A gap property of deterministic tree languages!

Damian Niwinski and Igor Walukiewicz
Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, POLAND

{ niwinski,igw }@mimuw.edu.pl

Abstract

We show that a tree language recognized by a deterministic parity
automaton is either hard for the co—Biichi level and therefore cannot
be recognized by a weak alternating automaton, or is on a very low
level in the hierarchy of weak alternating automata. A topological
counterpart of this property is that a deterministic tree language is
either II} complete (and hence non Borel), or it is on the level 119 of
the Borel hierarchy. We also give a new simple proof of the strictness
of the hierarchy of weak alternating automata.

For Anatol Slissenko at his 60th birthday.

1 Introduction

Finite state automata running in infinite time constitute a fundamental
model in the theory of verification of concurrent systems. One complexity
measure obviously suggested by this model is the number of states, but
more subtle criteria refer to the behavior of automaton and are specified in
terms of positive and negative constraints on events which occur infinitely
often. The depth of nesting of positive and negative conditions is reflected
in the concept of the index of an automaton. Interestingly, the hierarchy of
indices has a counterpart in the hierarchy of alternations of the least and
greatest fixed points in the u-calculus and quantifier hierarchies in monadic
second-order logic.

Wagner [28], as early as in 1977, established the strictness of the hierar-
chy of indices for deterministic automata on infinite words. An analogous
hierarchy for nondeterministic automata is easily seen to collapse to the

!The authors were supported by Polish KBN grant No. 7 T11C 027 20

level of Biichi automata. That is nondeterminism can helps to reduce the
complexity of the acceptance condition reflected by the index of an au-
tomaton. The situation turns out to be different for automata on infinite
trees. The power of such automata has been recognized since the seminal
paper by Rabin [19]. The strictness of the hierarchy for both deterministic
and nondeterministic automata on infinite trees was proved [15] in 1986.
About the same time, Muller and Schupp introduced alternating tree au-
tomata [12]. The hierarchy problem for alternating automata had remained
open for a while. Mostowski [11] investigated the hierarchy of so-called weak
alternating tree automata and showed its strictness using a reduction to a
hierarchy of weak monadic second—order quantifiers formerly examined by
Thomas [24]. Skurczyniski [23] further showed that even nondeterministic
weak tree automata can recognize tree languages of arbitrary high finite
Borel level. Finally, Bradfield [4] and Lenzi [9] solved (independently) in
1996 the hierarchy problem for the modal p-calculus, which also has settled
the strictness of the hierarchy of indices of alternating tree automata. The
subsequently provided elegant proof by Arnold [1], based on a diagonal ar-
gument and the Banach fixpoint theorem, can be also adapted for a direct
argument for the Mostowski’s result on the weak hierarchy [1].

Once the hierarchy problems are resolved, the next challenge can be
to provide algorithms for determining the level in the hierarchy of a given
recognizable language. For word automata, polynomial-time algorithms
for computing the index of an automaton presented by Muller or parity
condition were given in [29] and [16], respectively.! But little is known about
tree automata except for that Urbanski [27] showed that it is decidable if
a deterministic Rabin tree automaton is equivalent to a nondeterministic
Biichi one. Otto [17] has shown that it is decidable if a p-calculus formula
is equivalent to a formula without fixpoints. This question is equivalent
to asking whether a given alternating automaton is equivalent to a weak
automaton of a very restricted shape.

One may expect that the problem for the weak hierarchy is easier and
should be approached first. In this paper we make two steps in this direction.
First, we give a yet another proof of Mostowski’s result on the strictness
of the weak hierarchy. The argument is based on a very simple family
of examples and does not use metric considerations (as the proof in [1]).
Second, we show that deterministic tree languages cannot be used for this
purpose. Indeed, the weak hierarchy for deterministic tree automata turns
out to collapse at the next-to-Biichi level. A deterministic tree language that

! Another proof of the result stated as Corollary 15 in [16] appeared later in [5].

is not on this level cannot be recognized even by a (strong, nondeterministic)
Biichi automaton. This is the gap mentioned in the title.

Interestingly, this gap has also a topological counterpart. Namely, we
show that a deterministic tree language is either 1] complete (and hence
non Borel), or it is on the level ITIJ of the Borel hierarchy. This should
be contrasted with the result of Skurczynski [23] who showed that, for any
finite level of Borel hierarchy there are (weakly recognizable) tree languages
precisely of that level.

As a by—product we also obtain a complexity estimation for the afore-
mentioned result of Urbanski: If the input is a deterministic parity tree
automaton without unproductive states then it can be decided in polyno-
mial time if it is equivalent to a nondeterministic Biichi automaton. Note
however that at present we do not know a polynomial algorithm for elimina-
tion of unproductive states in a parity tree automaton (even deterministic).
Indeed, this problem is equivalent to deciding a winner in parity games and
known to be in NPNco-NP [6].

2 Basic notions

Automata on infinite words. A finite nondeterministic automaton on
infinite words with a parity acceptance condition? (parity automaton, for
short) is presented as A = (3, Q, q1, Tr, rank), where X is a finite alphabet,
() is a finite set of states with an initial state q;, Tr C QQ X X x @) is a set of
transitions, and rank : Q — w is the ranking function. A transition (g, a,p)
is usually written ¢ — p.

A run of an automaton A on an infinite word u € X* can be presented as
an infinite word p € Q such that p(0) = ¢, and p(m) = p(m+1), whenever
u(m) = a, for every m < w. The run p is accepting if limsup,,_, ., rank(p(n))
is even; in other words, the highest rank repeating infinitely often is even.
The language L(A) recognized by A consists of those words in ¥“ for which
there exists an accepting run. A language L C X% is recognizable if it is
recognized by a nondeterministic parity automaton.

