
Recursive Schemes,
Krivine Machines, and

Monadic Logic

Igor Walukiewicz

Bordeaux University

Joint work with Sylvain Salvati

1 / 127

2 / 127

3 / 127

PCF (Programming Computable Functions)

search ≡λp : nat → bool.
letrec f (x : nat) : nat = if (px) then x else f (x + 1) in f 0

Proposed by Scott (1969)
Mitchell "Foundations for Programming Languages" (1996):

Designed to be easily analyzed, rather than practical
language for writing programs. However with some
syntactic sugar it is possible to write many functional
programs in a comfortable style.

PCF has been in the center of interest of semantics
"sequentially computable functional", parallel OR, full abstraction.

4 / 127

Finitary PCF: base types are finite.

search ≡λp : ”nat”→ bool.
letrec f (x : ”nat”) : ”nat” = if (px) then x else f (x + 1) in f 0

[Statman’04]: βδ-equality on terms is undecidable.

[Loader’96]: There is no recursive fully-abstract model

Finitary PCF ≡ λY -calculus
simply-typed λ calculus with fixpoint operators.

5 / 127

map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

map(f , (a, b, c)) = (f (a), f (b), f (c))

6 / 127

map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

7 / 127

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Such trees are interesting because

They reflect a part of the semantics of a program.
They have decidable MSOL theory.
Interesting properties can be expressed in MSOL:

All elements in the result are in the range of f

8 / 127

Resource usage for functional programs
[Kobayashi’09]

One can verify if usage patterns are correct.

9 / 127

While-programs

x := e | if x = 0 then I1 else I2 | while x > 0 do I

variables range over N and e are arithmetic expressions

While-programs are Turing powerful.
Does this mean that all other programming concepts are
obsolete?
Schemes give a way to show that they are not:

There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.

10 / 127

Recursion ≡ stacks

F ≡ λx. if x = 0 then 1 else F(x − 1) · x.

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.

11 / 127

Recursion ≡ stacks

F ≡ λx. if x = 0 then 1 else F(x − 1) · x.

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.

12 / 127

Recursion ≡ stacks

F ≡ λx. if x = 0 then 1 else F(x − 1) · x.

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.

13 / 127

Recursion ≡ stacks

F ≡ λx. if x = 0 then 1 else F(x − 1) · x.

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.

14 / 127

What about higher-order schemes?
Second-order scheme
Map ≡ λf .λx. if x = nil then nil else f (hd(x)) ·Map(f , tl(x))

Thm [Knapik, Niwiński, Urzyczyn]:
Higher-order safe schemes ≡ higher-order pushdown automata

Theorem [Hague, Murawski, Ong & Serre]: n-th order schemes ≡ unfoldings of n-th
order collapse pushdown automata.

Thm [Parys]:
Safety is a true restriction

Here:
On MSO theories of trees generated by higher-order schemes
(These are also the tress generated by programs of finitary PCF).

15 / 127

+ Ianov’58 “The logical schemas of algorithms”

+ Park PhD’68 Recursive schemes

+ Scott, Elgot

+ Milner’73 Plotkin’77 PCF

Program Scheme

In!nite treeMeaning

abstraction

solution in a
free algebra

Interpretation

+ Aho’68 indexed languages

+ Maslov’74 ’76 higher-order indexed
languages and higher order pushdown automata.

Schemes Languages,
Higher-order pushdowns

+ Courcelle’76 for trees: 1-st order schemes=CFL
+ Engelfriet Schmidt’77 IO/OI

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn’02 Safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable

+Statman’04 Equivalence of PCF terms is undecidable

+Loader’01: Lambda-definability is undecidable

+ Ong’06: Decidability of MSOL theory

16 / 127

Two main algorithmic problems

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Deciding equality of schemes:
Do two schemes generate the same trees?

Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]

17 / 127

The model-checking problem:
Given S and an MSOL formula ϕ decide if [[S]] � ϕ.

Theorem[Ong]:
This problem is decidable.

[[S]] = g

c a

g

b
c

a

g

b

b
c

a
...

� ϕ

18 / 127

Motivation

Finitary PCF is an important abstraction of functional languages.

Finitary PCF ≡ schemes ≡ λY -calculus.
It has been studied by semantics and language communities
since 60’ties.

