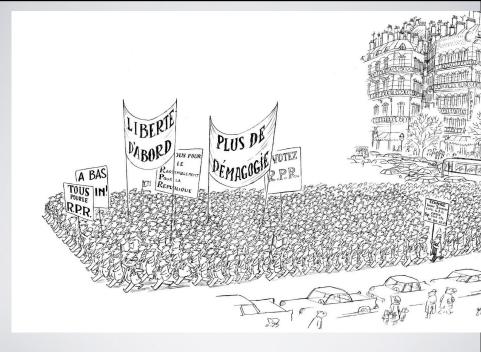
Recursive Schemes, Krivine Machines, and Monadic Logic

Igor Walukiewicz Bordeaux University

Joint work with Sylvain Salvati



PCF (Programming Computable Functions)

 $\begin{aligned} search \equiv &\lambda p: nat \to bool. \\ &\mathbf{letrec} \; f(x:nat): nat = \mathbf{if} \; (px) \; \mathbf{then} \; x \; \mathbf{else} \; f(x+1) \; \mathbf{in} \; f0 \end{aligned}$

- Proposed by Scott (1969)
- Mitchell "Foundations for Programming Languages" (1996): Designed to be easily analyzed, rather than practical language for writing programs. However with some syntactic sugar it is possible to write many functional programs in a comfortable style.
- PCF has been in the center of interest of semantics
 - "sequentially computable functional", parallel OR, full abstraction.

Finitary PCF: base types are finite.

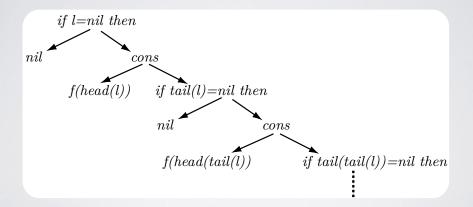
 $\begin{aligned} search \equiv &\lambda p: "nat" \to bool. \\ & \mathbf{letrec}\; f(x:"nat"): "nat" = \mathbf{if}\; (px) \; \mathbf{then}\; x \; \mathbf{else}\; f(x+1) \; \mathbf{in}\; f0 \end{aligned}$

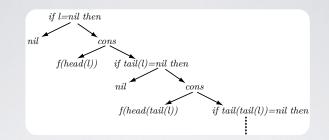
- [Statman'04]: $\beta\delta$ -equality on terms is undecidable.
- [Loader'96]: There is no recursive fully-abstract model

Finitary PCF $\equiv \lambda Y$ -calculus simply-typed λ calculus with fixpoint operators. $map(f, l) \equiv if \ l = nil then \ nil$ else cons(f(head(l)), map(f, tail(l)))

map(f, (a, b, c)) = (f(a), f(b), f(c))

 $map(f, l) \equiv if l = nil then nil$ else cons(f(head(l)), map(f, tail(l)))

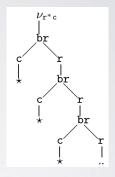




Such trees are interesting because

- They reflect a part of the semantics of a program.
- They have decidable MSOL theory.
- Interesting properties can be expressed in MSOL:
 - All elements in the result are in the range of f

Resource usage for functional programs [Kobayashi'09]



One can verify if usage patterns are correct.

WHILE-PROGRAMS

 $x := e \mid \texttt{if } x = 0 \texttt{ then } I_1 \texttt{ else } I_2 \mid \texttt{while } x > 0 \texttt{ do } I$

variables range over $\mathbb N$ and e are arithmetic expressions

- While-programs are Turing powerful.
- Does this mean that all other programming concepts are obsolete?
- Schemes give a way to show that they are not:
 - There is a recursive scheme whose tree cannot be generated by a scheme of a while program.

 $F \equiv \lambda x$. if x = 0 then 1 else $F(x - 1) \cdot x$.

 $F \equiv \lambda x$. if x = 0 then 1 else $F(x - 1) \cdot x$.

Thm [Courcelle PhD]:

1-st order recursive schemes \equiv deterministic pushdown automata.

 $F \equiv \lambda x$. if x = 0 then 1 else $F(x - 1) \cdot x$.

Thm [Courcelle PhD]: 1-st order recursive schemes \equiv deterministic pushdown automata.

Thm [Senizergues]: Equivalence of 1-st order schemes (in terms of trees they generate) is decidable.

Thm [Courcelle]: MSOL theory of trees generated by 1-st order schemes is decidable.

WHAT ABOUT HIGHER-ORDER SCHEMES?

Second-order scheme

 $Map \equiv \lambda f.\lambda x.$ if x = nil then nil else $f(hd(x)) \cdot Map(f, tl(x))$

Thm [Knapik, Niwiński, Urzyczyn]: Higher-order safe schemes \equiv higher-order pushdown automata

Theorem [Hague, Murawski, Ong & Serre]: n-th order schemes \equiv unfoldings of n-th order collapse pushdown automata.

Thm [Parys]: Safety is a true restriction

HERE:

On MSO theories of trees generated by higher-order schemes (These are also the tress generated by programs of finitary PCF).

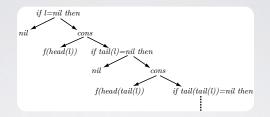
Languages, Higher-order pushdowns

+ Aho'68 indexed languages

+ Maslov'74 '76 higher-order indexed languages and higher order pushdown automata.

- + Courcelle'76 for trees: 1-st order schemes=CFL
- + Engelfriet Schmidt'77 10/01
- + Damm'82 for languages: rec schemes= higher-order pusdowns
- + Kanpik Niwinski Urzyczyn'02 Safe schemes = higher-order pusdown
- + Senizergues'97 Equivalence of 1st order schemes is decidable +Statman'04 Equivalence of PCE terms is undecidable
 - +Loader'01: Lambda-definability is undecidable
- + Ong'06: Decidability of MSOL theory

Two main algorithmic problems



Deciding equality of schemes:

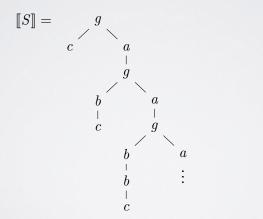
Do two schemes generate the same trees? Deciding MSOL theory for schemes:

Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues] Ad MSOL: Decidable [Ong] The model-checking problem:

Given S and an MSOL formula φ decide if $\llbracket S \rrbracket \vDash \varphi$.

Theorem[Ong]: This problem is decidable.



 $\models \varphi$

MOTIVATION

- Finitary PCF is an important abstraction of functional languages.
- Finitary PCF \equiv schemes $\equiv \lambda Y$ -calculus.
- It has been studied by semantics and language communities since 60'ties.
- The "schematological" approach to semantics gives non-trivial insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs

Preparation

- λY -terms.
- Evaluation.
- Böhm trees.
- MSOL and automata.

 $M \xrightarrow{eval} BT(M) \stackrel{?}{\in} L(\mathcal{A})$

Simply typed λ -calculus

Types:

- 0 is a type;
- $\alpha \rightarrow \beta$ is a type if α, β are types.

Eg. $(0 \to 0) \to 0$

Typed constants:

 c^{α} for a type α . **Tree signature:** All constants of types $0 \rightarrow \cdots \rightarrow 0 \rightarrow 0$.

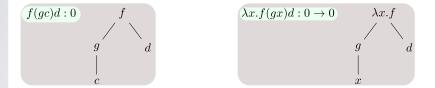
Typed terms:

```
egin{aligned} &c^{lpha},\ &x^{lpha},\ &(M^{lpha
ightarrow\beta}N^{lpha})^{eta},\ &(\lambda x^{lpha}.M^{eta})^{lpha
ightarroweta}. \end{aligned}
```

- Types: $0 \mid \alpha \rightarrow \beta$
- Constants: c^{α}

• Terms:
$$c^{lpha}$$
, x^{lpha} , $(M^{lpha
ightarrow eta} N^{lpha})^{eta}$, $(\lambda x^{lpha}.M^{eta})^{lpha
ightarrow eta}$.

