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PCF (Programming Computable Functions)

search ≡λp : nat → bool.
letrec f (x : nat) : nat = if (px) then x else f (x + 1) in f 0

Proposed by Scott (1969)
Mitchell "Foundations for Programming Languages" (1996):

Designed to be easily analyzed, rather than practical
language for writing programs. However with some
syntactic sugar it is possible to write many functional
programs in a comfortable style.

PCF has been in the center of interest of semantics
"sequentially computable functional", parallel OR, full abstraction.
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Finitary PCF: base types are finite.

search ≡λp : ”nat”→ bool.
letrec f (x : ”nat”) : ”nat” = if (px) then x else f (x + 1) in f 0

[Statman’04]: βδ-equality on terms is undecidable.

[Loader’96]: There is no recursive fully-abstract model

Finitary PCF ≡ λY -calculus
simply-typed λ calculus with fixpoint operators.
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map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

map(f , (a, b, c)) = (f (a), f (b), f (c))
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map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons
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if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Such trees are interesting because

They reflect a part of the semantics of a program.
They have decidable MSOL theory.
Interesting properties can be expressed in MSOL:

All elements in the result are in the range of f
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Resource usage for functional programs
[Kobayashi’09]

One can verify if usage patterns are correct.
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While-programs

x := e | if x = 0 then I1 else I2 | while x > 0 do I

variables range over N and e are arithmetic expressions

While-programs are Turing powerful.
Does this mean that all other programming concepts are
obsolete?
Schemes give a way to show that they are not:

There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.
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Recursion ≡ stacks

F ≡ λx. if x = 0 then 1 else F(x − 1) · x.

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.
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What about higher-order schemes?
Second-order scheme
Map ≡ λf .λx. if x = nil then nil else f (hd(x)) ·Map(f , tl(x))

Thm [Knapik, Niwiński, Urzyczyn]:
Higher-order safe schemes ≡ higher-order pushdown automata

Theorem [Hague, Murawski, Ong & Serre]: n-th order schemes ≡ unfoldings of n-th
order collapse pushdown automata.

Thm [Parys]:
Safety is a true restriction

Here:
On MSO theories of trees generated by higher-order schemes
(These are also the tress generated by programs of finitary PCF).
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+ Ianov’58 “The logical schemas of algorithms”

+ Park PhD’68 Recursive schemes

+ Scott, Elgot

+ Milner’73 Plotkin’77 PCF

Program Scheme

In!nite treeMeaning

abstraction

solution in a
free algebra

Interpretation

+ Aho’68 indexed languages

+ Maslov’74 ’76 higher-order indexed 
languages and higher order pushdown automata.

Schemes Languages,
Higher-order pushdowns

+ Courcelle’76 for trees: 1-st order schemes=CFL 
+ Engelfriet Schmidt’77 IO/OI

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn’02 Safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable

+Statman’04 Equivalence of PCF terms is undecidable

+Loader’01: Lambda-definability is undecidable

+ Ong’06: Decidability of MSOL theory 
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Two main algorithmic problems

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Deciding equality of schemes:
Do two schemes generate the same trees?

Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]
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The model-checking problem:
Given S and an MSOL formula ϕ decide if [[S ]] � ϕ.

Theorem[Ong]:
This problem is decidable.

[[S ]] = g

c a

g

b
c

a

g

b

b
c

a
...

� ϕ
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Motivation

Finitary PCF is an important abstraction of functional languages.

Finitary PCF ≡ schemes ≡ λY -calculus.
It has been studied by semantics and language communities
since 60’ties.

The “schematological" approach to semantics gives non-trivial
insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs

19 / 127



Preparation

λY -terms.
Evaluation.
Böhm trees.
MSOL and automata.

M eval−−→ BT (M ) ?∈ L(A)
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Simply typed λ-calculus

Types:
0 is a type;
α→ β is a type if α, β are types.

Eg. (0→ 0)→ 0

Typed constants:
cα for a type α.

Tree signature: All constants of types 0→ · · · → 0→ 0.