Automata on infinite trees. A tree is any subset T C X* closed under
initial segments. Here we mainly focus on full binary trees valued (labeled)

2In this paper we confine attention to automata with the parity condition, but it is
well-known that they are equivalent to automata with the Muller or Rabin conditions,
see, e.g., [26] or [3].

in a finite alphabet X, i.e., mappings t : {l,r}* — X. Let Tx be the set of
all Y—valued trees.

A nondeterministic tree automaton A = (X,Q,qr, Tr,rank) is like an
automaton on words except for that Tr C Q x X X @ x Q. A run of A on
a tree t € Ty, is itself a Q—valued tree p : {l,7}* — @ such that p(e) = q,
and, for each w € dom(p), (p(w), a, p(wl), p(wr)) € Tr, whenever t(w) = a.
A path in p is accepting if the highest rank occurring infinitely often along
it is even. More formally, for a path P = pgpy ... € {l,r}* , this means that
lim sup,, . rank(p(pop1-..pn)) is even. A run is accepting if so are all its
paths. The tree language L(A) recognized by A consists of those trees in T,
which admit an accepting run. We call a tree language L C T%, recognizable
if it is recognized by a nondeterministic parity tree automaton.

Deterministic automata. An automaton on words, or on trees, is deter-
mainistic if Tr is a partial function from Q) x X to @, or to Q) X (), respectively.
It is well-known that a parity word automaton can be always converted into
a deterministic one but a tree automaton in general cannot. We call a tree
language deterministically recognizable (or deterministic, for short) if it is
recognized by a deterministic parity automaton.

We will note a useful characterization of deterministic tree languages in
terms of paths in trees.

A labeled path in atreet : {l,r}* — X is an infinite sequence ogp101p202p3 - -

such that o; € X, p; € {l,r}, and t(p;1 . .. p;) = 05 (so in particular t(g) = oy9).
Note that a labeled path is an infinite word over an alphabet {I,7}UX. We
let Paths(t) denote the set of all labeled paths in ¢, and, for a tree language
L, Paths(L) = |, Paths(t). For a word language K C ({I,7} U X)* we
define two tree languages:

VK ={t € Ty, : Paths(t) C K}

K ={t € T, : Paths(t) N K # 0}

Proposition 1 The following conditions are equivalent for a tree language
L CTs.

1. L is deterministically recognizable.
2. L is recognizable, and L = V(Paths(L)).

3. L =VK, for some recognizable language K of infinite words.

Proof
(1) = (2) Let A be a deterministic automaton for L. Take a tree ¢ €

e

V(Paths(L)) and the unique run p of A on ¢t. We need to check that p is
accepting. It is because for each node w of ¢ the state p(w) depends only
on the predecessors of w. Hence, for every path of ¢, the run on this path is
the same as the run on some tree accepted by A.

(2) = (3) follows since Paths(L) is recognizable. To show (3) = (1) construct
a deterministic tree automaton recognizing L from a deterministic word
automaton recognizing K. O

Let us remark that an analogous result for automata on finite trees is
well known (see, e.g., the monograph by Gecseg and Steinby [7]).

Alternating automata. An alternating automaton on infinite words can
be presented similarly as a nondeterministic one, except that Tr C @ X%
¥ x Q*. We will denote a transition (q,a,q;...qx) by® ¢ = q1 A ... A .
Intuitively it means that if the automaton reads a letter a in a state g,
it multiplies itself into k copies which continue computation from states
q1,- .., qg, respectively. A transition (g, a,e) (k = 0) is understood as ¢ >
true, i.e., the automaton accepts immediately. Formally, a run of A on
u € ¥¢ can be presented as a tree p : dom(r) — @, with dom(r) C w*, such
that p(e) = ¢; and, whenever w is a node in dom(p) with u(|w|) = a, there
is a transition p(w) = p(wl) A ... A p(wk), where wl, ..., wk are all the
successors of w in dom(p). Similarly as for tree automata, a path in a run
is accepting if the highest rank occurring infinitely often is even, and a run
is accepting if so are all its paths.

An alternating automaton on trees is defined similarly except that Tr C
QxExQ*xQ*. A transition can be presented by ¢ — (@A NG, PIA. .. A
Pm) Which means that the automaton sends a copy in the state ¢; to the left
successor, and a copy in the state p; to the right successor, foralli = 1,... £,
j =1,...,m. Formally, a run of A on a tree t € Tx, can be presented as
a tree p : dom(p) — @ whose domain is a subset of ({I,7} X w)*, so that
the projection w | 1 of a node w € dom(p) is a node of t. We require that
p(e) = qr, and whenever w is a node in dom(p) with ¢t(w | 1) = a, there is a
transition p(w) % (p(w(l, 1)) A ... Ap(w(l, k), p(w(r, 1)) A ... A p(w(r,m))),
where w(l,1),...,w(l,k),w(r,1),... ,w(r,m), are all the successors of w in
dom(p). Again, a run is accepting if so are all its paths.

3Note: In the literature, transitions of alternating automata are often presented as
Boolean combinations of states, but reduction to the above setting is straightforward (see
also [3]).