Example: $c, d: 0, g: 0 \rightarrow 0, f: 0 \rightarrow 0 \rightarrow 0$



$$\begin{array}{ccc} \lambda z. z(gc)d: (0 \rightarrow 0 \rightarrow 0) \rightarrow 0 & & \lambda z. z \\ & & \swarrow & & & \\ & & g & d \\ & & & \\ & & c \end{array}$$

β -reduction: $(\lambda x.M)N =_{\beta} M[N/x]$

• $(\lambda x.f(gx)d)c \rightarrow_{\beta} f(gc)d$

•
$$(\lambda z. z(gc)d)(\lambda xy. y) \rightarrow_{\beta} (\lambda xy. y)(gc)d \rightarrow_{\beta} d$$

Substitution is as in logic: one should avoid variable capture $(\lambda h.\lambda x.g(hx))(fx) \rightarrow_{\beta} \lambda y.g(fxy)$

and not $\lambda x.g(fxx)$

$$f: 0 \to 0 \to 0, \quad g, h: 0 \to 0$$

Result of the computation \equiv normal form

- $(\lambda x.f(gx)d)c \rightarrow_{\beta} f(gc)d$
- $(\lambda z. z(gc)d)(\lambda xy. y) \rightarrow_{\beta} (\lambda xy. y)(gc)d \rightarrow_{\beta} d$
- $(\lambda h.\lambda x.g(hx))(fx) \rightarrow_{\beta} \lambda y.g(fxy)$

EXAMPLE (QBF)

•
$$tt = \lambda xy. x$$
, $ff = \lambda xy. y$,

• and =
$$\lambda b_1 b_2$$
. λxy . $b_1(b_2 xy)y_2$

•
$$\operatorname{neg} = \lambda b. \ \lambda xy. \ byx$$

They are of type $0 \rightarrow 0 \rightarrow 0$. or $= \lambda b_1 b_2$. λxy . $b_1 x (b_2 xy)$,

• All = λf . and(f tt)(f ff), Exists = λf . or(f tt)(f ff).

QBF TO TERMS

Every *QBF* formula α can be translated to a term M_{α} :

$$\forall x. \exists y. x \land \neg y \mapsto \mathsf{All}(\lambda x. \mathsf{Exists}(\lambda y. \mathsf{and} x (\mathsf{neg} y)))$$

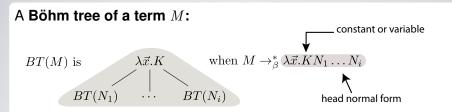
Fact For every QBF formula α :

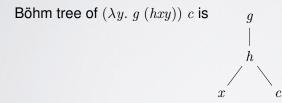
 α is true iff M_{α} evaluates to tt.

Let us reduce: or (neg tt) tt

(neg tt) x (tt $x y$)	
$\lambda b. \lambda xy. \ byx$	tt, x , (tt $x y$)
tt (tt $x y$) x	
$\lambda xy.x$	$(tt \ x \ y), x$
$(tt \ x \ y)$	
$\lambda xy.x$	x, y
x	

We obtain: or (neg tt) tt $\rightarrow^* \lambda xy.x \equiv tt$





Important: If M : 0 over tree signature then BT(M) is a ranked tree, the only possible head normal form of M is $aN_1 \dots N_k$.

λY -calculus

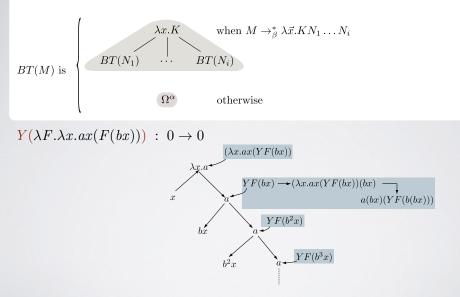
We add constants $Y^{(\alpha \to \alpha) \to \alpha}$ and Ω^{α} , for every type α . New reduction rule $YM \to_{\delta} M(YM)$.

Example: *YM* with $M = (\lambda x. ax)$

$$YM \to_{\delta} M(YM) \equiv (\lambda x.ax)(YM)$$
$$\to_{\beta} a(YM)$$
$$\to_{\delta} a(M(YM))$$
$$\to_{\beta} a(a(YM)) \to \dots$$

What is the result of the computation? $BT(YM) = a^{\omega}$.

A Böhm tree of a λY -term M is:



For closed terms of type 0 over tree signatures, Böhm tree is a tree.

DIGRESSION: RECURSION SCHEMES $\equiv \lambda Y$ -Calculus

$$F_1 = \lambda \vec{x} \cdot M_1$$
$$\vdots$$
$$F_n = \lambda \vec{x} \cdot M_n$$

$$T_{1} = Y(\lambda F_{1}.M_{1})$$

$$T_{2} = Y(\lambda F_{2}.M_{2})[T_{1}/F_{1}])$$

$$\vdots$$

$$T_{n} = Y(\lambda F_{n}.(\dots((M_{n}[T_{1}/F_{1}])[T_{2}/F_{2}])\dots)[T_{n-1}/F_{n-1}])$$

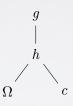
Fact

The tree generated from F_n is $BT(T_n)$. There is also a translation from λY -terms to schemes.

Specifying properties of Böhm trees

Proviso: Σ has only constants of types 0 or $0 \to 0 \to 0$ (plus constants Ω^{α} , $Y^{(\alpha \to \alpha) \to \alpha}$).

Recall: For tree signature: if M is a closed term of type 0 then BT(M) is a ranked tree.



Monadic second order logic:

 $\exists X. \forall y \in X. \exists z \in X. y < z \land a(z)$

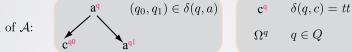
Tree automata:

Proviso:

 $\Sigma = \Sigma_0 \cup \Sigma_2$ with Σ_0 constants of type 0 and Σ_2 of type $0 \to 0 \to 0$.

Tree automaton:

 $\mathcal{A} = \langle Q, \Sigma \cup \{\Omega\}, q^0 \in Q, \delta_1 : Q \times \Sigma_0 \to \{false, true\}, \delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q^2) \rangle$



Run of \mathcal{A} :

Trivial acceptance condition: every run is accepting.

Parity acceptance condition: max rank on every path is even.

First camp

- λ -terms $\xrightarrow{\beta-red}$ Böhm trees (normal form)
- λY -terms $\xrightarrow{\beta\delta-red}$ Böhm trees with Ω .
- Tree automata running on Böhm trees.

Models

Models

- The meaning of a term is its Böhm tree
- But we can also evaluate terms in models

if BT(M) = BT(N) then $\llbracket M \rrbracket = \llbracket N \rrbracket$

- Types: $0 \mid \alpha \rightarrow \beta$
- Constants: c^{α}
- Terms: c^{α} , x^{α} , $(M^{\alpha \to \beta} N^{\alpha})^{\beta}$, $(\lambda x^{\alpha} . M^{\beta})^{\alpha \to \beta}$.