Typed terms:
cα,
xα,
(Mα→βNα)β,
(λxα.M β)α→β.
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Types: 0 | α→ β

Constants: cα

Terms: cα, xα, (Mα→βNα)β, (λxα.M β)α→β.

Example: c, d : 0, g : 0→ 0, f : 0→ 0→ 0
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β-reduction: (λx.M )N =β M [N/x]

(λx.f (gx)d)c →β f (gc)d

(λz.z(gc)d)(λxy.y)→β (λxy.y)(gc)d →β d

Substitution is as in logic: one should avoid variable capture

(λh.λx.g(hx))(fx)→β λy.g(fxy)

and not λx.g(fxx)

f : 0→ 0→ 0, g, h : 0→ 0
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Result of the computation ≡ normal form

(λx.f (gx)d)c →β f (gc)d

(λz.z(gc)d)(λxy.y)→β (λxy.y)(gc)d →β d

(λh.λx.g(hx))(fx)→β λy.g(fxy)
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Example (QBF)
tt = λxy. x, ff = λxy. y, They are of type 0→ 0→ 0.
and = λb1b2. λxy. b1(b2xy)y, or = λb1b2. λxy. b1x(b2xy),
neg = λb. λxy. byx
All = λf . and(f tt)(f ff), Exists = λf . or(f tt)(f ff).

QBF to terms
Every QBF formula α can be translated to a term Mα:

∀x.∃y. x ∧ ¬y 7→ All(λx. Exists(λy. and x (neg y)))

Fact For every QBF formula α:

α is true iff Mα evaluates to tt.
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In 18pt

Let us reduce:

We obtain:
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A Böhm tree of a term M :
constant or variable

head normal form

Böhm tree of (λy. g (hxy)) c is g

h

x c

Important: If M : 0 over tree signature then BT (M ) is a ranked tree,
the only possible head normal form of M is aN1 . . .Nk .
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λY -calculus

We add constants Y (α→α)→α and Ωα, for every type α.

New reduction rule YM →δ M (YM ).

Example: YM with M = (λx.ax)

YM →δ M (YM ) ≡ (λx.ax)(YM )
→β a(YM )
→δ a(M (YM ))
→β a(a(YM ))→ . . .

What is the result of the computation? BT (YM ) = aω.
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A Böhm tree of a λY -term M is:

Y (λF .λx.ax(F(bx))) : 0→ 0

For closed terms of type 0 over tree signatures, Böhm tree is a tree.
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Digression: Recursion schemes ≡ λY -calculus

F1 =λ~x.M1
...

Fn =λ~x.Mn

T1 =Y (λF1.M1)
T2 =Y (λF2.M2)[T1/F1])

...
Tn =Y (λFn .(. . . ((Mn [T1/F1])[T2/F2]) . . . )[Tn−1/Fn−1])

Fact
The tree generated from Fn is BT (Tn).
There is also a translation from λY -terms to schemes.
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Specifying properties of Böhm trees

Proviso: Σ has only constants of types 0 or 0→ 0→ 0
(plus constants Ωα,Y (α→α)→α).

Recall: For tree signature: if M is a closed term of type 0 then BT (M )
is a ranked tree.

g

h

Ω c

Monadic second order logic:
∃X . ∀y ∈ X . ∃z ∈ X . y < z ∧ a(z)

Tree automata:
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Proviso:
Σ = Σ0 ∪Σ2 with Σ0 constants of type 0 and Σ2 of type 0→ 0→ 0.

Tree automaton:

A = 〈Q,Σ∪{Ω}, q0 ∈ Q, δ1 : Q×Σ0 → {false, true}, δ2 : Q×Σ2 → P(Q2)〉

aq

cq0 aq1

cq

Trivial acceptance condition: every run is accepting.