Hierarchy of Mostowski indices. The Mostowski index of an automa-
ton A (of any kind) is the pair (min(rank(Q)), max(rank(Q))). It is conve-
nient to compare indices of automata. We will say that an index (¢, k) is
compatible with an index (¢/, ") if either /' <t and Kk < K or 1 =0,/ =1,
and k + 2 < k/. Tt is easy to see that, if (¢,k) is compatible with (., k')
then any automaton of index (¢, k) can be transformed into an equivalent
automaton of index (i, k") by modification of the rank function. We may
assume without a loss of generality that min(rank(Q)) € {0,1}. (Otherwise
we can scale down the rank by rank(q) := rank(q) — 2.) Therefore, for any
type of automata, the Mostowski indices induce a hierarchy depicted on the
Figure 1.

Automata of index (1,2) are traditionally called Biichi automata and
presented by A = (X,Q,qr, Tr, F), where F' is the set of states of rank 2
(called accepting states). Note that a path in a run of a Biichi automaton
is accepting if some accepting state occurs infinitely often.

Given a class of automata, the hierarchy of Figure 1 is strict if there is
an automaton at each level that is not equivalent to any automaton of lower
level. As we have mentioned in the introduction, the hierarchy is known
to be strict for deterministic automata on words [28], and for all kinds of
automata on infinite trees. In contrast, for nondeterministic word automata
the hierarchy collapses to the level of Biichi automata [18], and for the
alternating automata even to the intersection of levels (1,2) and (0, 1) [2].

The indices (0, x) and (1, x+1) are called dual of each other. We let (¢, &)
to denote the dual of (¢, k). It is well-known that alternating automata are
in exact correspondence with terms of the p-calculus, and the hierarchy of
Mostowski indices corresponds to the hierarchy of alternation of the least and
greatest fixed point operators. In particular, for any alternating automaton
A, there is a dual automaton A of the dual index recognizing the complement
of L(A) (see, e.g., [3]).

2.1 Weak automata

An alternating parity automaton (on words or trees) is called weak if, for
any transition, the rank of a state cannot increase. More formally, for a
transition of a tree automaton ¢ — (@1 . Ak, D1 . .ADp), this means that
rank(q) > rank(q;) and rank(q) > rank(p;), for i = 1,... k, j =1,...,m.
For an automaton over words, the condition is analogous.

It is known that weak alternating automata on infinite trees can be
simulated by (nondeterministic) Biichi automata, and also by co-Biichi al-
ternating automata, that is automata of level (0,1) [13]. Therefore the weak

(1,1) (0,0)

Figure 1: Hierarchy of Mostowski indices.

automata are indeed weaker in expressive power than “ordinary” automata.
The Mostowski indices induce a hierarchy of weak automata in a natural
way. It is called weak hierarchy, as opposed to strong hierarchy, i.e., the
hierarchy of Mostowski indices of alternating tree automata.

3 Strictness of the weak hierarchy

In this section we present a new proof of the result of Mostowski [11] stating
the strictness of the weak hierarchy. Let ¥ = {a, b}.
Let Lo be the language of trees having only b on the leftmost path.
Let Ly 1 be the language of trees such that a occurs on the leftmost path.

Let L; 2 be the language of trees such that for every k the subtree rooted
in the node I*r belongs to L ;.

Let Lo,1 be the language of trees such that there exists £ with the subtree
rooted in [¥r belonging to Loyp.

In general, we define the language L, ,, by induction. For even n, we let
L, be the language of trees such that for every £k the subtree rooted in the
node I*r belongs to L, ,—1. Dually, for odd n, L,, is the language of trees
such that there exists k with the subtree rooted in {*r belonging to L, 1.

Theorem 2
The language L, is on the level (v,n) of the weak hierarchy but not on the

dual level (t,m).

Proof
The first observation is that the languages L, , and Lz are the complements
of each other.

The positive statement is rather easy, so we will focus on the negative
statement of the theorem. The basic step, to show that Lgo cannot be
recognized by an automaton of index (1, 1), is easy. This also shows that L ;
cannot be recognized by an automaton of index (0,0) because otherwise the
complement of L; ; which is L o would be recognized by a (1, 1)-automaton.

Assume that we have proved the claim for L, ,, and L;7. We may assume
without a loss of generality that n is odd. Suppose to the contrary that
L, n+1 can be recognized by a weak automaton A of index (¢,n 4 1). Note
that (¢,n + 1) is (1 —¢,m) for some odd m (specifically, m =n+1+(—1)").

Let t € L, ,+1 and consider an accepting run of A on t. There must be a
node s on the leftmost branch of ¢, such that in all computation paths going
through this node (there can be many since the automaton is alternating),
only states of the rank lower than m are assigned to s. (This is because
the automaton is weak.) Consider the node sr, i.e., the right successor of
s. The set S of states assigned to sr also does not have a state of rank m.
From this set only a subset of L, , is accepted. We claim that any tree in
t' € L, is accepted by some subset S as above. To see this it is enough
to take for ¢ the tree such that at each node of the form [*r we have the
subtree t’. Clearly t € L, ,,+1 and the argument above gives a set S of states
accepting t’. But then the sum of these sets gives an automaton of index
(I —¢,m — 1) accepting L,,, which contradicts the induction assumption

because (1 —¢,m — 1) = (¢,n). (Here, we have momentarily assumed that
an alternating automaton can have a set of initial states instead of just one
state; but such an automaton can be clearly turned into a standard one

without increasing the index.)
By duality L; 57 cannot be accepted by a (,n + 1)-automaton. O

4 Collapse for weak automata

Let A be an alternating word automaton over an alphabet {l,r} UX. A
graph of the automaton has states as nodes and an edge ¢ — ¢; whenever
¢ % qiA...Aqgis a transition of A, and i € {1,...,k}. We extend the
notation for an edge to a notation for a labeled path ¢ — ¢/, with v € ¥*, in
a obvious way. We say that a state q is correctly reachable if there is some
word u € X({l,7}X)* such that q; ¢, where ¢ is the initial state of A.
We say that A admits a split* if, for some correctly reachable state qo,

l w r v
there are two loops: ¢y — ¢1 — qo and g9 — g2 — qo, where w and v are
some words in X({l,r}%)*, such that the highest ranks occurring on these
loops are of different parity, and the greater of the two is even.