MODEL: $\mathcal{D} = \langle \{D^{\alpha}\}_{\alpha \in \mathcal{T}}, \rho \rangle$

- D^0 is a complete lattice;
- $D^{\alpha \to \beta}$ monotone functions from D^{α} to D^{β} ordered coordinatewise;
- $\rho(\Omega^{\alpha})$ is the greatest element of D^{α} ;
- $\rho(Y^{(\alpha \to \alpha) \to \alpha})$ is a mapping assigning to a function $f \in D^{\alpha \to \alpha}$ its fixpoint.
- GFP model: when *Y* assigns greatest fixpoints.
- Finitary model: when every D^{α} is finite.

Interpretation of a term $M : \alpha$ in a model \mathcal{D} is an element $\llbracket M \rrbracket_{\mathcal{D}} \in D^{\alpha}$.

- $\bullet \ \llbracket c \rrbracket_{\mathcal{D}}^{\upsilon} = \rho(c)$
- $\llbracket x^{\alpha} \rrbracket_{\mathcal{D}}^{\upsilon} = \upsilon(x^{\alpha})$
- $\llbracket MN \rrbracket_{\mathcal{D}}^{\upsilon} = \llbracket M \rrbracket_{\mathcal{D}}^{\upsilon} \llbracket N \rrbracket_{\mathcal{D}}^{\upsilon}$
- $[\![\lambda x^{\alpha}.M]\!]_{\mathcal{D}}^{v}$ is a function mapping an element $d \in D^{\alpha}$ to $[\![M]\!]_{\mathcal{D}}^{v[d/x^{\alpha}]}$ (this is a monotone function).

Fact: For every model \mathcal{D} : if $M =_{\beta,\delta} N$ then $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket N \rrbracket^{\mathcal{D}}$.

 β -REDUCTION $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ δ -REDUCTION $Y(M) \rightarrow_{\delta} M(YM).$

EXAMPLE

Take $D^0 = \{0, 1\}$. Then $D^{0 \to 0 \to 0}$ is $\{0, 1\} \to \{0, 1\} \to \{0, 1\}$.

 $\llbracket \lambda xy. x \rrbracket = \pi_1 \in D^{0 \to 0 \to 0}$ is the projection on the first component. $\llbracket \lambda xy. y \rrbracket = \pi_2 \in D^{0 \to 0 \to 0}.$

For every QBF sentence α : $\llbracket M_{\alpha} \rrbracket = \pi_1$ iff α is true.

Fact For every QBF formula α :

 α is true iff M_{α} reduces to λxy . x

DIGRESSION

Thm [Statman's Weak Completeness Theorem '82]:

For every λ -term M there is a finitary model \mathcal{D}_M such that for every λ -term K:

$$\llbracket M \rrbracket^{\mathcal{D}_M} = \llbracket K \rrbracket^{\mathcal{D}_N} \quad \text{iff} \quad M =_\beta K \; .$$

Thm [Loader's λ -definability theorem '96]:

For every nontrivial finitary model \mathcal{D} . It is not decidable if a given element *d* of the model is a denotation of a term.

Interpretation of a term $M : \alpha$ in a model \mathcal{D} is an element $\llbracket M \rrbracket_{\mathcal{D}} \in D^{\alpha}$.

- $\llbracket c \rrbracket_{\mathcal{D}}^{\upsilon} = \rho(c)$
- $\llbracket x^{\alpha} \rrbracket_{\mathcal{D}}^{\upsilon} = \upsilon(x^{\alpha})$
- $\llbracket MN \rrbracket_{\mathcal{D}}^{\upsilon} = \llbracket M \rrbracket_{\mathcal{D}}^{\upsilon} \llbracket N \rrbracket_{\mathcal{D}}^{\upsilon}$
- $[\![\lambda x^{\alpha}.M]\!]_{\mathcal{D}}^{v}$ is a function mapping an element $d \in D^{\alpha}$ to $[\![M]\!]_{\mathcal{D}}^{v[d/x^{\alpha}]}$.

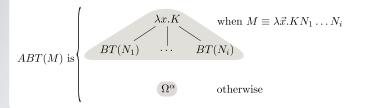
Fact:

For every model \mathcal{D} : if $M =_{\beta,\delta} N$ then $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket N \rrbracket^{\mathcal{D}}$.

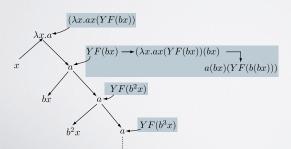
Theorem [Barendregt]: For every finitary GFP-model \mathcal{D} : if $BT(M) \equiv BT(N)$ then $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket N \rrbracket^{\mathcal{D}}$.

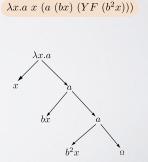
Approximate Böhm tree

ABT(M) is defined by

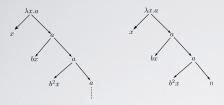


$$Y(\lambda F.\lambda x.ax(F(bx)))$$
 : $0 \to 0$





Meanings of Böhm trees



LEMMA

 $BT(M) = \bigsqcup \{ABT(N) : N =_{\beta, \delta} M\};$ here we are taking syntactic limit over trees.

SEMANTICS

$$\llbracket BT(M) \rrbracket^{\mathcal{D}} = \bigwedge \{ \llbracket ABT(N) \rrbracket^{\mathcal{D}} : N =_{\beta, \delta} M \}$$

THEOREM [?]

If \mathcal{D} is a finitary GFP model then: $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket BT(M) \rrbracket^{\mathcal{D}}$.

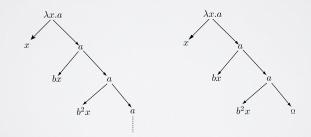
Theorem

If \mathcal{D} is a finitary GFP model then: $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket BT(M) \rrbracket^{\mathcal{D}}$.

 $\mathbf{Proof} \, \llbracket BT(M) \rrbracket \geq \llbracket M \rrbracket \texttt{:}$

•
$$\llbracket BT(M) \rrbracket^{\mathcal{D}} = \bigwedge \{ \llbracket ABT(N) \rrbracket^{\mathcal{D}} : N =_{\beta, \delta} M \}.$$

• $\llbracket ABT(N) \rrbracket^{\mathcal{D}} \ge \llbracket N \rrbracket^{\mathcal{D}} = \llbracket M \rrbracket^{\mathcal{D}}.$



THEOREM

If \mathcal{D} is a finitary GFP model then: $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket BT(M) \rrbracket^{\mathcal{D}}$.

```
Proof \llbracket M \rrbracket \ge \llbracket BT(M) \rrbracket:
```

- Let $N : \alpha \to \alpha$ without Y: Define *iterate*^{*i*}(N) to be $N(\dots(N\Omega^{\alpha})\dots)$.
- Define *iterate*^{*i*}(*M*) as the result of repeatedly replacing all *YN* by *iterate*^{*i*}(*N*).

Obs: If \mathcal{D} is a finitary GFP model then there is *i* such that $\llbracket M \rrbracket^{\mathcal{D}} = \llbracket iterate^{i}(M) \rrbracket^{\mathcal{D}}$.

 $\llbracket M \rrbracket = \llbracket \textit{iterate}^i(M) \rrbracket = \llbracket BT(\textit{iterate}^i(M)) \rrbracket \geq \llbracket BT(M) \rrbracket$

Almost there

We have

- Models $\mathcal{D} = (\{D^{\alpha}\}_{\alpha \in \mathcal{T}}, \rho)$ interpreting fixpoint operators.
- Ø Models are capable of talking about Böhm trees:

$$\llbracket M \rrbracket^{\mathcal{D}} = \llbracket BT(M) \rrbracket^{\mathcal{D}}$$

WE WANT

• A model $\mathcal{D}_{\mathcal{A}}$ such that $\llbracket M \rrbracket^{\mathcal{D}_{\mathcal{A}}}$ tells us if BT(M) is accepted by \mathcal{A} .

$$\mathcal{A} = \langle Q, \Sigma \cup \{\Omega\}, q^0 \in Q,$$

$$\delta_1 : Q \times \Sigma_0 \to \{ false, true \}, \delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q^2) \rangle$$

TAC (trivial acceptance condition) : all runs are accepting.