The “schematological" approach to semantics gives non-trivial
insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs

19 / 127

Preparation

λY -terms.
Evaluation.
Böhm trees.
MSOL and automata.

M eval−−→ BT (M) ?∈ L(A)

20 / 127

Simply typed λ-calculus

Types:
0 is a type;
α→ β is a type if α, β are types.

Eg. (0→ 0)→ 0

Typed constants:
cα for a type α.

Tree signature: All constants of types 0→ · · · → 0→ 0.

Typed terms:
cα,
xα,
(Mα→βNα)β,
(λxα.M β)α→β.

21 / 127

Types: 0 | α→ β

Constants: cα

Terms: cα, xα, (Mα→βNα)β, (λxα.M β)α→β.

Example: c, d : 0, g : 0→ 0, f : 0→ 0→ 0

22 / 127

β-reduction: (λx.M)N =β M [N/x]

(λx.f (gx)d)c →β f (gc)d

(λz.z(gc)d)(λxy.y)→β (λxy.y)(gc)d →β d

Substitution is as in logic: one should avoid variable capture

(λh.λx.g(hx))(fx)→β λy.g(fxy)

and not λx.g(fxx)

f : 0→ 0→ 0, g, h : 0→ 0

23 / 127

Result of the computation ≡ normal form

(λx.f (gx)d)c →β f (gc)d

(λz.z(gc)d)(λxy.y)→β (λxy.y)(gc)d →β d

(λh.λx.g(hx))(fx)→β λy.g(fxy)

24 / 127

Example (QBF)
tt = λxy. x, ff = λxy. y, They are of type 0→ 0→ 0.
and = λb1b2. λxy. b1(b2xy)y, or = λb1b2. λxy. b1x(b2xy),
neg = λb. λxy. byx
All = λf . and(f tt)(f ff), Exists = λf . or(f tt)(f ff).

QBF to terms
Every QBF formula α can be translated to a term Mα:

∀x.∃y. x ∧ ¬y 7→ All(λx. Exists(λy. and x (neg y)))

Fact For every QBF formula α:

α is true iff Mα evaluates to tt.

25 / 127

In 18pt

Let us reduce:

We obtain:

26 / 127

A Böhm tree of a term M :
constant or variable

head normal form

Böhm tree of (λy. g (hxy)) c is g

h

x c

Important: If M : 0 over tree signature then BT (M) is a ranked tree,
the only possible head normal form of M is aN1 . . .Nk .

27 / 127

λY -calculus

We add constants Y (α→α)→α and Ωα, for every type α.

New reduction rule YM →δ M (YM).

Example: YM with M = (λx.ax)

YM →δ M (YM) ≡ (λx.ax)(YM)
→β a(YM)
→δ a(M (YM))
→β a(a(YM))→ . . .

What is the result of the computation? BT (YM) = aω.

28 / 127

A Böhm tree of a λY -term M is:

Y (λF .λx.ax(F(bx))) : 0→ 0

For closed terms of type 0 over tree signatures, Böhm tree is a tree.
29 / 127

Digression: Recursion schemes ≡ λY -calculus

F1 =λ~x.M1
...

Fn =λ~x.Mn

T1 =Y (λF1.M1)
T2 =Y (λF2.M2)[T1/F1])

...
Tn =Y (λFn .(. . . ((Mn [T1/F1])[T2/F2]) . . .)[Tn−1/Fn−1])

Fact
The tree generated from Fn is BT (Tn).
There is also a translation from λY -terms to schemes.

30 / 127

Specifying properties of Böhm trees

Proviso: Σ has only constants of types 0 or 0→ 0→ 0
(plus constants Ωα,Y (α→α)→α).

Recall: For tree signature: if M is a closed term of type 0 then BT (M)
is a ranked tree.

g

h

Ω c

Monadic second order logic:
∃X . ∀y ∈ X . ∃z ∈ X . y < z ∧ a(z)

Tree automata:

31 / 127

Proviso:
Σ = Σ0 ∪Σ2 with Σ0 constants of type 0 and Σ2 of type 0→ 0→ 0.

Tree automaton:

A = 〈Q,Σ∪{Ω}, q0 ∈ Q, δ1 : Q×Σ0 → {false, true}, δ2 : Q×Σ2 → P(Q2)〉

aq

cq0 aq1

cq

Trivial acceptance condition: every run is accepting.

Parity acceptance condition: max rank on every path is even.

