
Completeness of Kozen’s Axiomatisation of
the Propositional µ-Calculus

Igor Walukiewicz1

BRICS2,3

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

e-mail: igw@mimuw.edu.pl

Abstract

Propositional µ-calculus is an extension of the propositional modal
logic with the least fixpoint operator. In the paper introducing the logic
Kozen posed a question about completeness of the axiomatisation which
is a small extension of the axiomatisation of the modal system K. It is
shown that this axiomatisation is complete.

1 Introduction and summary

We consider µ-calculus as defined by Kozen [4]. This is the logic obtained from
modal logic by adding the least fixpoint operator: µX.α(X). The intended
models of the logic are Kripke structures. Kozen’s axiomatisation consists of
the axiomatisation of the modal system K together with one axiom and one rule
characterising the least fixpoint operator:

α(µX.α(X))⇒ µX.α(X)
α(ϕ)⇒ ϕ

µX.α(X)⇒ ϕ

1This work was partially supported by Polish KBN grantNo. 2 P301 009 06
2Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

3On leave from: Institute of Informatics, Warsaw University,
Banacha 2, 02-097 Warsaw, POLAND

1

The completeness theorem considered here is sometimes called weak complete-
ness because it deals with validity relation; it says that every valid formula is
provable. Strong completeness refers to an axiomatisation of semantic conse-
quence relation. It is not possible have finitary strongly complete axiomatisation
for the µ-calculus because the compactness theorem fails for the logic. In the
following completeness means weak completeness and provability means prov-
ability in the Kozen’s system unless explicitly stated otherwise.

In [4] Kozen showed that the axiom system proves negations of all unsat-
isfiable formulas of a special kind called aconjunctive formulas. In [9] another
finitary axiomatisation was proposed and proved to be complete for the whole
µ-calculus. This solved one part of the problem posed in [4] but the question
of the completeness of the original axiomatisation remained still open. We give
an affirmative answer to this question.

There are other reasons, apart from curiosity, to investigate the problem
of the completeness of Kozen’s system. Axiomatisation proposed in [9] makes
essential use of the small model theorem for the µ-calculus; this makes it impos-
sible to use it for extensions of the logic not enjoying the finite model theorem.
The other reason is that Kozen’s system is very natural, one may say as natural
as the notion of Kripke structures. Hence it is good to know that the class of
Kripke structures is a complete subclass of a quasi-variety defined by Kozen’s
system.

Let us review some methods used in previous approaches to the completeness
problem. First step is a tableau method of model construction of Streett and
Emerson [8]. For a given formula one constructs a tableau, if the formula is
satisfiable then one can construct a model from a part of this tableau. It was
shown in [6] that if the initial formula is unsatisfiable, and one cannot find a
model in the tableau, then one can construct for the formula another tableau-
like structure called refutation. In [9] a stronger axiomatisation was proposed
and it was shown that:

If there is a refutation for ϕ then ¬ϕ is provable in the stronger
system

(a)

This proof does not work for, weaker, Kozen’s axiomatisation and it does not
look like any simple modification of the argument can help here.

It is also possible to look at the Kozen’s proof for aconjunctive formulas from
the point of view of refutations. One can introduce a notion of thin refutation,
which is a refutation where reductions of conjunctions are restricted. A slight
extension of Kozen’s arguments gives us:

If there is a thin refutation for ϕ then ¬ϕ is provable(b)

2

Thin refutations suggest the notion of weakly aconjunctive formulas. These
formulas have the property that every refutation for such a formula is thin. As
the name indicates, all aconjunctive formulas are weakly aconjunctive. Below
we will use both fact (b) and the notion of weakly aconjunctive formulas.

Let us now give an outline of the proof presented here. As we noted above it
seams very hard to improve the statement (b) directly, by trying to enlarge the
class of refutations for which it holds. On the other hand by fact (b) in order
to show completeness it is enough to prove:

For every formula ϕ there is a semantically equivalent aconjunc-
tive formula ϕ̂ such that ϕ⇒ ϕ̂ is provable

(c)

This cannot work because it is not true that every formula is equivalent to an
aconjunctive formula. This obstacle can be avoided if we allow weakly aconjunc-
tive formulas but still these formulas are not particularly easy to work with. It
would certainly save us some work if we first tried to find some class of formulas
with better properties.