Model $\mathcal{D}_{\mathcal{A}}$:

- $D^0 = \mathcal{P}(Q)$.
- If c: 0 then $[\![c]\!] = \{q: \delta_1(q, c) = true\}$. $([\![\Omega]\!] = Q)$
- If $a: 0^2 \to 0$ then $\llbracket a \rrbracket$ is a function that for $(S_0, S_1) \in \mathcal{P}(Q)^2$ returns

 $\{q: \delta_2(q, a) \in S_0 \times S_1\}$

Theorem

For every closed term M of type 0:

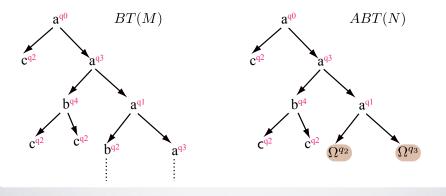
 $BT(M) \in L(\mathcal{A}) \quad \text{iff} \quad q_0 \in \llbracket M \rrbracket^{D_{\mathcal{A}}}$

IF $BT(M) \in L(\mathcal{A})$ THEN $q_0 \in \llbracket M \rrbracket^{\mathcal{D}_{\mathcal{A}}}$

Take a run of \mathcal{A} on BT(M) and show that $q^0 \in \llbracket BT(M) \rrbracket^{\mathcal{D}_{\mathcal{A}}} = \llbracket M \rrbracket^{\mathcal{D}_{\mathcal{A}}}$.

Recall that $\llbracket BT(M) \rrbracket^{\mathcal{D}} = \bigwedge \{ \llbracket ABT(N) \rrbracket^{\mathcal{D}} : N =_{\beta, \delta} M \}$

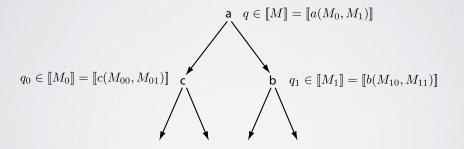
We show: $q^0 \in \llbracket ABT(N) \rrbracket$ for $N =_{\beta,\delta} M$.



If $q_0 \in \llbracket M \rrbracket$ then $BT(M) \in L(\mathcal{A})$

Property of the interpretation:

If $q \in \llbracket a(M_0, M_1) \rrbracket$ then there is $(q_0, q_1) \in \delta(q, a)$ such that: $q_0 \in \llbracket M_0 \rrbracket$, and $q_1 \in \llbracket M_1 \rrbracket$.



- $\mathcal{A} = \langle Q, \Sigma \cup \{\Omega\}, q^0 \in Q, \delta_1 : Q \times \Sigma_0 \to \{ false, true \}, \delta_2 : Q \times \Sigma_2 \to \mathcal{P}(Q^2) \rangle$ **Model** $\mathcal{D}_{\mathcal{A}}$:
 - $D^0 = \mathcal{P}(Q).$
 - If c: 0 then $[\![c]\!] = \{q: \delta_1(q, c) = true\}$. $([\![\Omega]\!] = Q)$
 - If $a: 0^2 \to 0$ then $\llbracket a \rrbracket$ is a function that for $(S_0, S_1) \in \mathcal{P}(Q)^2$ returns

 $\{q: \delta_2(q, a) \in S_0 \times S_1\}$

Theorem

For every closed term M of type 0:

 $BT(M) \in L(\mathcal{A}) \quad \text{iff} \quad q_0 \in \llbracket M \rrbracket^{D_{\mathcal{A}}}$

To decide $BT(M) \stackrel{?}{\in} L(\mathcal{A})$ it is enough to:

- Construct $\mathcal{D}_{\mathcal{A}}$,
- Calculate $\llbracket M \rrbracket^{\mathcal{D}_{\mathcal{A}}}$.

This works only for TAC conditions. (Simple models \equiv TAC conditions)

We can do Ω -aware TAC, but the climb is rather steep.

Reflective Böhm tree wrt. a model \mathcal{D} :

Thm [Broadbent, Carayol, Ong, Serre]: For every finitary model \mathcal{D} and λY -term M there is a λY -term N such that $BT(N) = rBT_{\mathcal{D}}(M)$.



 $(\alpha \to \beta)^{\bullet} = \alpha^{\bullet} \to [\alpha] \to \beta^{\bullet}$ and $\alpha^{\bullet} = \alpha$ when α is atomic.

$$\begin{split} [MN, \upsilon] &= [M, \upsilon] \, [N, \upsilon] \, \llbracket N \rrbracket^{\upsilon} \\ & [x^{\alpha}, \upsilon] = x^{\alpha^{\bullet}} \\ \Big[\, Y^{(\alpha \to \alpha) \to \alpha} M, \upsilon \Big] &= Y^{(\alpha^{\bullet} \to \alpha^{\bullet}) \to \alpha^{\bullet}} (\lambda x^{\alpha^{\bullet}} . \, \llbracket M, \upsilon] \, x^{\alpha^{\bullet}} \llbracket YM \rrbracket^{\upsilon}) \\ & [\lambda x^{\alpha} . M, \upsilon] = \lambda x^{\alpha^{\bullet}} \lambda y^{[\alpha]} . \text{ case } y^{[\alpha]} \{ d \to [M, \upsilon[d/x^{\alpha}]] \}_{d \in \mathcal{S}_{\alpha}} \\ & [a, \upsilon] = \lambda x_{1}^{0} \lambda y_{1}^{[0]} \lambda x_{2}^{0} \lambda y_{2}^{[0]} . \text{ case } y_{1}^{[0]} \{ d_{1} \to \\ & \text{ case } y_{2}^{[0]} \{ d_{2} \to a^{\rho(a)d_{1} d_{2}} x_{1} x_{2} \}_{d_{2} \in \mathcal{S}_{0}} \}_{d_{1} \in \mathcal{S}_{0}} \end{split}$$

Krivine machines

Krivine machines

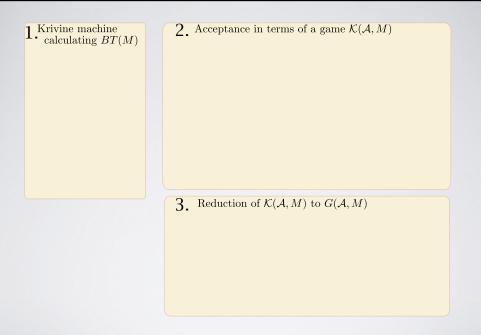
- The meaning of a term is its Böhm tree.
- It can be computed with a Krivine machine.
- So now instead of using semantics we use syntax.

Our objective is to decide, for a fixed \mathcal{A} ,

if for a given M: $BT(M) \in L(\mathcal{A})$.

We will:

- use Krivine machine to compute BT(M),
- **2** construct a game $\mathcal{K}(\mathcal{A}, M)$ on this computation,
- **③** reduce it to $G(\mathcal{A}, M)$ that will be a finite game.