32 / 127

First camp

λ-terms β−red−−−−→ Böhm trees (normal form)

λY -terms βδ−red−−−−→ Böhm trees with Ω.
Tree automata running on Böhm trees.

33 / 127

Models

34 / 127

Models
The meaning of a term is its Böhm tree
But we can also evaluate terms in models

if BT (M) = BT (N) then [[M]] = [[N]]

35 / 127

Types: 0 | α→ β

Constants: cα

Terms: cα, xα, (Mα→βNα)β, (λxα.M β)α→β.

Model: D = 〈{Dα}α∈T , ρ〉
D0 is a complete lattice;
Dα→β monotone functions from Dα to Dβ ordered coordinatewise;
ρ(Ωα) is the greatest element of Dα;
ρ(Y (α→α)→α) is a mapping assigning to a function f ∈ Dα→α its
fixpoint.

GFP model: when Y assigns greatest fixpoints.
Finitary model: when every Dα is finite.

36 / 127

Interpretation of a term M : α in a model D is an element [[M]]D ∈ Dα.

[[c]]υD = ρ(c)
[[xα]]υD = υ(xα)
[[MN]]υD = [[M]]υD[[N]]υD
[[λxα.M]]υD is a function mapping an element d ∈ Dα to [[M]]υ[d/xα]

D .
(this is a monotone function).

Fact:
For every model D: if M =β,δ N then [[M]]D = [[N]]D.

β-reduction (λx.M)N →β M [N/x]
δ-reduction Y (M)→δ M (YM).

37 / 127

Example

Take D0 = {0, 1}.

Then D0→0→0 is {0, 1} → {0, 1} → {0, 1}.

[[λxy. x]] = π1 ∈ D0→0→0 is the projection on the first component.

[[λxy. y]] = π2 ∈ D0→0→0.

For every QBF sentence α: [[Mα]] = π1 iff α is true.

Fact For every QBF formula α:

α is true iff Mα reduces to λxy. x

38 / 127

Digression

Thm [Statman’s Weak Completeness Theorem ’82]:
For every λ-term M there is a finitary model DM such that for every
λ-term K :

[[M]]DM = [[K]]DN iff M =β K .

Thm [Loader’s λ-definability theorem ’96]:
For every nontrivial finitary model D. It is not decidable if a given
element d of the model is a denotation of a term.

39 / 127

Interpretation of a term M : α in a model D is an element [[M]]D ∈ Dα.

[[c]]υD = ρ(c)
[[xα]]υD = υ(xα)
[[MN]]υD = [[M]]υD[[N]]υD
[[λxα.M]]υD is a function mapping an element d ∈ Dα to [[M]]υ[d/xα]

D .
Fact:
For every model D: if M =β,δ N then [[M]]D = [[N]]D.

Theorem [Barendregt]: For every finitary GFP-model D:
if BT (M) ≡ BT (N) then [[M]]D = [[N]]D.

40 / 127

Approximate Böhm tree
ABT (M) is defined by

41 / 127

Meanings of Böhm trees

Lemma
BT (M) =

⊔
{ABT (N) : N =β,δ M};

here we are taking syntactic limit over trees.

Semantics

[[BT (M)]]D =
∧
{[[ABT (N)]]D : N =β,δ M}

Theorem [?]
If D is a finitary GFP model then: [[M]]D = [[BT (M)]]D.

42 / 127

Theorem
If D is a finitary GFP model then: [[M]]D = [[BT (M)]]D.

Proof [[BT (M)]] ≥ [[M]]:

[[BT (M)]]D =
∧
{[[ABT (N)]]D : N =β,δ M}.

[[ABT (N)]]D ≥ [[N]]D = [[M]]D.

43 / 127

Theorem
If D is a finitary GFP model then: [[M]]D = [[BT (M)]]D.

Proof [[M]] ≥ [[BT (M)]]:

Let N : α→ α without Y :
Define iteratei(N) to be N (. . . (NΩα) . . .).
Define iteratei(M) as the result of repeatedly replacing all YN by
iteratei(N).

Obs: If D is a finitary GFP model then there is i such that
[[M]]D = [[iteratei(M)]]D.