Example Let X = {a,b} and let M be the set of infinite words of the form
o0p101P202Ps - . ., with o; € ¥ and p; € {l,r}, in which b occurs infinitely
often. The language M can be recognized by a deterministic automaton
with states ¢ (initial), ¢, and ¢ of ranks rank(q) = rank(¢;) = 1 and

rank(qz) = 2, and transitions ¢ = ¢1, ¢ LN g2, and ¢; b, q, for i = 1,2.
This automaton has a split from the state g. Rabin [20] showed that the
set of trees whose all paths are outside M, i.e., on each path, b occurs only
finitely often, cannot be recognized by a Biichi automaton. This fact can be
generalized as follows.

Lemma 3 If a deterministic word automaton for Paths(L) admits a split
then V Paths(L) cannot be recognized by a Biichi tree automaton.

Proof

Construct a cheating tree, similarly as in the classical proof by Rabin [20]

showing that V(a + b)*a®“ is not recognizable by a Biichi tree automaton.
Another, indirect argument for the claim follows from Lemma 9 below,

since no H%—complete set can be recognized by a Biichi automaton (Biichi

automata can be easily defined by ©1-formulas.) O

We will show that if a deterministic word automaton for Paths(L) does
not admit a split then the tree language V Paths(L) is in some sense easy. To

4This concept is similar to that of gadget used in [27].

this end, we will first note a useful property of deterministic word automata
without split. It will be convenient to weaken the concept of determinism
slightly. We call a nondeterministic word automaton pseudo-deterministic if
it is deterministic when restricted to an arbitrary strongly connected com-
ponent. It will be also convenient to assume that an automaton can traverse
only words where the symbols from {l,r}, and those from X, alternate. More
specifically, we call a nondeterministic automaton over X U {l,r} correct if
its graph is bipartite, i.e., the set of states is divided by @ = @1 U @2, and
the edges from Q1 to Q2 are labeled by symbols in ¥ while the edges from
Q2 to Q1 by symbols in {l,r}; moreover the initial state is in Q1.

Lemma 4 Any pseudo-deterministic and correct parity word automaton
without a split is equivalent to a pseudo-deterministic correct Bichi word
automaton without a split.

Proof

Let A be such an automaton. We assume that the minimum of the rank in
Ais > 1 (if it is not the case, we scale up rank(q) := rank(q) + 2). Take a
maximal odd rank p > 3 appearing in the automaton. Choose a (maximal)
strongly connected component S in A restricted to states of rank < p, and
such that some states of rank p occur in 5. We create a copy S1 of S with
all the states having rank 1. We also create another copy S5 of .S containing
all but states of rank p. In Sy the states have the same rank as in S. We
modify our automaton by removing S and putting in S; and S5 instead.
If in A there is an edge from a state outside S to a state ¢ in S then we
re-direct this edge to a copy of ¢ in S7. If there is an edge from a state ¢ in
S to a state outside S then we start the edge from the copy of ¢ in §7. If
there is an edge (q1,a, g2) inside S then we add an edge (¢}, a, ¢2) where ¢}
is a copy of ¢; in 57 and q% is a copy of g2 in Sa. (Note that in this place
nondeterminism is introduced.) It should be clear that the new automaton
is equivalent to the previous one. We need to check that no split has been
created.

Suppose that in the new automaton we have a split starting in the vertex
qo. If this vertex is in S9 then both loops of the split have to be contained in
Sy as well. But then this split also exists in S, which we have assumed not
to be the case. If ¢q is outside S; U .Sy then each of these loops can be either
completely outside S1 U Sy or it can cross S7. The first case is impossible as
then there would be a split in the original automaton. In the second case, it
follows from the choice of S that a loop crossing S7 must have the maximal
rank > p (otherwise gy € S). This rank must be even as p is the biggest odd

10

rank. It also follows that in the original automaton this loop has the same
maximal rank (only states of rank < p may have changed ranks). So also
this case is impossible. The last case is when qq is in S7. If both loops of the
hypothetical split go out of S1, then both have an even maximal rank. So
it must be the case that at least one of the loops stays in S;. Note that this
means, in particular, that the component S is nontrivial. Of course both
loops cannot stay in S since all states there have rank 1. Hence, the last
possibility for existence of the split is that exactly one loop stays in S7. As
S is a nontrivial strongly connected component containing a vertex of rank
p, we can find a loop in S (in the original automaton) that goes from ¢g to
a vertex of rank p and then back to ¢g. As the other loop through ¢gg has an
even rank bigger that p, and the automaton A is correct, this would give us
a split in the original automaton.

By repeating this procedure if necessary, we eventually arrive at the
situation where the only odd rank occurring in the automaton is 1, while the
even ranks are 2 or more. Then we obtain an equivalent Biichi automaton
by resetting all even ranks to 2. By construction, the automaton remains
pseudo-deterministic and correct.]

Lemma 5 If there is no split in a deterministic automaton for Paths(L)
then V Paths(L) can be recognized by a weak alternating automaton of index
0,2).

Proof

We will show that the complement of V Paths(L), i.e., the language 3Paths(L)
can be recognized by a weak alternating automaton of index (1, 3). This im-
plies that V Paths(L) is recognized by a dual automaton, which has the index
(0,2).