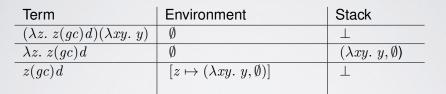
• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	L

• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	1
$\lambda z. \ z(gc)d$	Ø	$(\lambda xy. y, \emptyset)$

• Closure $C ::= (N, \rho)$



• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	L
$\lambda z. \ z(gc)d$	Ø	$(\lambda xy. \ y, \emptyset)$
z(gc)d	$[z \mapsto (\lambda xy. \ y, \emptyset)]$	\perp
	Let $\rho \equiv [z \mapsto (\lambda xy. \ y, \emptyset)]$	

• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	1
$\lambda z. \ z(gc)d$	Ø	$(\lambda xy. y, \emptyset)$
z(gc)d	$[z \mapsto (\lambda xy. \ y, \emptyset)]$	1
	Let $\rho \equiv [z \mapsto (\lambda xy. \ y, \emptyset)]$	
z	ρ	(gc, ho)~(d, ho)

• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	L
$\lambda z. \ z(gc)d$	Ø	$(\lambda xy. \ y, \emptyset)$
z(gc)d	$[z \mapsto (\lambda xy. \ y, \emptyset)]$	Ĺ
	Let $\rho \equiv [z \mapsto (\lambda xy. \ y, \emptyset)]$	
z	ρ	(gc, ho)~(d, ho)
$\lambda xy. y$	Ø	$(gc, \rho) (d, \rho)$

• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	L
$\lambda z. \ z(gc)d$	Ø	$(\lambda xy. \ y, \emptyset)$
z(gc)d	$[z \mapsto (\lambda xy. \ y, \emptyset)]$	Ĺ
	Let $\rho \equiv [z \mapsto (\lambda xy. \ y, \emptyset)]$	
z	ρ	$(gc, \rho) (d, \rho)$
$\lambda xy. y$	Ø	$(gc, \rho) (d, \rho)$
<i>y</i>	$[x\mapsto (gc,\rho)][y\mapsto (d,\rho)]$	

• Closure $C ::= (N, \rho)$

Term	Environment	Stack
$(\lambda z. \ z(gc)d)(\lambda xy. \ y)$	Ø	L
$\lambda z. \ z(gc)d$	Ø	$(\lambda xy. \ y, \emptyset)$
z(gc)d	$[z \mapsto (\lambda xy. \ y, \emptyset)]$	Ĺ
	Let $\rho \equiv [z \mapsto (\lambda xy. \ y, \emptyset)]$	
z	ρ	$(gc, \rho) (d, \rho)$
$\lambda xy. y$	Ø	(gc, ho) (d, ho)
y	$[x\mapsto (gc,\rho)][y\mapsto (d,\rho)]$	T
d	ρ	Ť

KRIVINE MACHINE (2)

A configuration of a Krivine machine is a triple (N, ρ, S) where:

- N is a term (a subterm of M);
- ρ is an environment defined for all free variables of N;
- S is a stack C₁...C_k, where k and the types of the closures are determined by the type of N: the type of C_i is α_i where the type of N is α₁ → ··· → α_k → 0.

A configuration (N, ρ, S) represents a term:

$$E((N, \rho, S)) = E(N, \rho)E(C_1)\dots E(C_n)$$

Example:

•
$$(z^{0\to 0\to 0}, \rho, (gc, \rho)(d, \rho))$$
 with $\rho \equiv [z \mapsto (\lambda xy. \ y, \emptyset)]$ gives

 $(\lambda xy. y) (gc) d$

$$\begin{aligned} (\lambda x.N,\rho,(K,\rho')S) &\to (N,\rho[x\mapsto (K,\rho')],S) \\ (YN,\rho,S) &\to (N(YN),\rho,S) \\ (NK,\rho,S) &\to (N,\rho,(K,\rho)S) \\ (x,\rho,S) &\to (N,\rho',S) \quad \text{where } (N,\rho') = \rho(x) \end{aligned}$$

Lemma: Term $E(N, \rho, \bot)$ has a head normal form iff Krivine machine reduces (N, ρ, \bot) to a $(b(N_1, N_2), \rho', \bot)$ for some constant $b \neq \Omega$.

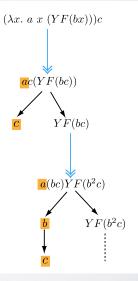
Lemma: All the terms appearing in configurations of the Krivine machine during the computation from (M, \emptyset, \bot) are subterms of M.

BT(M) with Krivine machines

The Böhm tree of

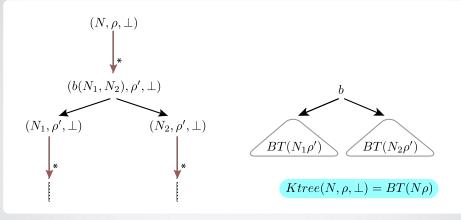
 $Y(\lambda F. \lambda x. a \ x \ (F(bx))) \ c \ : 0$

is

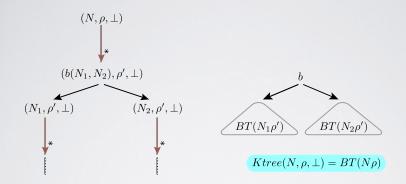


Computing Böhm tree

Lemma: Term $E(N, \rho, \bot)$ has a head normal form iff Krivine machine reduces (N, ρ, \bot) to a $(b(N_1, N_2), \rho', \bot)$ for some constant $b \neq \Omega$.

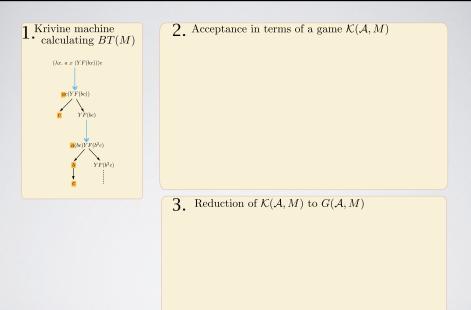


Computing Böhm tree

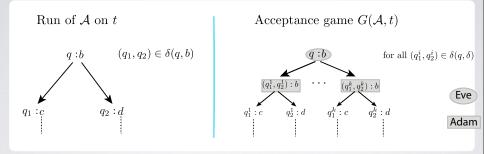


Proposition: For every closed λY -term M of type 0:

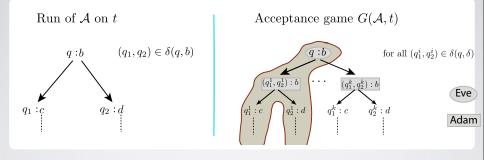
 $BT(M) = Ktree(M, \emptyset, \bot).$



GAME FOR AUTOMATON ACCEPTANCE

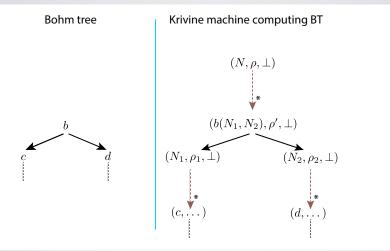


GAME FOR AUTOMATON ACCEPTANCE

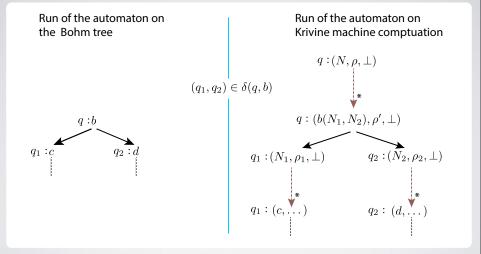


Eve has a strategy in $G(\mathcal{A}, t)$ iff t is accepted by \mathcal{A} .