[[M]] = [[iteratei(M)]] = [[BT (iteratei(M))]] ≥ [[BT (M)]]

44 / 127

Almost there

We have
1 Models D = ({Dα}α∈T , ρ) interpreting fixpoint operators.
2 Models are capable of talking about Böhm trees:

[[M]]D = [[BT (M)]]D

We want
A model DA such that [[M]]DA tells us if BT (M) is accepted by A.

45 / 127

A = 〈Q,Σ ∪ {Ω}, q0 ∈ Q,
δ1 : Q × Σ0 → {false, true}, δ2 : Q × Σ2 → P(Q2)〉

TAC (trivial acceptance condition) : all runs are accepting.

Model DA:
D0 = P(Q).
If c : 0 then [[c]] = {q : δ1(q, c) = true}. ([[Ω]] = Q)
If a : 02 → 0 then [[a]] is a function that for (S0,S1) ∈ P(Q)2 returns

{q : δ2(q, a) ∈ S0 × S1}

Theorem
For every closed term M of type 0:

BT (M) ∈ L(A) iff q0 ∈ [[M]]DA

46 / 127

If BT (M) ∈ L(A) then q0 ∈ [[M]]DA

Take a run of A on BT (M) and show that q0 ∈ [[BT (M)]]DA = [[M]]DA .

Recall that [[BT (M)]]D =
∧
{[[ABT (N)]]D : N =β,δ M}

We show: q0 ∈ [[ABT (N)]] for N =β,δ M .

aq0

cq2 aq3

bq4 aq1

cq2
bq2 aq3

aq0

cq2 aq3

bq4 aq1

cq2 cq2cq2

47 / 127

If q0 ∈ [[M]] then BT (M) ∈ L(A)

Property of the interpretation:
If q ∈ [[a(M0,M1)]] then there is (q0, q1) ∈ δ(q, a) such that: q0 ∈ [[M0]],
and q1 ∈ [[M1]].

a

c b

48 / 127

A = 〈Q,Σ ∪ {Ω}, q0 ∈ Q, δ1 : Q × Σ0 → {false, true}, δ2 : Q × Σ2 → P(Q2)〉
Model DA:

D0 = P(Q).
If c : 0 then [[c]] = {q : δ1(q, c) = true}. ([[Ω]] = Q)
If a : 02 → 0 then [[a]] is a function that for (S0,S1) ∈ P(Q)2 returns

{q : δ2(q, a) ∈ S0 × S1}

Theorem
For every closed term M of type 0:

BT (M) ∈ L(A) iff q0 ∈ [[M]]DA

49 / 127

50 / 127

To decide BT (M)
?
∈ L(A) it is enough to:

Construct DA,
Calculate [[M]]DA .

This works only for TAC conditions. (Simple models ≡ TAC conditions)

We can do Ω-aware TAC, but the climb is rather steep.

51 / 127

52 / 127

Reflective Böhm tree wrt. a model D:

Thm [Broadbent, Carayol, Ong, Serre]: For every finitary model D
and λY -term M there is a λY -term N such that BT (N) = rBTD(M).

53 / 127

(α→ β)• = α• → [α]→ β• and α• = α when α is atomic.

[MN , υ] = [M , υ] [N , υ] [[N]]υ

[xα, υ] =xα•[
Y (α→α)→αM , υ

]
=Y (α•→α•)→α•(λxα• . [M , υ] xα• [[YM]]υ)

[λxα.M , υ] =λxα•λy[α]. case y[α]{d → [M , υ[d/xα]]}d∈Sα

[a, υ] =λx0
1λy[0]

1 λx0
2λy[0]

2 .case y[0]
1 {d1 →

case y[0]
2 {d2 → aρ(a)d1 d2x1x2}d2∈S0}d1∈S0

54 / 127

Krivine machines

55 / 127

Krivine machines
The meaning of a term is its Böhm tree.
It can be computed with a Krivine machine.
So now instead of using semantics we use syntax.

56 / 127

Our objective is to decide, for a fixed A,

if for a given M : BT (M) ∈ L(A).

We will:
1 use Krivine machine to compute BT (M),
2 construct a game K(A,M) on this computation,
3 reduce it to G(A,M) that will be a finite game.

57 / 127

1. 2.

3.

