton and Thomas).

• We do not know how to decide the levels of the hierarchy.

$\bullet \mathcal{F}x \Rightarrow g \ (a(\mathcal{F}(bx))) \ x$

• Equations generate infinite trees (infinite terms).



Thm[Courcelle]: The meanings of (1st order) recursive schemes \equiv pushdown graphs.

• Example of a second order scheme: $\mathcal{F}\psi x \Rightarrow f (\mathcal{F}(\mathcal{D}\psi)x) (\psi x) \qquad \mathcal{D}\psi y \Rightarrow \psi(\psi y)$

Characterization

Thm[Knapik, Niwiński, Urzyczyn, W.]: Meanings of 2nd order schemes \equiv trees of 2nd order pushdown systems with panic.

Thm[Knapik, Niwiński, Urzyczyn, W.]: For every 2nd order scheme, the tree defined by this scheme has decidable MSO theory.

Question: Does panic increase expressive power?

Question: Decidability of the equivalence between schemes.

Part IV

Part IV

Complicating wining conditions

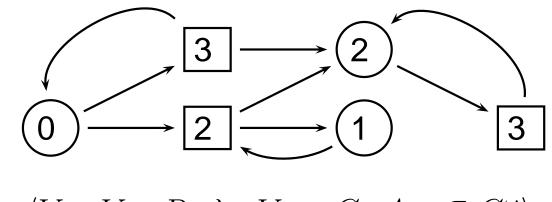
Stack height conditions.

• Stack height and parity conditions.

• Visibly pushdown conditions.

Quantitative conditions.

In contrast to the finite-state case, there are now natural winning conditions which are no more monadic second-order definable and occur at higher Borel levels than $\mathcal{B}(\Sigma_2^0)$. [Thomas, STACS'95]



 $\mathcal{G} = \langle V_E, V_A, R, \lambda : V \to C, Acc \subseteq C^{\omega} \rangle$

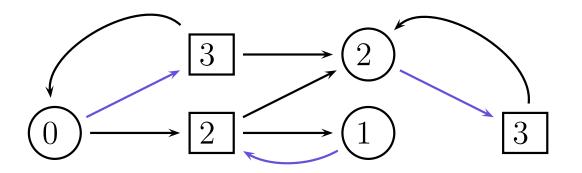
• ht(v) the height of the stack at position v

• Unboundedness condition The height of the stack is unbounded: $\vec{v} \in Acc$ iff $\forall n. \exists i. ht(v_i) > n$. • Strict unboundedness condition The limit of the stack height is infinity: $\vec{v} \in Acc$ iff $\forall n. \exists i. \forall j > i. ht(v_j) > n$.

Memoryless strategies for unboundedness

 $\mathcal{G} = \langle V_E, V_A, R, \lambda : V \to C, Acc \subseteq C^{\omega} \rangle$ • Strategy for player 0 is $\sigma : V^* \times V_0 \to V$ such that $\sigma(\vec{v}v_0) \in R(v_0)$

• A strategy σ for Eve is winning from v if all plays from v respecting the strategy are winning for Eve.



• Positional/memoryless strategy for Eve is a function $\sigma: V_0 \to V$ such that $\sigma(v) \in R(v)$.

Thm: In the game with unboundedness conditions Eve has a memoryless winning strategy.

• If there is a winning strategy for Eve in unboundedness game there is a memoryless winning strategy. This strategy σ never visits a vertex twice.

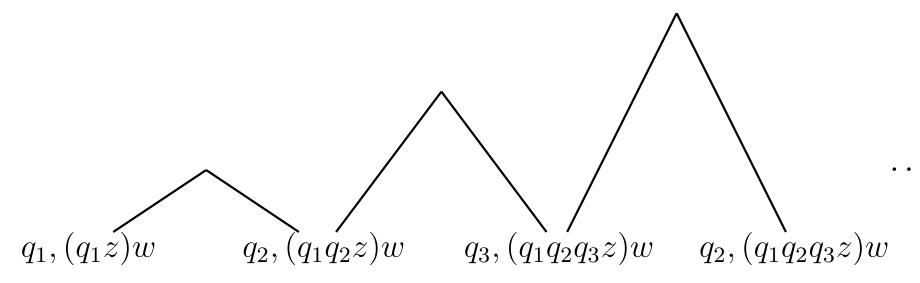
• If σ is winning for unboundedness then it is also winning for strict unboundedness.