Parity acceptance condition: max rank on every path is even.
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First camp

λ-terms β−red−−−−→ Böhm trees (normal form)

λY -terms βδ−red−−−−→ Böhm trees with Ω.
Tree automata running on Böhm trees.
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Models
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Models
The meaning of a term is its Böhm tree
But we can also evaluate terms in models

if BT (M ) = BT (N ) then [[M ]] = [[N ]]
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Types: 0 | α→ β

Constants: cα

Terms: cα, xα, (Mα→βNα)β, (λxα.M β)α→β.

Model: D = 〈{Dα}α∈T , ρ〉
D0 is a complete lattice;
Dα→β monotone functions from Dα to Dβ ordered coordinatewise;
ρ(Ωα) is the greatest element of Dα;
ρ(Y (α→α)→α) is a mapping assigning to a function f ∈ Dα→α its
fixpoint.

GFP model: when Y assigns greatest fixpoints.
Finitary model: when every Dα is finite.
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Interpretation of a term M : α in a model D is an element [[M ]]D ∈ Dα.

[[c]]υD = ρ(c)
[[xα]]υD = υ(xα)
[[MN ]]υD = [[M ]]υD[[N ]]υD
[[λxα.M ]]υD is a function mapping an element d ∈ Dα to [[M ]]υ[d/xα]

D .
(this is a monotone function).

Fact:
For every model D: if M =β,δ N then [[M ]]D = [[N ]]D.

β-reduction (λx.M )N →β M [N/x]
δ-reduction Y (M )→δ M (YM ).

37 / 127



Example

Take D0 = {0, 1}.

Then D0→0→0 is {0, 1} → {0, 1} → {0, 1}.

[[λxy. x]] = π1 ∈ D0→0→0 is the projection on the first component.

[[λxy. y]] = π2 ∈ D0→0→0.

For every QBF sentence α: [[Mα]] = π1 iff α is true.

Fact For every QBF formula α:

α is true iff Mα reduces to λxy. x
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Digression

Thm [Statman’s Weak Completeness Theorem ’82]:
For every λ-term M there is a finitary model DM such that for every
λ-term K :

[[M ]]DM = [[K ]]DN iff M =β K .

Thm [Loader’s λ-definability theorem ’96]:
For every nontrivial finitary model D. It is not decidable if a given
element d of the model is a denotation of a term.
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Interpretation of a term M : α in a model D is an element [[M ]]D ∈ Dα.

[[c]]υD = ρ(c)
[[xα]]υD = υ(xα)
[[MN ]]υD = [[M ]]υD[[N ]]υD
[[λxα.M ]]υD is a function mapping an element d ∈ Dα to [[M ]]υ[d/xα]

D .
Fact:
For every model D: if M =β,δ N then [[M ]]D = [[N ]]D.

Theorem [Barendregt]: For every finitary GFP-model D:
if BT (M ) ≡ BT (N ) then [[M ]]D = [[N ]]D.
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Approximate Böhm tree
ABT (M ) is defined by
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Meanings of Böhm trees

Lemma
BT (M ) =

⊔
{ABT (N ) : N =β,δ M};

here we are taking syntactic limit over trees.

Semantics

[[BT (M )]]D =
∧
{[[ABT (N )]]D : N =β,δ M}

Theorem [?]
If D is a finitary GFP model then: [[M ]]D = [[BT (M )]]D.
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Theorem
If D is a finitary GFP model then: [[M ]]D = [[BT (M )]]D.

Proof [[BT (M )]] ≥ [[M ]]:

[[BT (M )]]D =
∧
{[[ABT (N )]]D : N =β,δ M}.

[[ABT (N )]]D ≥ [[N ]]D = [[M ]]D.
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Theorem
If D is a finitary GFP model then: [[M ]]D = [[BT (M )]]D.

Proof [[M ]] ≥ [[BT (M )]]:

Let N : α→ α without Y :
Define iteratei(N ) to be N (. . . (NΩα) . . . ).
Define iteratei(M ) as the result of repeatedly replacing all YN by
iteratei(N ).

Obs: If D is a finitary GFP model then there is i such that
[[M ]]D = [[iteratei(M )]]D.