58 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥

λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

59 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)

z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

60 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

61 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]

z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

62 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)

λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

63 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)

y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

64 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥

d ρ ⊥

65 / 127

Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C]

Term Environment Stack
(λz. z(gc)d)(λxy. y) ∅ ⊥
λz. z(gc)d ∅ (λxy. y, ∅)
z(gc)d [z 7→ (λxy. y, ∅)] ⊥

Let ρ ≡ [z 7→ (λxy. y, ∅)]
z ρ (gc, ρ) (d, ρ)
λxy. y ∅ (gc, ρ) (d, ρ)
y [x 7→ (gc, ρ)][y 7→ (d, ρ)] ⊥
d ρ ⊥

66 / 127

Krivine machine (2)

A configuration of a Krivine machine is a triple (N , ρ,S) where:
N is a term (a subterm of M);
ρ is an environment defined for all free variables of N ;
S is a stack C1 . . .Ck , where k and the types of the closures are
determined by the type of N : the type of Ci is αi where the type of
N is α1 → · · · → αk → 0.

A configuration (N , ρ,S) represents a term:

E((N , ρ,S)) = E(N , ρ)E(C1) . . .E(Cn)

Example:
(z0→0→0, ρ, (gc, ρ)(d, ρ)) with ρ ≡ [z 7→ (λxy. y, ∅)] gives

(λxy. y) (gc) d

67 / 127

Krivine machine

(λx.N , ρ, (K , ρ′)S)→(N , ρ[x 7→ (K , ρ′)],S)

(YN , ρ,S)→(N (YN), ρ,S)

(NK , ρ,S)→(N , ρ, (K , ρ)S)

(x, ρ,S)→(N , ρ′,S) where (N , ρ′) = ρ(x)

Lemma: Term E(N , ρ,⊥) has a head normal form iff Krivine machine
reduces (N , ρ,⊥) to a (b(N1,N2), ρ′,⊥) for some constant b 6= Ω.

Lemma: All the terms appearing in configurations of the Krivine
machine during the computation from (M , ∅,⊥) are subterms of M .

68 / 127

BT (M) with Krivine machines

69 / 127

Computing Böhm tree

Lemma: Term E(N , ρ,⊥) has a head normal form iff Krivine machine
reduces (N , ρ,⊥) to a (b(N1,N2), ρ′,⊥) for some constant b 6= Ω.

*

* *

70 / 127

Computing Böhm tree

*

* *

Proposition: For every closed λY -term M of type 0:

BT (M) = Ktree(M , ∅,⊥).

71 / 127

1. 2.

3.

72 / 127

Game for automaton acceptance

Eve

Adam

73 / 127

Game for automaton acceptance

Eve

Adam

Eve has a strategy in G(A, t) iff t is accepted by A.

74 / 127

Defining K(A,M)

*

* *

Krivine machine computing BTBohm tree

75 / 127

Defining K(A,M)

*

* *

Run of the automaton on
Krivine machine comptuation

Run of the automaton on
the Bohm tree

76 / 127

Defining K(A,M)

*

* * * *

Acceptance of the automaton
in terms of a game on Krivine machine
comptuation

Acceptance of the automaton
in terms of a game on the
Bohm tree

77 / 127

Definition of K(A,M)

78 / 127

Definition of K(A,M)

79 / 127

Definition of K(A,M)

where

closure is created closure is used

80 / 127

where

closure is created closure is used

81 / 127

Thm: Eve wins in K(A,M) iff A accepts BT (M).

Computation of the Krivine machine

Proposition: For every closed λY -term M of type 0:
BT (M) = Ktree(M , ∅,⊥).

82 / 127

Computation of the Krivine machine

1. 2.

3.

83 / 127

Decomposition property for a pushdown
qc 7→ qaac qc 7→ qpop

This part does not
depend on c

continuation needs
only bounded info about
the path

84 / 127

Reduction to a finite game

qc 7→ qaac qc 7→ qpop

Ra ⊆ Q

85 / 127

Reduction to a finite game (with ranks)
qc 7→ qaac qc 7→ qpop

Ra ⊆ Q × ranks

86 / 127

From K(A,M) to G(A,M)

Residual of type 0 is from P(Q × [d]).

Residual of type 0→ 0 is from P(Q × [d])→ P(Q × [d]).