Let A be a deterministic automaton for Paths(L) which, by assump-
tion, does not have a split. We can easily transform A to a deterministic
correct automaton accepting Paths(L) N (X{l,r})*, again without a split.
By Lemma 4, that automaton is equivalent to a pseudo-deterministic Biichi
automaton, say A’, without a split. We will first transform A’ to a weak
alternating automaton B of index (1, 3).

Consider a strongly connected component S in A’ such that the highest
rank in S is 2. For each such 5, we will create a weak alternating automaton
A'(S) as follows. Again, we take two copies of S, S7 and Ss, and set all the
ranks in S7 to 1, and all the ranks in S5 to 2. The states in these two copies
are the only states of A’(S), so that all the edges coming previously out
of S are removed. Moreover, in S1 we cut off all the edges coming out of

11

the nodes that have rank 2 in A’. Instead, whenever there was a transition
q¢ = pin A’ (with p and ¢ in S), we create a transition g% — p! Ap? in A(S)
(where ¢' is a copy of ¢ in S;). Remembering that A’(S) is deterministic,
we can easily see that the following equivalence holds: there is an accepting
run of A’ on a word u starting from a state ¢ and staying all the time in S
if and only if there is an accepting run of A’(S) on u from ¢2.

Now, we create a weak alternating word automaton B as follows. We
take a disjoint union of all the A’(S)’s as above, and add one additional
copy of A’ in which we set all the ranks to 3. Let ¢® denote the copy of
state ¢ in the aforementioned copy of A’. We take q? as the initial state and,
whenever there is a transition ¢ — p in A’ where p is in some S as above,
we add a (nondeterministic) transition ¢ % p?, where p? is a copy of p in
So. It should be clear that the automaton B is equivalent to A’, and hence
to A, i.e., L(B) = Paths(L).

Finally, we create a weak alternating tree automaton 3B, of the same
index (1,3), which will recognize all trees that have a path recognized by B.
The construction is straightforward but somewhat tedious. For example, if

B has transitions, say, ¢ — ¢1 A g2, 1 4 P1, G2 4 po A pg then dB will
have a transition ¢ — (p1 A p2 A ps, tt), where tt is a state which accepts
everything. In case B is alternating, each of the alternating components can
of course choose a different direction. We claim that 4B accepts precisely
JPaths(L), as required. The difficult direction is to see that 3B does not
accept anything more. Here the assumption of the absence of split is used.
Suppose dB accepts a tree t. The essential part of the run goes along
some path in ¢ and, at some moment, enters a state in some A’(S). Since
then, there is an infinite path in the run of 3B which remains within the
component Sy of A’(S) going down along some infinite path in ¢. We claim
that this path is accepted by A’(S) if considered as an infinite word over
{l,r} UX, and consequently, the tree ¢ belongs to FPaths(L). Indeed, were
it not the case, we could easily find a split in A’ which is excluded by the
construction.]

Since a parity word automaton can be converted into a nondeterministic
Biichi one, it is easy to see from the definition that the complement of a tree
language recognized by a deterministic tree automaton can be recognized by
a nondeterministic Biichi tree automaton. Therefore, deterministic tree lan-
guages are always on the level (0, 1) of the hierarchy of indices of alternating
automata (strong hierarchy). From the above lemmas we immediately get
the following.

12

Theorem 6 (Gap property)

A deterministic tree language is either on the level (0,1), but not on the dual
level (1,2), of the strong hierarchy, or it is on the level (0,2) of the weak
hierarchy.

We finish this section by showing that (0,2) level in the above theorem
is the smallest possible. This is in contrast with the case of infinite words,
where each regular language is a finite union of intersections of a weak (0, 1)
language and a weak (1,2) language. (This is the normal form result of
McNaughton [10], see also, e.g., [25], Lemma 4.3.) The hard tree language
for (0,2) level of the hierarchy is the language Lb<°° consisting of trees where
the leftmost path from every node has only finitely many b’s.

Fact 7 The language Lb<°O is a deterministic tree language. It is recog-
nizable by a weak alternating (0,2) automaton, but not by a weak (1,3)
alternating automaton.

Proof

The language is deterministic because it is of the form VK for some word
language K. A weak (0,2) automaton for the language has a component
consisting of a self-reproducing state of rank 2 which, at every node, ad-
ditionally activates a (0,1) component checking that the leftmost path has
only finitely many b’s.

For the last statement of the fact, assume conversely that L is recog-
nized by a weak (1,3) automaton A. Consider the language L; C {a,b}* of
words having only finitely many b’s. For every word w € Ly let t,, be the
tree such that for every k the leftmost path from r* is labeled by w and the
rest of the nodes is labeled by a. Clearly t,, € Lb<°°. The same argument
as in the proof of Theorem 2 shows that there is a set S of states of A of
ranks 1 or 2 such that: (i) from S only a subset of Ly is recognized; and
(ii) ty is recognized from S. Collecting all such sets S we would obtain a
weak (1,2) automaton over words accepting L;. But this is impossible. [

5 Topological aspect

The aim of this section is to show that the gap property of deterministic
tree languages stated in Theorem 6 has also its counterpart in topological
properties of these languages.