[[M ]] = [[iteratei(M )]] = [[BT (iteratei(M ))]] ≥ [[BT (M )]]
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Almost there

We have
1 Models D = ({Dα}α∈T , ρ) interpreting fixpoint operators.
2 Models are capable of talking about Böhm trees:

[[M ]]D = [[BT (M )]]D

We want
A model DA such that [[M ]]DA tells us if BT (M ) is accepted by A.
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A = 〈Q,Σ ∪ {Ω}, q0 ∈ Q,
δ1 : Q × Σ0 → {false, true}, δ2 : Q × Σ2 → P(Q2)〉

TAC (trivial acceptance condition) : all runs are accepting.

Model DA:
D0 = P(Q).
If c : 0 then [[c]] = {q : δ1(q, c) = true}. ([[Ω]] = Q)
If a : 02 → 0 then [[a]] is a function that for (S0,S1) ∈ P(Q)2 returns

{q : δ2(q, a) ∈ S0 × S1}

Theorem
For every closed term M of type 0:

BT (M ) ∈ L(A) iff q0 ∈ [[M ]]DA
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If BT (M ) ∈ L(A) then q0 ∈ [[M ]]DA

Take a run of A on BT (M ) and show that q0 ∈ [[BT (M )]]DA = [[M ]]DA .

Recall that [[BT (M )]]D =
∧
{[[ABT (N )]]D : N =β,δ M}

We show: q0 ∈ [[ABT (N )]] for N =β,δ M .

aq0

cq2 aq3

bq4 aq1

cq2
bq2 aq3

aq0

cq2 aq3

bq4 aq1

cq2 cq2cq2
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If q0 ∈ [[M ]] then BT (M ) ∈ L(A)

Property of the interpretation:
If q ∈ [[a(M0,M1)]] then there is (q0, q1) ∈ δ(q, a) such that: q0 ∈ [[M0]],
and q1 ∈ [[M1]].

a

c b
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A = 〈Q,Σ ∪ {Ω}, q0 ∈ Q, δ1 : Q × Σ0 → {false, true}, δ2 : Q × Σ2 → P(Q2)〉
Model DA:

D0 = P(Q).
If c : 0 then [[c]] = {q : δ1(q, c) = true}. ([[Ω]] = Q)
If a : 02 → 0 then [[a]] is a function that for (S0,S1) ∈ P(Q)2 returns

{q : δ2(q, a) ∈ S0 × S1}

Theorem
For every closed term M of type 0:

BT (M ) ∈ L(A) iff q0 ∈ [[M ]]DA
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To decide BT (M )
?
∈ L(A) it is enough to:

Construct DA,
Calculate [[M ]]DA .

This works only for TAC conditions. (Simple models ≡ TAC conditions)

We can do Ω-aware TAC, but the climb is rather steep.
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Reflective Böhm tree wrt. a model D:

Thm [Broadbent, Carayol, Ong, Serre]: For every finitary model D
and λY -term M there is a λY -term N such that BT (N ) = rBTD(M ).
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(α→ β)• = α• → [α]→ β• and α• = α when α is atomic.

[MN , υ] = [M , υ] [N , υ] [[N ]]υ

[xα, υ] =xα•[
Y (α→α)→αM , υ

]
=Y (α•→α•)→α•(λxα• . [M , υ] xα• [[YM ]]υ)

[λxα.M , υ] =λxα•λy[α]. case y[α]{d → [M , υ[d/xα]]}d∈Sα

[a, υ] =λx0
1λy[0]

1 λx0
2λy[0]

2 .case y[0]
1 {d1 →

case y[0]
2 {d2 → aρ(a)d1 d2x1x2}d2∈S0}d1∈S0
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Krivine machines
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Krivine machines
The meaning of a term is its Böhm tree.
It can be computed with a Krivine machine.
So now instead of using semantics we use syntax.
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Our objective is to decide, for a fixed A,

if for a given M : BT (M ) ∈ L(A).