87 / 127

G(A,M)

q : (λx.N , ρ,R · S)→ q : (N , ρ[x 7→ R],S)

q : (a(N0,N1), ρ,⊥)→ (q0, q1) : (a(N0,N1), ρ,⊥)
for (q0, q1) ∈ δ(q, a)

(q0, q1) : (a(N0,N1), ρ,⊥)→ qi : (Ni , ρ�rk(qi),⊥) for i = 0, 1

q : (YN , ρ,S)→ q : (N (YN), ρ,S)

88 / 127

G(A,M)

Eve wins in a position:
q : (x, ρ,S) if (q, rk(q)) ∈ ρ(x)(S).

89 / 127

Properties of G(A,M)

Obs:
For every N there are finitely many nodes in G(A,M) containing N .

Thm: Eve wins in G(A,M) iff Eve wins in K(A,M).

90 / 127

Thm: Eve wins in G(A,M) iff Eve wins in K(A,M).

Proof:

91 / 127

where

closure is created closure is used

Residual R(v) = {(q ′, r ′), . . . }

92 / 127

Adjusted residual R(v)�r

1 1

2
??

93 / 127

Adjusted residual R(v)�r

1 1

2
??3

Notation : res(v, v1) = R(v)�max(v,v1)

res(C , v1) = R(v)�max(v,v1) where C = (v,L, ρ),
res(ρ, v1) = ρ1 such that ρ1(x) = res(ρ(x), v1),
res(S , v1) = R1 . . .Rk where Ri = res(Ci , v1), and S = C1 . . .Ck .

94 / 127

Adjusted residual R(v)�r

1 1

2
??3

Notation : res(v, v1) = R(v)�max(v,v1)

res(C , v1) = R(v)�max(v,v1) where C = (v,L, ρ),
res(ρ, v1) = ρ1 such that ρ1(x) = res(ρ(x), v1),
res(S , v1) = R1 . . .Rk where Ri = res(Ci , v1), and S = C1 . . .Ck .

95 / 127

where

closure is created closure is used

Residual R(v)(R(w)�r ′′) = {(q ′, r ′), . . . } where r ′′ = max(w, v′)

96 / 127

Transferring Eve’s strategy from K(A,M) to G(A,M)

97 / 127

Transferring Eve’s strategy from K(A,M) to G(A,M)

98 / 127

Transferring Eve’s strategy from K(A,M) to G(A,M)

We want to show (q, rk(q)) ∈ ρ1(x)(S1).
Suppose ρ2(x) = (v,K , ρ)

(q,max(v, v2)) ∈ R(v)(res(S2, v2)) by def.
(q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2) by prop of�
(q, rk(q)) ∈ R(v)(res(S2, v2))�max(v,v2) by prop of�
(q, rk(q)) ∈ ρ1(x)(S1) by def.

99 / 127

Decomposition property

Closure (v,K 0→0, ρ) is replaced by R(v) : P(Q × [d])→ P(Q × [d]).
We put (q ′, r ′) in R(v)(RL).

We use induction on types.

100 / 127

Transferring Eve’s strategy from K(A,M) to G(A,M)

101 / 127

102 / 127

Computation of the Krivine machine

1. 2.

3.

Thm: Eve wins in G(A,M) iff Eve wins in K(A,M).

Obs: G(A,M) is finite.

103 / 127

104 / 127

Global model checking

Representing configurations of a Krivine machine
For closures: 〈(M , ρ)〉 is M

〈ρ(x1)〉 · · · 〈ρ(xk)〉

For configurations: 〈(M , ρ,S1 . . .Sl)〉 is 〈(M , ρ)〉, 〈S1〉,. . . , 〈S1〉.

Theorem
For every M and A, the set:

{〈N , ρ,S〉 : BT (E(N , ρ,S)) ∈ L(A)}

is a regular language of finite trees.

105 / 127

Transfer Theorem

106 / 127

M eval−−→ BT (M)
ϕ̂ ←− ϕ

Transfer Theorem
For all ϕ exists ϕ̂ s.t.

M � ϕ̂ iff BT (M) � ϕ

107 / 127

M eval−−→ BT (M)
ϕ̂ ←− ϕ

Transfer Theorem
For all Σ, T ,X .
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

108 / 127

Example: Unfolding

Graph unfold−−−−→ Tree

gives
l

l

ll

lll

r

lr

llr

MSO-compatibility of unfolding
For all Σ.
For all ϕ exists ϕ̂ s.t. for all G ∈ Graph(Σ) :

G � ϕ̂ iff Unf (G) � ϕ

Rem: This theorem implies Rabin’s Theorem.
109 / 127

Example: Normalizable terms

Transfer Theorem:
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

Take ϕ ≡ "finite tree"
BT (M) � ϕ iff M has a normal form.