13

We consider the classical topology a la Cantor on Ty induced by the
metric

d(t t)— 0 if t1 =19
DP2)7 0 277 with n = min{|w| : ¢1(w) # t2(w)} otherwise

It is well-known and easy to see that if ¥ has at least two elements then
Ty, with this topology is homeomorphic to the Cantor discontinuum {0, 1}¢.
That is, each tree ¢ in Ty, can be identified with a function w — {0,1}. We
assume that the reader is familiar with the notions of Borel and projective
hierarchies. We use the notation X0 and II? for finite levels of the Borel
hierarchy. That is, E(f is the class of open relations, i.e., subsets of ({0, 1}“’)’“,
for some k < w. Next, whenever ©0 is defined, the class T2 consists of
the complements of relations in Eg, and 22 41 is the closure of H% under
countable unions. We denote by E% the projective class, i.e., the class of
projections of Borel relations, and by H% the class of complements of relations
in ©1.

The fact that tree languages recognized by weak alternating automata
are all at the finite levels of Borel hierarchy (i.e., in [JX") can be seen by
translating weak automata to weak monadic second-order formulas (see [13,
11]) or, perhaps more directly, by translating them into fixed-point terms
(see, e.g., [2]). In the latter approach, we use an easy observation that
if an alternation between the least and the greatest fixed points does not
occur then computing these fixed points amounts to countable unions and
intersections, respectively.

In particular, using any of the above-mentioned arguments, it is easy to
observe the following.

Fact 8 A tree language recognized by a weak alternating automaton of
index (0,2) is on the level IIJ of the Borel hierarchy.

We have mentioned the class (0, 2) because this is one of the alternatives
given by Theorem 6. On the other hand, we will show that if L is a deter-
ministic language such that a deterministic automaton for Paths(L) admits
a split then L is TI} hard in the following sense: for any II} set K C {0, 1},
there is a continuous mapping f : {0,1}* — {0,1}* reducing K to L (i.e.,
x € K iff f(z) € L). In particular, L is not Borel.

To this end, we will use the set of well-founded trees. If we fix a bijection
Lt w — w* then any tree T' C w* can be viewed as an element of the
Cantor space, by identifying T" with its characteristic function fp, given by
fr(n) = 1if and only if «(n) € T. A tree T' C w* is well-founded if it has

14

no infinite branch. Let W denote the set of well-founded trees. It is well
known that the set of well-founded trees (viewed as a subset of {0,1}*“) is
H}hard and, in fact, H}complete, because it is in that class (see, e.g., [8]).

It is an easy observation [14] that W can be reduced by a continuous
mapping to the Rabin language VM mentioned in Example in Section 4.
(Just map a tree T' C w* onto a tree ¢ defined by ¢(r*1lr*2l...Ir") = b,
whenever wiws ... wi € T, and t(v) = a, otherwise.)

Here we follow a similar idea to show the following.

Lemma 9 Let L be a deterministic tree language, and suppose that some
deterministic automaton for Paths(L) admits a split. Then there is a con-
tinuous mapping f : {0,1}* — {0,1}* that reduces W to L.

Proof

Let A be a deterministic automaton for Paths(L) admitting a split g 4
@ —* qo and qp — g2 —* qo. We fix two loops witnessing this split, say e
and o. That is, e,0 € ({l,r}X)*, and we assume (without loss of generality)
that the first symbols of e and o are e; = [and 07 = r, respectively, and
that the highest rank of a state encountered in the run ¢y — qo is even,
while the highest rank of a state encountered in the run qo — o is odd. We
also fix a word u in 3 ({l,7}X)* such that g is correctly reachable from the
initial state by ¢; — qo.

Now let T' C w* be a tree. In order to define a tree t = f(7T') in T, we
first construct its “skeleton” by forming some paths of ¢. That is, we first
define a partial function on {l,7}* that later on will be extended to ¢.

As a first step, we will encode the nodes of T' by finite words in ({,r}3)*,
using the words e,o0, and wu, fixed above. Namely, for each node w of
T, say w = wiwy... Wy, we let p, = uo™eo™2e...eo”™ (in particular,
pe = u). We can view the words p,, as (partial) paths of a tree ¢ we
are going to construct. To this end, it is helpful to have an operation
of building a (partial) tree from paths, which is somehow converse to ex-
traction of paths from a tree. Namely, for a word v € L({l,7}X)*, say
v = 0gp101P202P3 . . . PrOk, We let t() be a partial mapping on {l,7}* with
domain dom(t™) = {py...p; : 0 < £ < k}, given by t®) : py...p; — oy
Similarly, for an infinite word « in X({l,7}%)%, we let t(*) be the set-
theoretical union of the mappings corresponding to the finite initial segments
of a (which again is a partial mapping). Now, it follows from the construc-
tion that the partial mappings t®v) defined in this way for the nodes w of T'
are consistent; that is, the set-theoretical union (J,,cr t(Pw) is again a partial
mapping from {I,r}* to X. We let ' = J,,cp t(Pw) | Tt should be clear that if

15

T has an infinite path, say wiws ..., then ¢’ contains an infinite path of the
form ()| where a = uo®eo"?e...eo" e. ... Note that the infinite word «
is accepted by A (by the virtue of the choice of e, 0, and u). Therefore, by
the very definition of A, no extension of ¢’ to a tree in T% can be element of
L.

We will show that if T has no infinite path then, on the contrary, the
partial mapping ¢’ can be extended to a tree in L. More precisely, for each
t" (resulting from some T'), we will define a tree t € T extending ¢’ such
that t € L iff T € W. To make the mapping f : T +— t continuous, we have
to perform this extension with some care.