We will:
1 use Krivine machine to compute BT (M ),
2 construct a game K(A,M ) on this computation,
3 reduce it to G(A,M ) that will be a finite game.
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1. 2.

3.
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Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C ]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥

λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥
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Krivine machine (2)

A configuration of a Krivine machine is a triple (N , ρ,S) where:
N is a term (a subterm of M );
ρ is an environment defined for all free variables of N ;
S is a stack C1 . . .Ck , where k and the types of the closures are
determined by the type of N : the type of Ci is αi where the type of
N is α1 → · · · → αk → 0.

A configuration (N , ρ,S) represents a term:

E((N , ρ,S)) = E(N , ρ)E(C1) . . .E(Cn)

Example:
(z0→0→0, ρ, (gc, ρ)(d, ρ)) with ρ ≡ [z 7→ (λxy. y, ∅)] gives

(λxy. y) (gc) d
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Krivine machine

(λx.N , ρ, (K , ρ′)S)→(N , ρ[x 7→ (K , ρ′)],S)

(YN , ρ,S)→(N (YN ), ρ,S)

(NK , ρ,S)→(N , ρ, (K , ρ)S)

(x, ρ,S)→(N , ρ′,S) where (N , ρ′) = ρ(x)

Lemma: Term E(N , ρ,⊥) has a head normal form iff Krivine machine
reduces (N , ρ,⊥) to a (b(N1,N2), ρ′,⊥) for some constant b 6= Ω.

Lemma: All the terms appearing in configurations of the Krivine
machine during the computation from (M , ∅,⊥) are subterms of M .
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BT (M ) with Krivine machines
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Computing Böhm tree

Lemma: Term E(N , ρ,⊥) has a head normal form iff Krivine machine
reduces (N , ρ,⊥) to a (b(N1,N2), ρ′,⊥) for some constant b 6= Ω.

*

* *
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Computing Böhm tree

*

* *

Proposition: For every closed λY -term M of type 0:

BT (M ) = Ktree(M , ∅,⊥).
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1. 2.

3.
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Game for automaton acceptance

Eve

Adam
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Game for automaton acceptance

Eve

Adam

Eve has a strategy in G(A, t) iff t is accepted by A.
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Defining K(A,M )

*

* *

Krivine machine computing BTBohm tree
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Defining K(A,M )

*

* *

Run of the automaton on
Krivine machine comptuation

Run of the automaton on
the  Bohm tree
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Defining K(A,M )

*

* * * *

Acceptance of the automaton 
in terms of a game on Krivine machine
comptuation

Acceptance of the automaton
in terms of a game on the 
Bohm tree
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Definition of K(A,M )
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Definition of K(A,M )
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Definition of K(A,M )

where

closure is created closure is used
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where

closure is created closure is used
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Thm: Eve wins in K(A,M ) iff A accepts BT (M ).

Computation of the Krivine machine

Proposition: For every closed λY -term M of type 0:
BT (M ) = Ktree(M , ∅,⊥).
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Computation of the Krivine machine

1. 2.

3.
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Decomposition property for a pushdown
qc 7→ qaac qc 7→ qpop

This part does not
depend on c

continuation needs
only bounded info about
the path

84 / 127



Reduction to a finite game

qc 7→ qaac qc 7→ qpop

Ra ⊆ Q
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Reduction to a finite game (with ranks)
qc 7→ qaac qc 7→ qpop

Ra ⊆ Q × ranks
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From K(A,M ) to G(A,M )

Residual of type 0 is from P(Q × [d]).

Residual of type 0→ 0 is from P(Q × [d])→ P(Q × [d]).
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G(A,M )

q : (λx.N , ρ,R · S)→ q : (N , ρ[x 7→ R],S)

q : (a(N0,N1), ρ,⊥)→ (q0, q1) : (a(N0,N1), ρ,⊥)
for (q0, q1) ∈ δ(q, a)

(q0, q1) : (a(N0,N1), ρ,⊥)→ qi : (Ni , ρ�rk(qi),⊥) for i = 0, 1

q : (YN , ρ,S)→ q : (N (YN ), ρ,S)
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G(A,M )

Eve wins in a position:
q : (x, ρ,S) if (q, rk(q)) ∈ ρ(x)(S).
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Properties of G(A,M )

Obs:
For every N there are finitely many nodes in G(A,M ) containing N .