We will prove a statement like (c) but instead of aconjunctive formulas we
will use disjunctive formulas [2]. These formulas have several useful proper-
ties. First, tableaux for disjunctive formulas have very simple structure. Next,
the proof of the fact that negation of every unsatisfiable disjunctive formula is
provable is much easier than for weakly aconjunctive formulas (see Theorem 18).
The third important property is that for every formula there is a semantically
equivalent disjunctive formula. This last statement can be even strengthened
as we will describe in the next paragraph.

The properties stated above suggest that instead of proving (c) we should
try to prove:

For every formula ϕ there is a semantically equivalent disjunc-
tive formula ϕ̂ such that ϕ⇒ ϕ̂ is provable

(d)

The tool we will use to construct a proof of ϕ⇒ ϕ̂ is tableau equivalence. As we
have mentioned above, models for a formula can be constructed from a tableau
for the formula. We will say that two tableaux are equivalent if they are es-
sentially the same from the perspective of the model construction procedure.
This induces equivalence on formulas which is stronger than semantical equiv-
alence because there exist semantically equivalent formulas which do not have
equivalent tableaux. Now it was shown in [2] that for every formula there is
a disjunctive formula with an equivalent tableau. The use of tableau equiva-
lence is important because it allows us to replace semantical equivalence with
an equivalence which is much finer and syntactically defined.

3

Another important observation is that we can prove (d) in case ϕ is a weakly
aconjunctive formula. This follows from:

If α is a weakly aconjunctive formula, δ is a disjunctive formula
and the two formulas have equivalent tableaux then α ⇒ δ is
provable

(e)

Observe that already with this statement we substantially increase the class of
formulas which are known to be provable. We now know that some formulas of
the form ¬(ϕ ∧ ¬ϕ̂) are provable, where ¬ϕ̂ may not be a weakly aconjunctive
formula.

Let us try to use (e) to prove (d) by induction on the structure of ϕ. This
way we will see what we can do and where the problems are.

Suppose ϕ = νX.α(X). By induction assumption we have a disjunctive
formula α̂(X) and a proof of α(X) ⇒ α̂(X). Hence νX.α(X) ⇒ νX.α̂(X) is
provable. Because α̂(X) is a disjunctive formula, νX.α̂(X) is a weakly acon-
junctive formula although it may not be a disjunctive formula. Let ϕ̂ be a
disjunctive formula with a tableau equivalent to a tableau for νX.α̂(X). By (e)
we have a proof of νX.α̂(X) ⇒ ϕ̂. So ϕ⇒ ϕ̂ is provable.

The problems come only in one case when ϕ = µX.α(X). This is because
µX.α̂(X) may not be a weakly aconjunctive formula. Fortunately, by the fix-
point rule, to prove µX.α̂(X) ⇒ ϕ̂ it is enough to prove α̂(ϕ̂) ⇒ ϕ̂. Formula
α̂(ϕ̂) is weakly aconjunctive but this time we meet another problem. There may
be no tableau for α̂(ϕ̂) which is equivalent to a tableau for ϕ̂. This should not
come as a big surprise as the notion of tableau equivalence is very restrictive;
it would be rather surprising if it worked all the way. We remedy this by intro-
ducing a weaker relation between tableaux which we call tableau consequence.
We prove that there is a tableau for α̂(ϕ̂) of which a tableau for ϕ̂ is the con-
sequence. On the other hand the notion of tableau consequence is still strong
enough to show a statement similar to (e):

If α is a weakly aconjunctive formula, δ is a disjunctive formula
and a tableau for δ is a consequence of a tableau for α then
α⇒ δ is provable

(f)

This way we obtain a proof of α̂(ϕ̂)⇒ ϕ̂ hence also a proof of ϕ⇒ ϕ̂.
The plan of the paper is as follows. We start by defining the µ-calculus

and some auxiliary notions like: positive guarded formulas, binding function
or (a → Ψ) construct. In the next section we recall the results from [2] which
we will need here. The notions of tableau equivalence and disjunctive formula
are introduced there. Next, we present Kozen’s axiomatisation of the logic and

4

show some simple properties of it. The following section deals with weakly
aconjunctive formulas. The last section gives the inductive proof of (d).

Acknowledgements

I would like to thank Dexter Kozen for the introduction to the µ-calculus and
sharing with me his understanding of the subject. I am grateful to Damian
Niwiński for many important comments and remarks on this work. I would like
to thank David Janin, Nils Klarlund, Dexter Kozen and Roger Villemaire for
stimulating discussions.