Cor: The game is winning for unboundedness iff it is winning for strict unboundedness.

Rem: The same for disjunction of unboundedness and a parity condition.

O There is a winning strategy for Eve in unboundedness game iff there is a memoryless winning strategy.

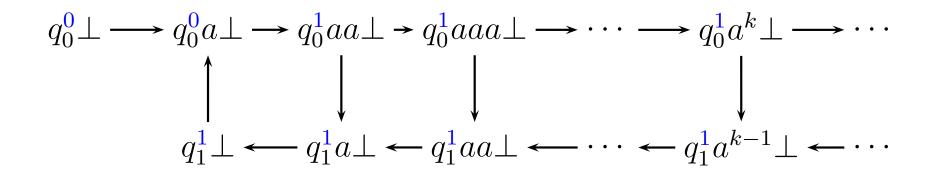
• Modify a pushdown system P in such a way that states seen with the current stack contents are recorded in the top of the stack.

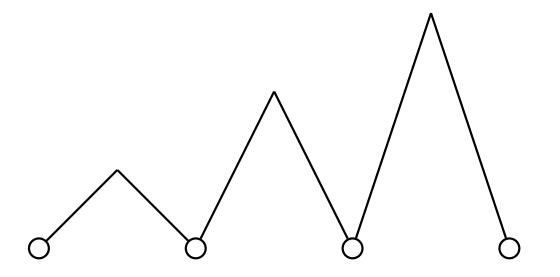


• Make a position losing if the current state is the same as recorded on in the top of the stack

unboundedness in $P \equiv$ safety in P'

Unboundedness and parity





Infinite memory is need to win.

Cor: Winning conditions that are unions of explosion and parity conditions admit memoryless strategies. Intersection of Büchi and explosion conditions may need infinite memory.

Thm[Cachat & Duparc & Thomas]: Strict unboundedness condition is Σ_3 -complete in the Borel hierarchy.

Thm[Cachat & Duparc & Thomas, Bouquet & Serre & W., Gimbert]: Games with winning conditions that are combinations of parity and explosion conditions can be solved in EXPTIME.

Thm[Serre]: For every finite level of the Borel hierarchy there is a winning condition complete for this level and such that games with this conditions are decidable.

VPDA conditions

Winning conditions can be defined by pushdown automata:

the sequence of visited states must be accepted by the automaton

• Games with such winning conditions are undecidable (universality of a context-free language).

Visibly pushdown automata: input letters determine stack actions.

Thm [Löding, Madhusudan, Serre]: Pushdown games with winning conditions given by visibly pushdown automata are decidable. Strict explosion condition is expressible in this framework.

• Mean pay-off games: $\limsup_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \Omega(v_i)$

• The result of the play is a real number and not win/lose. The objective is to maximize/minimize the value.

Thm [Ehrenfeucht & Mycielski]: Finite mean pay-off games are solvable.

• Priority mean pay-off games: • vertices labeled by $(m, r) \in \mathbb{N} \times \mathbb{R}$

• For the sequence $(m_0, r_0), (m_1, r_1), \ldots$ calculate $k = \liminf_{n \to \infty} m_n$.

• Let i_0, i_1, \ldots the positions j where $m_j = k$.

• The result is $\limsup_{n\to\infty} \frac{1}{n} \sum_{i=1}^n r_{i_n}$.

Thm [Gimbert & Zielonka]: Finite priority mean pay-off games are solvable.

The main motivation is the verification problem.

$$\mathcal{M} \stackrel{?}{\vDash} \alpha$$

$$\overset{\uparrow}{\underset{G}{\leftarrow}} \alpha$$

The research splits into two tracks:

• Study of the properties of the logic. algorithmic and expressive properties

Study of games.
 game presentations and winning conditions.