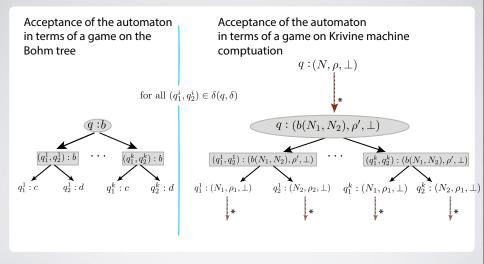
Defining $\mathcal{K}(\mathcal{A}, M)$

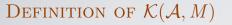


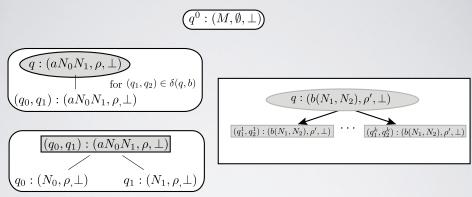
Defining $\mathcal{K}(\mathcal{A}, M)$



Defining $\mathcal{K}(\mathcal{A}, M)$







Definition of $\mathcal{K}(\mathcal{A}, M)$

$$\begin{array}{c}
 \hline q^{0}:(M,\emptyset,\bot) \\
\hline q:(aN_{0}N_{1},\rho,\bot) \\
\downarrow & \text{for } (q_{1},q_{2}) \in \delta(q,b) \\
\downarrow & q:(N,\rho[x\mapsto C],S) \\
\hline \hline (q_{0},q_{1}):(aN_{0}N_{1},\rho,\bot) \\
\hline \hline (q_{0},q_{1}):(aN_{0}N_{1},\rho,\bot) \\
\hline \hline q_{0}:(N_{0},\rho,\bot) & q_{1}:(N_{1},\rho,\bot) \\
\hline \end{array}$$

$$\begin{array}{c}
 \hline q:(Xx.N,\rho,CS) \\
\downarrow \\
q:(N,\rho[x\mapsto C],S) \\
\hline \\
 \hline q:(N(YN),\rho,S) \\
\hline \\
\hline \\
 \hline q:(N(YN),\rho,S) \\
\hline \end{array}$$

Definition of $\mathcal{K}(\mathcal{A}, M)$

$$(q^{0}:(M,\emptyset,\bot))$$

$$(q:(aN_{0}N_{1},\rho,\bot))$$

$$(q_{0},q_{1}):(aN_{0}N_{1},\rho,\bot)$$

$$(q_{0},q_{1}):(aN_{0}N_{1},\rho,\bot)$$

$$(q:(N,\rho,(x,N,\rho,S))$$

$$(q:(N,\rho,(x,N,\rho)S))$$

$$(q:(N,\rho,(x,N,\rho)S))$$

$$(q:(N,\rho,(x,N,\rho)S))$$

$$(q:(N,\rho,(x,N,\rho)S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho,S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho,S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho,S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho,S))$$

$$(q:(X,\rho',S))$$

$$(q:(X,\rho,S))$$

$$(q:(NK,\rho,S))$$

$$(q:(N,\rho,(v,K,\rho)S))$$

$$(losure is created)$$

$$(q:(N,\rho,(v,K,\rho)S))$$

$$(q:(NK,\rho,S))$$

$$(q:(NK,\rho,S))$$

$$(q:(N,\rho,(v,K,\rho)S))$$

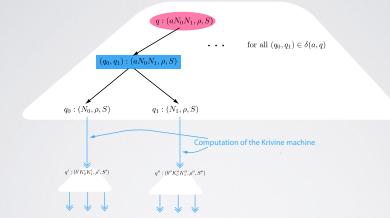
$$(q:(N,\rho,(v,K,\rho)S))$$

$$(q:(X,\rho',\emptyset))$$

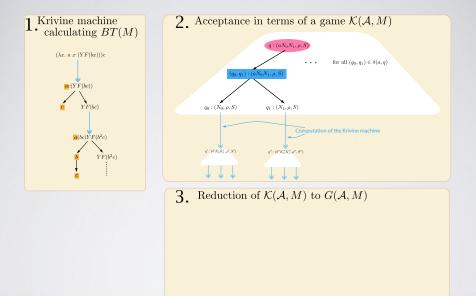
$$(q:(X,\rho',\emptyset))$$

$$(q:(X,\rho,\emptyset))$$

Thm: Eve wins in $\mathcal{K}(\mathcal{A}, M)$ iff \mathcal{A} accepts BT(M).

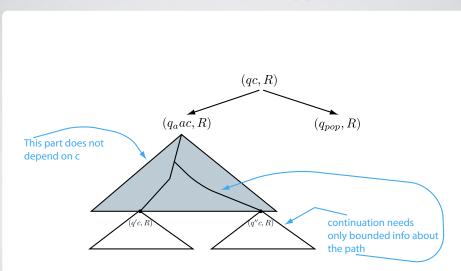


Proposition: For every closed λY -term M of type 0: $BT(M) = Ktree(M, \emptyset, \bot)$.

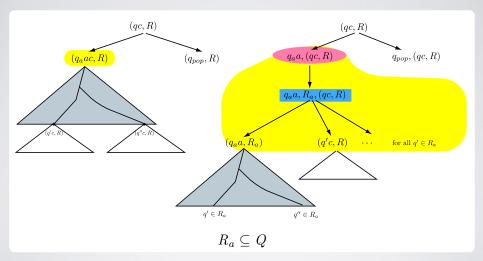


DECOMPOSITION PROPERTY FOR A PUSHDOWN

 $qc \mapsto q_a ac \qquad qc \mapsto q_{pop}$

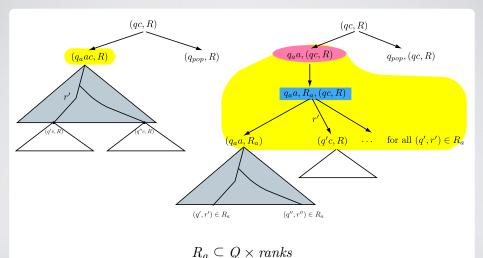


REDUCTION TO A FINITE GAME

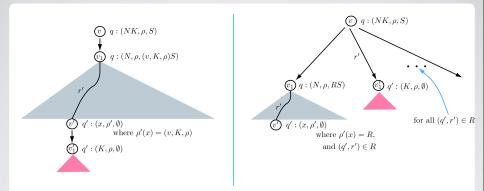


REDUCTION TO A FINITE GAME (WITH RANKS)

 $qc \mapsto q_a ac \qquad qc \mapsto q_{pop}$



From $\mathcal{K}(\mathcal{A}, M)$ to $G(\mathcal{A}, M)$



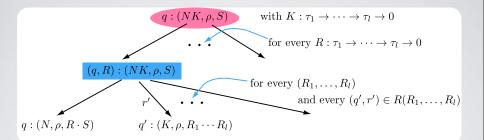
• Residual of type 0 is from $\mathcal{P}(Q \times [d])$.

• Residual of type $0 \to 0$ is from $\mathcal{P}(Q \times [d]) \to \mathcal{P}(Q \times [d])$.

$G(\mathcal{A}, M)$

$$\begin{aligned} q : (\lambda x.N, \rho, R \cdot S) &\to q : (N, \rho[x \mapsto R], S) \\ q : (a(N_0, N_1), \rho, \bot) &\to (q_0, q_1) : (a(N_0, N_1), \rho, \bot) \\ &\quad \text{for } (q_0, q_1) \in \delta(q, a) \\ (q_0, q_1) : (a(N_0, N_1), \rho, \bot) &\to q_i : (N_i, \rho \downarrow_{rk(q_i)}, \bot) \\ &\quad \text{for } i = 0, 1 \\ q : (YN, \rho, S) \to q : (N(YN), \rho, S) \end{aligned}$$

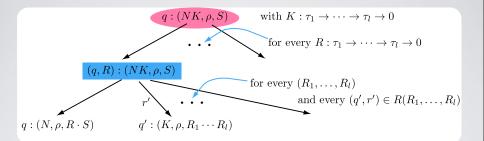
$G(\mathcal{A}, M)$



Eve wins in a position:

• $q:(x,\rho,S)$ if $(q,rk(q)) \in \rho(x)(S)$.