Thm: Eve wins in G(A,M ) iff Eve wins in K(A,M ).
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Thm: Eve wins in G(A,M ) iff Eve wins in K(A,M ).

Proof:
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where

closure is created closure is used

Residual R(v) = {(q ′, r ′), . . . }
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Adjusted residual R(v)�r

1 1

2
??
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Adjusted residual R(v)�r

1 1

2
??3

Notation : res(v, v1) = R(v)�max(v,v1)

res(C , v1) = R(v)�max(v,v1) where C = (v,L, ρ),
res(ρ, v1) = ρ1 such that ρ1(x) = res(ρ(x), v1),
res(S , v1) = R1 . . .Rk where Ri = res(Ci , v1), and S = C1 . . .Ck .
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Adjusted residual R(v)�r

1 1

2
??3

Notation : res(v, v1) = R(v)�max(v,v1)

res(C , v1) = R(v)�max(v,v1) where C = (v,L, ρ),
res(ρ, v1) = ρ1 such that ρ1(x) = res(ρ(x), v1),
res(S , v1) = R1 . . .Rk where Ri = res(Ci , v1), and S = C1 . . .Ck .
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where

closure is created closure is used

Residual R(v)(R(w)�r ′′) = {(q ′, r ′), . . . } where r ′′ = max(w, v′)
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Transferring Eve’s strategy from K(A,M ) to G(A,M )
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Transferring Eve’s strategy from K(A,M ) to G(A,M )
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Transferring Eve’s strategy from K(A,M ) to G(A,M )

We want to show (q, rk(q)) ∈ ρ1(x)(S1).
Suppose ρ2(x) = (v,K , ρ)

(q,max(v, v2)) ∈ R(v)(res(S2, v2)) by def.
(q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2) by prop of�
(q, rk(q)) ∈ R(v)(res(S2, v2))�max(v,v2) by prop of�
(q, rk(q)) ∈ ρ1(x)(S1) by def.
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Decomposition property

Closure (v,K 0→0, ρ) is replaced by R(v) : P(Q × [d])→ P(Q × [d]).
We put (q ′, r ′) in R(v)(RL).

We use induction on types.
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Transferring Eve’s strategy from K(A,M ) to G(A,M )
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Computation of the Krivine machine

1. 2.

3.

Thm: Eve wins in G(A,M ) iff Eve wins in K(A,M ).

Obs: G(A,M ) is finite.
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Global model checking

Representing configurations of a Krivine machine
For closures: 〈(M , ρ)〉 is M

〈ρ(x1)〉 · · · 〈ρ(xk)〉

For configurations: 〈(M , ρ,S1 . . .Sl)〉 is 〈(M , ρ)〉, 〈S1〉,. . . , 〈S1〉.

Theorem
For every M and A, the set:

{〈N , ρ,S〉 : BT (E(N , ρ,S)) ∈ L(A)}

is a regular language of finite trees.
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Transfer Theorem
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M eval−−→ BT (M )
ϕ̂ ←− ϕ

Transfer Theorem
For all ϕ exists ϕ̂ s.t.

M � ϕ̂ iff BT (M ) � ϕ
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M eval−−→ BT (M )
ϕ̂ ←− ϕ

Transfer Theorem
For all Σ, T ,X .
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ
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Example: Unfolding

Graph unfold−−−−→ Tree

gives
l

l

ll

lll

r

lr

llr

MSO-compatibility of unfolding
For all Σ.
For all ϕ exists ϕ̂ s.t. for all G ∈ Graph(Σ) :

G � ϕ̂ iff Unf (G) � ϕ

Rem: This theorem implies Rabin’s Theorem.
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Example: Normalizable terms

Transfer Theorem:
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

Take ϕ ≡ "finite tree"
BT (M ) � ϕ iff M has a normal form.