M � ϕ̂ iff M has a normal form

So {M ∈ Terms(Σ, T ,X) : M has a normal form} is MSOL-definable.

110 / 127

Transfer Theorem
For all Σ, T ,X .
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

Σ is a tree signature
T is a finite set of terms
X is a finite set of λ-variables
Terms(Σ, T ,X): terms over Σ with

all subterms having type in T ,
all λ-variables from X .

Note: Theorem works also for infinite λY -terms, and unobunded
number of Y variables.

111 / 127

What it means M � ϕ̂?

M is represented as a tree Graph(M) over the alphabet

Talph(Σ, T ,X) = Σ ∪ {@α,Y α : α ∈ T } ∪ X∪
{λα→βxα : α ∈ T ∧ α→ β ∈ T ∧ xα ∈ X} .

Y

λx.

λz.

@

@
z

x

112 / 127

Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

A sketch of the proof

113 / 127

Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

114 / 127

115 / 127

Consequences of the transfer theorem

116 / 127

Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

Ong’s Theorem
It is decidable if for a given finite term M and MSOL formula ϕ,
BT (M) � ϕ holds.

Proof: Just test M � ϕ̂.

117 / 127

Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X) :

M � ϕ̂ iff BT (M) � ϕ

The set of normalizing terms is MSOL definable
For a fixed T and X there is a formula defining the set of terms
M ∈ Terms(Σ, T ,X) having a normal form.

Proof: Take ϕ defining the set of finite trees and consider ϕ̂.

118 / 127

Digression: why limiting λ-variables

QBF to terms
Every QBF formula α can be translated to a term Mα:

∀x.∃y. x ∧ ¬y 7→ All(λx. Exists(λy. and x (noty)))

α is true iff BT (Mα) is the term true

Take ϕ saying that the tree consists only of the root labeled true.
Consider ϕ̂.

Mα � ϕ̂ iff α is true.

If we could construct ϕ̂ without limiting X then we get collapse of the
polynomial hierarchy.

119 / 127

Matching with restricted no of variables
For a fixed X . Given M and K (without fixpoints) decide if there is a
substitution σ such that

Mσ =β K

Substitution σ can use only terms from Terms(Σ, T ,X).

Proof:
Let shape(N) be MSOL formula defining the set of terms in
Terms(Σ, T ,X) that can be obtained from N by substitutions.
Let ϕ ≡ shape(K).
There is desired σ iff the formula shape(M) ∧ ϕ̂ is satisfiable.

If there is a solution then there is a finite one.

120 / 127

Synthesis from modules
Given finite λY -terms M1, . . . ,Mk and ϕ. Decide if one can construct a
λY term K from these terms such that BT (K) � ϕ.

Proof:
The candidate term K can be described as having the form
(λx1 . . . xk . N)M1, . . . ,Mk for some term N without constants and
λ-abstractions.
Let ψ be a formula defining terms of this form.
There is a solution iff the formula ψ ∧ ϕ̂ is satisfiable.

Every model of ψ ∧ ϕ̂ gives a solution.

If there is a solution then there is a regular one, hence a finite one
thanks to the presence of Y .

121 / 127

122 / 127

Two ways looking at it.

Studding new properties of
evaluation in simple types.

Bringing verification to a new
ground.

123 / 127

In the beginner’s mind there are many
possibilities, in the expert’s mind there are few.

124 / 127

Decomposition property for a pushdown:
qc 7→ qaac qc 7→ qpop

This part does not
depend on c

continuation needs
only bounded info about
the path

125 / 127

M eval−−→ BT (M) ?∈ L(A)

Understanding BT (M)
?
∈ L(A) in terms of models

[[M]] = [[BT (M)]]

Understanding BT (M)
?
∈ L(A) in terms of K(A,M)

K(A,M) equivalent to G(A,M)

MSO compatibility of evaluation
M eval−−→ BT (M)

ϕ̂ ←− ϕ

126 / 127

Getting closer to “real” computation.

Transfer theorem covers: Rabin’s theorem, unfolding theorem,
pushdown hierarchy, Ong’s theorem, global model-checking,. . .

The use of old techniques in a new way.

127 / 127