2 Preliminary definitions

Let Prop = {p, q, . . .} be a set of propositional letters, Var = {X,Y, . . .} a set
of variables and Act = {a, b, . . .} a set of actions. Formulas of the µ-calculus
over these three sets are defined by the following grammar:

F :=> | ⊥ | Var | Prop | ¬F | F ∨ F | F ∧ F |
〈Act〉F | [Act]F | µVar .F | νVar.F

Additionally we require that in formulas of the form µX.α(X) and νX.α(X),
variable X occurs in α(X) only positively, i.e., under even number of negations.

We will use σ to denote µ or ν. Formulas will be denoted by lowercase
Greek letters. Uppercase Greek letters will denote finite sets of formulas. We
write α ⇒ β for ¬α ∨ β. For a finite set of formulas Γ we denote by

∧
Γ the

conjunction of formulas in Γ. Similarly
∨

Γ denotes the disjunction of formulas
in Γ. As usual the conjunction of the empty set is true and the disjunction of
the empty set is false. Propositional constants, variables and their negations
will be called literals.

Formulas are interpreted in Kripke structures M = 〈S,R, ρ〉, where: S is a
nonempty set of states, R : Act → P(S × S) is a function assigning a binary
relation on S to each action in Act and ρ : Prop → P(S) is a function assigning
a set of states to each propositional letter in Prop.

The meaning of a formula in a model is a set of states where it is true. For a
given model M and a valuation V : Var → P(S), the meaning of a formula α,
denoted ‖ α ‖MV , is defined by induction on the structure of α by the following

5

clauses (we will omit superscript M when it causes no ambiguity):

‖ > ‖V = S ‖ ⊥ ‖V = ∅
‖ X ‖V = V (X)

‖ p ‖V = ρ(p)

‖ ¬α ‖V = S − ‖ α ‖V
‖ α ∧ β ‖V = ‖ α ‖V ∩ ‖ β ‖V
‖ α ∨ β ‖V = ‖ α ‖V ∪ ‖ β ‖V
‖ 〈a〉α ‖V = {s : ∃t.(s, t) ∈ R(a) ∧ t ∈ ‖ α ‖V }
‖ [a]α ‖V = {s : ∀t.(s, t) ∈ R(a)⇒ t ∈ ‖ α ‖V }

‖ µX.α(x) ‖V =
⋂
{T ⊆ S : ‖ α ‖V [T/X] ⊆ T}

‖ νX.α(X) ‖V =
⋃
{T ⊆ S : T ⊆ ‖ α ‖V [T/X]}

Sometimes we will write M, s, V � α instead of s ∈ ‖ α ‖MV .

Definition 1 (Positive, guarded formulas) We call a formula positive iff all
negations in the formula appear only before propositional constants and free
variables.

Variable X in µX.α(X) is called guarded iff every occurrence of X in α is
in the scope of some modality operator 〈a〉 or [a]. We say that a formula is
guarded iff every bound variable in the formula is guarded.

Proposition 2 (Kozen) Every formula is equivalent to a positive guarded for-
mula.

Proof
Let ϕ be a formula, we first show how to obtain an equivalent guarded formula.
The proof proceeds by induction on the structure of the formula with the only
nontrivial cases being fixpoint constructors. We present here the case for the
least fixpoint. The case for the greatest fixpoint is similar.

Assume that ϕ = µX.α(X) and α(X) is a guarded formula. Suppose X

is unguarded in some subformula of α(X) of the form σY.β(Y,X). By the
assumption, the variable Y is guarded in σY.β(Y,X). We can use the equiva-
lence σY.β(Y,X) = β(σY.β(Y,X), X) to obtain a formula with all unguarded
occurrences of X outside the fixpoint operator. This way we obtain a formula
equivalent to α(X) with all unguarded occurrences of X not in the scope of a
fixpoint operator.