Properties of $G(\mathcal{A}, M)$



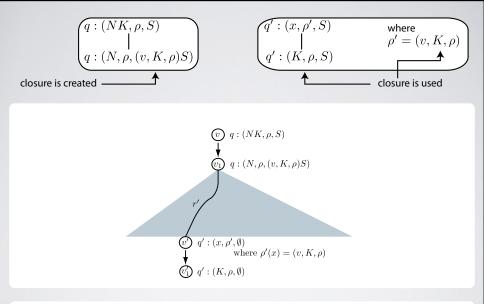
Obs:

For every N there are finitely many nodes in $G(\mathcal{A}, M)$ containing N.

Thm: Eve wins in $G(\mathcal{A}, M)$ iff Eve wins in $\mathcal{K}(\mathcal{A}, M)$.

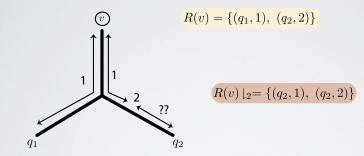
Thm: Eve wins in $G(\mathcal{A}, M)$ iff Eve wins in $\mathcal{K}(\mathcal{A}, M)$.

Proof:

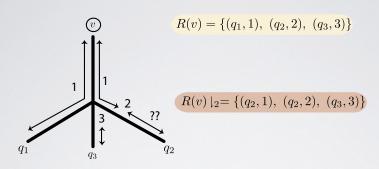


Residual $R(v) = \{(q', r'), ...\}$

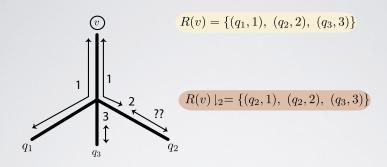
Adjusted residual $R(v) \downarrow_r$



Adjusted residual $R(v) \downarrow_r$

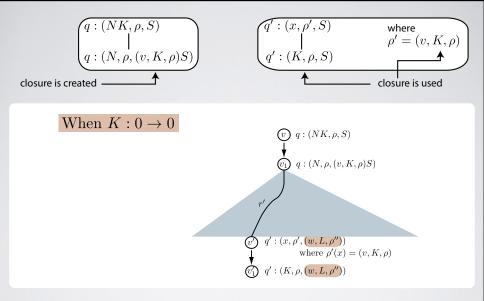


Adjusted residual $R(v) \downarrow_r$



Notation : $res(v, v_1) = R(v) \downarrow_{\max(v, v_1)}$

- $res(C, v_1) = R(v) \downarrow_{max(v,v_1)}$ where $C = (v, L, \rho)$,
- $res(\rho, v_1) = \rho_1$ such that $\rho_1(x) = res(\rho(x), v_1)$,
- $res(S, v_1) = R_1 \dots R_k$ where $R_i = res(C_i, v_1)$, and $S = C_1 \dots C_k$.



Residual $R(v)(R(w)|_{r''}) = \{(q', r'), ...\}$ where $r'' = \max(w, v')$

$$\begin{array}{c|c} G(\mathcal{A}, M) & \mathcal{K}(\mathcal{A}, M) \\ \hline { } \textcircled{o} q : (N, \rho_1, S_1) & \textcircled{o} q : (N, \rho_2, S_2) & \overbrace{S_1 = res(S_2, v_2)}^{\rho_1 = res(\rho_2, v_2)} \\ \hline q : (\lambda x.N, \rho_1, RS_1) & q : (\lambda x.N, \rho_2, CS_2) & R = res(C, v_2) \\ \downarrow & \downarrow & \\ q : (N, \rho_1[x \mapsto R], S_1) & q : (N, \rho_2[x \mapsto C], S_2) \end{array}$$

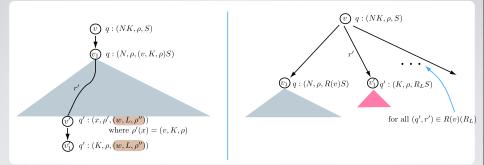
$$\begin{array}{c} G(\mathcal{A}, M) \\ \textcircled{G}(q, M) \\ \textcircled{G}(q; (N, \rho_1, S_1) \\ (m) = (aN_0N_1, \rho_1, \bot) \\ (m) = (aN_0N_1, \rho_2, \bot) \\ (m) = (aN_0N_$$

$G(\mathcal{A},M)$	$\mathcal{K}(\mathcal{A},M)$	
$\textcircled{b} q:(N,\rho_1,S_1)$	$\textcircled{D}q:(N,\rho_2,S_2)$	$\rho_1 = res(\rho_2, v_2)$ $S_1 = res(S_2, v_2)$
(1) $q:(x, \rho_1, S_1)$	(b) $q:(x, \ \rho_2, \ S_2)$	

We want to show $(q, rk(q)) \in \rho_1(x)(S_1)$. Suppose $\rho_2(x) = (v, K, \rho)$

- $(q, \max(v, v_2)) \in R(v)(res(S_2, v_2))$ by def.
- $(q, \max(v, v_2)) \in R(v)(res(S_2, v_2)) \mid_{\max(v, v_2)}$ by prop of \downarrow
- $(q, rk(q)) \in R(v)(res(S_2, v_2)) \downarrow_{\max(v, v_2)}$ by prop of \downarrow
- $(q, rk(q)) \in \rho_1(x)(S_1)$ by def.

DECOMPOSITION PROPERTY



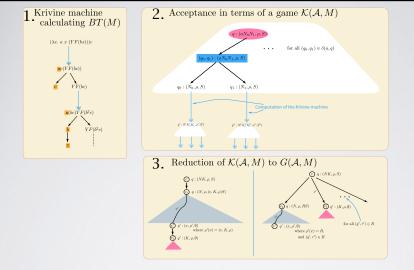
Closure $(v, K^{0\to 0}, \rho)$ is replaced by $R(v) : \mathcal{P}(Q \times [d]) \to \mathcal{P}(Q \times [d])$. We put (q', r') in $R(v)(R_L)$.

We use induction on types.

$$G(\mathcal{A}, M) \qquad \qquad \mathcal{K}(\mathcal{A}, M)$$

$$\textcircled{O} q: (N, \rho_1, S_1) \qquad \qquad \textcircled{O} q: (N, \rho_2, S_2) \qquad \qquad \begin{array}{c} \rho_1 = res(\rho_2, v_2) \\ S_1 = res(S_2, v_2) \end{array}$$

$$\overbrace{(q, R(v_2)): (NK, \rho_1, S_1)} \\ q: (N, \rho_1, R(v_2) \mid_{rk(q)} S_1) \\ q': (K, \rho_1 \mid_{r'}, \vec{R}) \\ for some (q', r') \in R(v_2)(\vec{R}) \end{array}$$



Thm: Eve wins in $G(\mathcal{A}, M)$ iff Eve wins in $\mathcal{K}(\mathcal{A}, M)$.

Obs: $G(\mathcal{A}, M)$ is finite.

GLOBAL MODEL CHECKING

Representing configurations of a Krivine machine For closures: $\langle (M, \rho) \rangle$ is M

For configurations: $\langle (M, \rho, S_1 \dots S_l) \rangle$ is $\langle (M, \rho) \rangle, \langle S_1 \rangle, \dots, \langle S_l \rangle$.