Let B be a deterministic tree automaton accepting L. We may assume
that B is complete, i.e., the transition function is always defined. At first,
we define a partial run, say p’, of B on ¢’ in natural manner. That is, we let
p'(e) = ¢P (the initial state of B), and, whenever p’(v) and (v) are both
defined, we let (p'(vl), p'(vrr) = TrB(p/ (v),t'(v)); otherwise p’ is undefined.
It is easy to see that dom(p’) consists of all nodes in dom(t’), as well as
their immediate successors. By virtue of determinism of B, the mapping
p' is uniquely determined by ¢'. More precisely, the value p’(v), whenever
defined, is completely determined by the values of ¢'(z), for < v. Let us
first observe that if 7' is well-founded, the partial run p’ can nevertheless
have infinite paths; however all these paths are accepting. Indeed, it can be
casily seen that any infinite path in the partial tree ¢’ is of the form t(¥,
where (is of the form uo"“teo™2e...eo0"¢e0”. But such 3 is not accepted by
A (by the choice of e, 0, and u), and therefore it occurs as a path in some
tree in L. By virtue of the remark above, the accepting run of B restricted
to B coincides with the restriction of p’ to this path.

Another important consequence of the determinism of B is that, for each
v € dom(p") —dom(t’), the state p/(v) is productive, i.e., there exists a tree s
and an accepting run of B on s, starting from p’(v). To see this, let us first
observe that each word p,, (as defined above for w € T') can be extended
to an infinite word not accepted by A, say 3; for example, we can obtain
by extending p,, by 0“. By definition of A, such 3 is a path of some tree in
L. This implies that for any v such that ¢'(v) is defined, the restriction of
t' to {x : © < v} can be extended to a tree accepted by B. Moreover, the
states assumed by the accepting run on the nodes in {x : x < v} and their
immediate successors, coincide with the states assumed on these nodes by
p'. This shows that whenever a state p’(v) is defined, it is productive; in
particular, this holds for each v € dom(p’) — dom(t'). Moreover, we can fix
a tree s with desired property (i.e., a tree accepted from p’(v)), on the basis
of v and the finite sequence of values t'(z) that ¢’ assumes for = < v, let us

16

call this tree s = sy ,,. This gives us the way how ¢’ should be extended to a
total tree ¢: for each v € dom(p’) —dom(t’), we substitute sy , in the node v.
By the virtue of determinism of B, the unique run p on t coincides with p’
at these points where p’ is defined. By construction and the considerations
above, if T is well-founded then p is accepting, hence t € L. On the other
hand, we have already noted that if T" is not well-founded then ¢’ has no
extension to a tree in L.

To complete the argument, it remains to argue that f : 1"+ ¢t is contin-
uous. It follows easily from the fact that, for each v, t(v) is determined on
the basis of a finite fragment of 7. O

Finally, let us observe that, by simply formalizing the definition, any
deterministic tree language can be expressed by a I3 formula of second-
order arithmetic, which implies its membership in the class IT}. Therefore,
any H%-hard deterministic language is also H%—complete.

Thus, Theorem 6 and Fact 8 imply the following.

Corollary 10 A deterministic tree language is either on the level Hg of the
Borel hierarchy, or it is H% complete, and hence non-Borel.

This fact should be contrasted with the result of Skurczyriski [23] who
showed that, for any n < w, there are tree languages in the classes X0 — 1%
and in ITIY — 30 that are recognized by weak alternating automata.

6 Complexity issues
We first note a consequence of Proposition 1.

Corollary 11 The problem “decide if a given parity nondeterministic tree
automaton accepts a deterministic language” is EXPTIME-complete.

Proof

The EXPTIME-hardness follows from the fact that the universality of non-
deterministic automata on finite trees is EXPTIME-hard [22]. We reduce
the universality problem to our problem as follows. Let A be a nondeter-
ministic tree automaton. Consider the language L# of trees such that a
tree starting from one of the sons of the root is accepted by A (the subtree
from the other son is arbitrary). If L(A) is universal then L4 is the set
of all trees. So L is a deterministic language. If L(A) is not universal but
nonempty then a standard argument shows that L(A) is not a deterministic

17

language. (Intuitively, an automaton needs to guess a direction in which a
tree from L(A) is.)

For the EXPTIME upper bound consider the following procedure. Given
a nondeterministic parity automaton A, we construct a word automaton (of
the same size) recognizing Paths(L(A)). Then we determinize it obtaining
an automaton B. Clearly VL(B) = VPaths(L(A)) is recognizable, and it
remains to test if L(A) = VL(B). Actually L(A) C VL(B) by the definition
so we need just to check that VL(B) C L(A). For this we take an automaton
A’ recognizing the complement of L(A) and check whether L(A’") NVL(B)
is empty.

The size of VL(B) is exponential in the size of A, but the size of accep-
tance conditions is polynomial in the size of A [21]. The same can be stated
about A’. Hence, we can construct an automaton C for the intersection
L(A") NVL(B) such that C has exponentially many states but its accepting
condition is polynomial in the size of A. Hence in EXPTIME we can check
the emptiness of C. O

Now recall that Rabin [20] showed that if a tree language L and the com-
plement of L are both Biichi languages then L is definable in weak monadic
second—order logic, and hence, by characterization of Mostowski [11], recog-
nizable by a weak alternating tree automaton. We have already noticed that
a deterministic tree language is always a complement of a Biichi one. Thus,
it is equivalent for such a language if it is recognized by a Biichi automa-
ton or by a weak automaton. In order to decide if a deterministic parity
tree automaton A is equivalent to a Biichi one, we can therefore proceed
as follows. At first convert A into a deterministic parity word automaton
for Paths(L). The construction is easy and does not increase the number of
the automaton’s states, however it requires knowing which states of A are
productive. Once the automaton for Paths(L) is constructed, we obtain a
deterministic automaton for Paths(L) by simply scaling up the rank by 1.
Now, it is easy to detect in polynomial time if a word automaton has a split.