6

Now using the laws of classical propositional logic we can transform this for-
mula to a conjunctive normal form (considering fixpoint formulas and formulas
of the form 〈a〉γ and [a]γ as propositional constants). This way we obtain a
formula

(X ∨ α1(X)) ∧ . . .∧ (X ∨ αi(X)) ∧ β(X)(1)

where all occurrences of X in α1(X), . . . , αi(X), β(X) are guarded. Observe
that some of αj(X) may be just ⊥ and β(X) may be >. The variable X occurs
only positively in (1) because it did so in our original formula. Formula (1) is
equivalent to

(X ∨ (α1(X) ∨ . . .∨ αi(X))) ∧ β(X)

We will show that µX.(X ∨α(X)) ∧ β(X) is equivalent to µX.α(X) ∧ β(X). It
is obvious that

(µX.α(X) ∧ β(X)) ⇒ (µX.(X ∨α(X)) ∧ β(X))

Let γ stand for µX.α(X) ∧ β(X). To prove another implication it is enough
to observe that γ is a pre-fixpoint of µX.(X ∨ α(X)) ∨ β(X) as the following
calculation shows:

(γ ∨α(γ)) ∧ β(γ) ⇒
((α(γ) ∧ β(γ)) ∨α(γ)) ∧ β(γ) ⇒

α(γ) ∧ β(γ) ⇒ γ

If ϕ is a guarded formula then we use dualities of the µ-calculus:

¬(α ∨ β) = ¬α∧ ¬β ¬(α ∧ β) = ¬α∨ ¬β
¬〈a〉α = [a]¬α ¬[a]α = 〈a〉¬α

¬µX.α(X) = νX.¬α(¬X) ¬νX.α(X) = µX.¬α(¬X)

to produce an equivalent positive formula. It is easy to see that it will be still
a guarded formula. �

Next we introduce some tools which allow us to deal with occurrences of
subformulas of a given formula. These tools are very similar to those used in [4]
or [7]. We would like to have a different name (which will be a variable) for
every fixpoint subformula of a given formula. We will also introduce a notion
of a binding function which will associate subformulas to names.

Definition 3 (Binding) We call a formula well named iff every variable is

7

bound at most once in the formula and free variables are distinct from bound
variables. For a variable X bound in a well named formula α there exists the
unique subterm of α of the form σX.β(X), from now on called the binding
definition of X in α and denoted Dα(X). We will omit subscript α when it
causes no ambiguity. We call X a ν-variable when σ = ν, otherwise we call X
a µ-variable.

The function Dα assigning to every bound variable its binding definition in
α will be called the binding function associated with α.

Remark: Every formula is equivalent to a well-named one which can be
obtained by some consistent renaming of bound variables. The substitution of
a formula β for all free occurrences of a variable X in α, denoted α[β/X], can
be made modulo some consistent renaming of bound variables of β, so that the
obtained formula α[β/X] is still well-named.

Definition 4 (Dependency order) Given a formula α we define the depen-
dency order ≤α over the bound variables of α as the least partial order relation
such that if X occurs free in Dα(Y) then X ≤α Y . We will say that a bound
variable Y depends on a bound variable X in α when X ≤α Y .

Example: In case α = µX.〈a〉X ∨ νY.〈b〉Y , variables X and Y are incom-
parable in ≤α ordering. On the other hand if α is µX.νY.〈a〉X ∨µZ.〈a〉(Z ∨Y)
then X ≤α Z. �

Definition 5 Let α be a formula with an associated binding function Dα. For
every subformula β of α we define the expansion of β with respect to Dα as:

〈[β]〉Dα = β[Dα(Xn)/Xn] · · · [Dα(X1)/X1]

where the sequence (X1, X2, . . . , Xn) is a linear ordering of all bound variables
of α compatible with the dependency partial order, i.e. if Xi ≤α Xj then i ≤ j.

Definition 6 In construction of our tableaux we will need to distinguish some
occurrences of conjunction which should not be reduced by ordinary (and) rule.
To do this we extend the syntax of the µ-calculus by allowing the new construct
of the form (a→ Ψ), where a is an action and Ψ is a finite set of formulas. When
semantics is concerned, we will consider such a formula as an abbreviation of a
formula

∧{〈a〉ψ : ψ ∈ Ψ} ∧ [a]
∨

Ψ.

Remark: It is possible to express [a] and 〈a〉 modalities with the construct
introduced above. A formula [a]ψ is equivalent to (a → ∅) ∨ (a → {ψ}) and a
formula 〈a〉ψ is equivalent to (a → {ψ,>}). All the notions from this section

8

like guarded formula, binding function etc. extend to formulas with this new
construct.

Definition 7 (Terminal formula) Formula of the form (a→ ∅) will be called
terminal formula because its meaning is that there are no a-transitions from a
given state.