M � ϕ̂ iff M has a normal form

So {M ∈ Terms(Σ, T ,X ) : M has a normal form} is MSOL-definable.
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Transfer Theorem
For all Σ, T ,X .
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

Σ is a tree signature
T is a finite set of terms
X is a finite set of λ-variables
Terms(Σ, T ,X ): terms over Σ with

all subterms having type in T ,
all λ-variables from X .

Note: Theorem works also for infinite λY -terms, and unobunded
number of Y variables.
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What it means M � ϕ̂?

M is represented as a tree Graph(M ) over the alphabet

Talph(Σ, T ,X ) = Σ ∪ {@α,Y α : α ∈ T } ∪ X∪
{λα→βxα : α ∈ T ∧ α→ β ∈ T ∧ xα ∈ X} .

Y

λx.

λz.

@

@
z

x
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Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

A sketch of the proof

113 / 127



Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ
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Consequences of the transfer theorem
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Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

Ong’s Theorem
It is decidable if for a given finite term M and MSOL formula ϕ,
BT (M ) � ϕ holds.

Proof: Just test M � ϕ̂.
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Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

The set of normalizing terms is MSOL definable
For a fixed T and X there is a formula defining the set of terms
M ∈ Terms(Σ, T ,X ) having a normal form.

Proof: Take ϕ defining the set of finite trees and consider ϕ̂.
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Digression: why limiting λ-variables

QBF to terms
Every QBF formula α can be translated to a term Mα:

∀x.∃y. x ∧ ¬y 7→ All(λx. Exists(λy. and x (noty)))

α is true iff BT (Mα) is the term true

Take ϕ saying that the tree consists only of the root labeled true.
Consider ϕ̂.

Mα � ϕ̂ iff α is true.

If we could construct ϕ̂ without limiting X then we get collapse of the
polynomial hierarchy.
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Matching with restricted no of variables
For a fixed X . Given M and K (without fixpoints) decide if there is a
substitution σ such that

Mσ =β K

Substitution σ can use only terms from Terms(Σ, T ,X ).

Proof:
Let shape(N ) be MSOL formula defining the set of terms in
Terms(Σ, T ,X ) that can be obtained from N by substitutions.
Let ϕ ≡ shape(K ).
There is desired σ iff the formula shape(M ) ∧ ϕ̂ is satisfiable.

If there is a solution then there is a finite one.
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Synthesis from modules
Given finite λY -terms M1, . . . ,Mk and ϕ. Decide if one can construct a
λY term K from these terms such that BT (K ) � ϕ.

Proof:
The candidate term K can be described as having the form
(λx1 . . . xk . N )M1, . . . ,Mk for some term N without constants and
λ-abstractions.
Let ψ be a formula defining terms of this form.
There is a solution iff the formula ψ ∧ ϕ̂ is satisfiable.

Every model of ψ ∧ ϕ̂ gives a solution.

If there is a solution then there is a regular one, hence a finite one
thanks to the presence of Y .
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Two ways looking at it.

Studding new properties of
evaluation in simple types.

Bringing verification to a new
ground.
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In the beginner’s mind there are many
possibilities, in the expert’s mind there are few.
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Decomposition property for a pushdown:
qc 7→ qaac qc 7→ qpop

This part does not
depend on c

continuation needs
only bounded info about
the path
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M eval−−→ BT (M ) ?∈ L(A)

Understanding BT (M )
?
∈ L(A) in terms of models

[[M ]] = [[BT (M )]]

Understanding BT (M )
?
∈ L(A) in terms of K(A,M )

K(A,M ) equivalent to G(A,M )

MSO compatibility of evaluation
M eval−−→ BT (M )

ϕ̂ ←− ϕ
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Getting closer to “real” computation.

Transfer theorem covers: Rabin’s theorem, unfolding theorem,
pushdown hierarchy, Ong’s theorem, global model-checking,. . .

The use of old techniques in a new way.
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