 $\langle \rho(x_1) \rangle \qquad \cdots \qquad \langle \rho(x_k) \rangle$

Theorem

For every M and A, the set:

 $\{\langle N, \rho, S \rangle : BT(E(N, \rho, S)) \in L(\mathcal{A})\}$

is a regular language of finite trees.

Transfer Theorem

$\begin{array}{cccc} M & \xrightarrow{eval} & BT(M) \\ \widehat{\varphi} & \leftarrow & \varphi \end{array}$

TRANSFER THEOREM For all φ exists $\hat{\varphi}$ s.t. $M \models \hat{\varphi}$ iff $BT(M) \models \varphi$

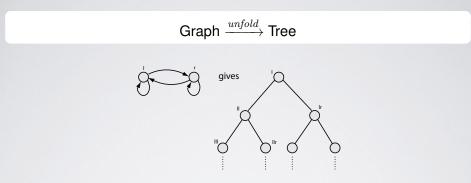
107/127

$\begin{array}{cccc} M & \xrightarrow{eval} & BT(M) \\ \widehat{\varphi} & \leftarrow & \varphi \end{array}$

TRANSFER THEOREM For all $\Sigma, \mathcal{T}, \mathcal{X}$. For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$:

 $M\vDash\widehat{\varphi}\quad\text{iff}\quad BT(M)\vDash\varphi$

EXAMPLE: UNFOLDING



MSO-compatibility of unfolding

For all Σ . For all φ exists $\widehat{\varphi}$ s.t. for all $G \in Graph(\Sigma)$:

 $G \vDash \widehat{\varphi}$ iff $Unf(G) \vDash \varphi$

Rem: This theorem implies Rabin's Theorem.

EXAMPLE: NORMALIZABLE TERMS

Transfer Theorem:

For all φ exists $\widehat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$:

 $M \vDash \widehat{\varphi} \quad \text{iff} \quad BT(M) \vDash \varphi$

• Take $\varphi \equiv$ "finite tree"

• $BT(M) \vDash \varphi$ iff *M* has a normal form.

 $M \vDash \widehat{\varphi}$ iff *M* has a normal form

So { $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X}) : M$ has a normal form} is MSOL-definable.

TRANSFER THEOREM

For all $\Sigma, \mathcal{T}, \mathcal{X}$. For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$:

 $M\vDash \widehat{\varphi} \quad \text{iff} \quad BT(M)\vDash \varphi$

- Σ is a tree signature
- \mathcal{T} is a finite set of terms
- X is a finite set of λ-variables
- $Terms(\Sigma, \mathcal{T}, \mathcal{X})$: terms over Σ with
 - all subterms having type in \mathcal{T} ,
 - all λ -variables from \mathcal{X} .

Note: Theorem works also for infinite λY -terms, and unobunded number of *Y* variables.

What it means $M \models \hat{\varphi}$?

M is represented as a tree Graph(M) over the alphabet

$$Talph(\Sigma, \mathcal{T}, \mathcal{X}) = \sum \cup \{ @^{\alpha}, Y^{\alpha} : \alpha \in \mathcal{T} \} \cup \mathcal{X} \cup \\ \{ \lambda^{\alpha \to \beta} x^{\alpha} : \alpha \in \mathcal{T} \land \alpha \to \beta \in \mathcal{T} \land x^{\alpha} \in \mathcal{X} \} .$$

Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \models \hat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi$

A sketch of the proof

Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \models \hat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi$

Consequences of the transfer theorem

Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \vDash \hat{\varphi} \quad \text{iff} \quad BT(M) \vDash \varphi$

ONG'S THEOREM

It is decidable if for a given finite term M and MSOL formula φ , $BT(M) \models \varphi$ holds.

Proof: Just test $M \vDash \widehat{\varphi}$.

Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \vDash \hat{\varphi} \quad \text{iff} \quad BT(M) \vDash \varphi$

THE SET OF NORMALIZING TERMS IS MSOL DEFINABLE For a fixed \mathcal{T} and \mathcal{X} there is a formula defining the set of terms $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$ having a normal form.

Proof: Take φ defining the set of finite trees and consider $\hat{\varphi}$.

QBF TO TERMS Every *QBF* formula α can be translated to a term M_{α} :

 $\forall x. \exists y. \ x \land \neg y \quad \mapsto \quad All(\lambda x. \ Exists(\lambda y. \ and \ x \ (noty)))$

 α is true iff $BT(M_{\alpha})$ is the term *true*

Take φ saying that the tree consists only of the root labeled *true*. Consider $\hat{\varphi}$.

 $M_{\alpha} \vDash \widehat{\varphi}$ iff α is true.

If we could construct $\widehat{\varphi}$ without limiting \mathcal{X} then we get collapse of the polynomial hierarchy.

MATCHING WITH RESTRICTED NO OF VARIABLES

For a fixed \mathcal{X} . Given M and K (without fixpoints) decide if there is a substitution σ such that

 $M\sigma =_{\beta} K$

Substitution σ can use only terms from $Terms(\Sigma, \mathcal{T}, \mathcal{X})$.

Proof:

- Let shape(N) be MSOL formula defining the set of terms in Terms(Σ, T, X) that can be obtained from N by substitutions.
- Let $\varphi \equiv shape(K)$.
- There is desired σ iff the formula $shape(M) \land \widehat{\varphi}$ is satisfiable.

If there is a solution then there is a finite one.

Synthesis from modules

Given finite λY -terms M_1, \ldots, M_k and φ . Decide if one can construct a λY term K from these terms such that $BT(K) \models \varphi$.

Proof:

- The candidate term K can be described as having the form $(\lambda x_1 \dots x_k, N)M_1, \dots, M_k$ for some term N without constants and λ -abstractions.
- Let ψ be a formula defining terms of this form.
- There is a solution iff the formula $\psi \wedge \widehat{\varphi}$ is satisfiable.

Every model of $\psi \wedge \widehat{\varphi}$ gives a solution.

If there is a solution then there is a regular one, hence a finite one thanks to the presence of Y.

Two ways looking at it.

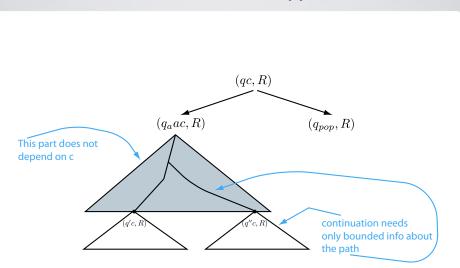
Studding new properties of evaluation in simple types.

Bringing verification to a new ground.

In the beginner's mind there are many possibilities, in the expert's mind there are few.

Decomposition property for a pushdown:

 $qc \mapsto q_a ac \qquad qc \mapsto q_{pop}$



$$M \xrightarrow{eval} BT(M) \stackrel{?}{\in} L(\mathcal{A})$$

- Understanding $BT(M) \stackrel{?}{\in} L(\mathcal{A})$ in terms of models $[\![M]\!] = [\![BT(M)]\!]$
- Understanding $BT(M) \stackrel{?}{\in} L(\mathcal{A})$ in terms of $\mathcal{K}(\mathcal{A}, M)$

 $\mathcal{K}(\mathcal{A}, M)$ equivalent to $G(\mathcal{A}, M)$

MSO compatibility of evaluation

$$\begin{array}{cccc} M & \stackrel{eval}{\longrightarrow} & BT(M) \\ \widehat{\varphi} & \leftarrow & \varphi \end{array}$$

- Getting closer to "real" computation.
- Transfer theorem covers: Rabin's theorem, unfolding theorem, pushdown hierarchy, Ong's theorem, global model-checking,...
- The use of old techniques in a new way.