Therefore, if we make a proviso that a given deterministic parity tree
automaton does not have unproductive states, we can test if it is equivalent
to a (nondeterministic) Biichi automaton in polynomial time. In general
case, the problem is as difficult as computing productive states of A. This
problem is equivalent to the question of finding a winner in parity games,
which is known to be in NPNco-NP but not known to be in P [6].

So we add the following estimation to the result of Urbaiiski [27], who
showed that it is decidable if a deterministic Rabin tree automaton is equiv-
alent to a (nondeterministic) Biichi tree automaton.

18

Corollary 12 It is decidable in polynomial time if a deterministically recog-
nizable tree language (presented by a deterministic parity automaton with-
out unproductive states) can be recognized by a Biichi automaton, or, equiv-
alently, by a weak alternating automaton.

Acknowledgments. The authors wish to thank anonymous referees for helpful

comments.

References

1]

A. Arnold. The p-calculus alternation-depth hierarchy is strict on bi-
nary trees. RAIRO-Theoretical Informatics and Applications, 33:329—
339, 1999.

A. Arnold and D. Niwinski. Fixed point characterization of weak
monadic logic definable sets of trees. In M. Nivat and A. Podelski,
editors, Tree automata and Languages, pages 159-188. Elsevier, 1992.

A. Arnold and D. Niwinski. Rudiments of p-calculus. Studies in Logic.
North-Holland, Elsevier, 2001.

J. C. Bradfield. The modal mu-calculus alternation hierarchy is strict.
Theoret. Comput. Sci., 195:133-153, 1997.

O. Carton and R. Maceiras. Computing the Rabin index of a parity
automaton. RAIRO-Theoretical Informatics and Applications, 33:495—
505, 1999.

E. A. Emerson, C. S. Jutla and A. P. Sistla. On Model-Checking for
fragments of p-calcul. In Proc. CAV’93, pages 385-396. Lect. Notes
Comput. Sci. 697, 1993.

F. Gecség and M. Steinby. Tree automata. Akadémiai Kiado, Budapest,
1984.

A. S. Kechris. Classical Descriptive Set Theory. Springer-Verlag, Hei-
delberg, New York, 1994.

G. Lenzi. A hierarchy theorem for the mu-calculus. In F. M. auf der
Heide and B. Monien, editors, Proc. ICALP ’96, pages 87-109. Lect.
Notes Comput. Sci. 1099, 1996.

19

[10]

[11]

[12]

[13]

[21]

[22]

R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:521-530, 1966.

A. W. Mostowski. Hierarchies of weak automata and weak monadic
formulas. Theoretical Comput. Sci., 83:323-335, 1991.

D.E. Muller and P.E. Schupp. Alternating automata on infinite trees.
Theoretical Comput. Sci., 54:267-276, 1987.

D.E. Muller, A. Saoudi and P.E. Schupp. Alternating automata and a
weak monadic theory of the tree and its complexity. In: L. Kott, editor,
13th ICALP’86, pages 275-283. Lect. Notes Comput. Sci. 226, 1986.

D. Niwinski. An example of non-Borel set of infinite trees recognizable
by a Rabin automaton (in Polish). Manuscript, University of Warsaw,
1985, pp. 9.

D. Niwinski. On fixed point clones. In: L. Kott, editor, 13th I[CALP’86,
pages 464-473. Lect. Notes Comput. Sci. 226, 1986.

D. Niwinski and I. Walukiewicz. Relating hierarchies of word and tree
automata. In STACS’98, pages 320-331. Lect. Notes Comput. Sci. 1373,
1998.

M. Otto. Eliminating recursion in the mu-calculus. In STACS’99,
volume 1563 of LNCS, pages 531-540, 1999.

D. Park. Concurrency and automata on infinite sequences. In 5th G.I.
Conf. on Theoret. Comput. Sci., pages 167-183. Lect. Notes Comput.
Sci. 104, 1981.

M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Soc., 141:1-35, 1969.

M. O. Rabin. Weakly definable relations and special automata. In
Y. Bar-Hillel, editor, Mathematical Logic and Foundation of Set Theory,
pages 1-23. North—Holland, Amsterdam, 1970.

S. Safra. On the complexity of w-automata. In 29th IEEE Symp. on
Foundations of Computer Science, 1988.

H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal
of Computing, 19:424-437, 1990.

20

[23]

[24]

[25]

J. Skurczynski. The Borel hierarchy is infinite in the class of regular
sets of trees. Theoretical Comput. Sci., 112:413-418, 1993.

W. Thomas. A hierarchy of sets of infinite trees. In Theoretical Com-
puter Science Proc., pages 335-342. Lect. Notes Comput. Sci. 145, 1983.

W. Thomas. Automata on infinite objects. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science , volume B, pages 133-191.
Elsevier Science Pub., 1990.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages
389-455. Springer-Verlag, 1997.

T. F. Urbanski. On deciding if deterministic Rabin language is in Biichi
class. In J. R. U. Montanari and E. Welzl, editors, Proc. ICALP 2000,
pages 663—-674. Lect. Notes Comput. Sci. 1853, 2000.

K. Wagner. Eine topologische Charakterisierung einiger Klassen
regularer Folgenmengen. J. Inf. Process. Cybern. EIK, 13:473-487,
1977.

T. Wilke and H. Yoo. Computing the Rabin index of a regular language
of infinite words. Information and Computation, 130:61-70, 1996.

21