Proviso: If not otherwise stated all formulas are assumed to be well named,
positive, guarded and use (a→ Ψ) construct instead of 〈a〉ψ and [a]ψ modalities.
By observations stated above this is not a restriction if semantics is concerned.
As we will mention later every formula is provably equivalent to a formula of
this kind.

3 Tableau equivalence and disjunctive formulas

In this section we will recall results from [2] which we are going to use later on.
We define the notions of tableau and tableau equivalence. It turns out that if
two tableaux are equivalent then the formulas in the roots of the tableaux are
semantically equivalent. In spite of the fact that the implication in the other
direction does not hold, tableau equivalence turns out to be a very handy tool.
Next we define a notion of disjunctive formula. Some of the properties of these
formulas are discussed in [2]. Here we will recall only one result: for a given
tableau which can be presented as a finite graph one can construct a disjunctive
formula with an equivalent tableau.

Definition 8 (Tableau rules) For a formula ϕ and its binding function Dϕ
we define the system of tableau rules Sϕ parameterised by ϕ or rather its binding
function. The system is presented in Figure 1 (we use {α,Γ} as a shorthand for
{α} ∪ Γ).

Remark: (1) We see applications of the rules as a process of reduction.
Given a finite set of formulas Γ we want to derive, we look for the rule the
conclusion of which matches our set. Then we apply the rule and obtain the
assumptions of the instance of the rule in which Γ is the conclusion.

(2) There is no rule for reducing formulas of the form 〈a〉ϕ or [a]ϕ because
we assume that this formulas are replaced by equivalent formulas using (a→ Ψ)
notation.

9

(and)
{α, β,Γ}
{α ∧ β,Γ} (or)

{α,Γ} {β,Γ}
{α∨ β,Γ}

(µ)
{α(X),Γ}
{µX.α(X),Γ} (ν)

{α(X),Γ}
{νX.α(X),Γ}

(reg)
{α(X),Γ}
{X,Γ}

whenever X is a bound variable of ϕ
and Dϕ(X) = σX.α(X)

(mod)
{ψ} ∪ {

∨
θ : (a→ θ) ∈ Γ, θ 6= Ψ} for every (a→ Ψ) ∈ Γ, ψ ∈ Ψ

Γ

Figure 1: The system Sϕ

(3) The rule (mod) has as many assumptions as there are formulas in sets
Ψ, s.t., (a→ Ψ) ∈ Γ. For example

{ϕ1, ϕ3} {ϕ2, ϕ3} {ϕ1 ∨ ϕ2, ϕ3} {ψ1} {ψ2}
{(a→ {ϕ1, ϕ2}), (a→ {ϕ3}), (b→ {ψ1, ψ2})}

is an instance of the rule. We will call a son labeled by an assumption obtained
by reducing an action a an 〈a〉-son. In our example if a node n of a tableau
is labeled by the conclusion of the rule then its son labeled by {ϕ1, ϕ3} is an
〈a〉-son of n and a son labeled by {ψ1} is a 〈b〉-son of n.

Definition 9 (Tableaux) Tableau for a formula ϕ is a pair 〈T, L〉, where T is
a tree and L is a labelling function such that

1. the root of T is labeled by {ϕ},

2. the sons of any internal node n are created and labeled according to the
rules of the system Sϕ. Additionally we require that the rule (mod) is
applied only when no other rule is applicable.

As our tableaux may be infinite we will be interested not only in the form of
the leaves but also in the internal structure of tableaux. We are now going to
distinguish some nodes of tableaux and define a notion of trace which captures
the idea of a history of a regeneration of a formula.

10

Definition 10 (Modal and choice nodes) Leaves and nodes where reduc-
tion of modalities is performed, i.e., the rule (mod) is used, will be called modal
nodes. The root of the tableau and sons of modal nodes will be called choice
nodes.

If ϕ is a guarded formula then the sequence of all the choice nodes on the
path of a tableau for ϕ induces a partition of the path into finite intervals
beginning in choice nodes and ending in modal nodes. We will say that a modal
node m is near a choice node n iff they are both in the same interval, i.e., in the
tableau there is a path from n to m without an application of the rule (mod).
Observe that in some cases a choice node may be also a modal node.

Definition 11 (Trace) Given a path P of a tableau T = 〈T, L〉, a trace on P
will be a function Tr assigning a formula to every node in some initial segment
of P (possibly to the whole P), satisfying the following conditions:

• If Tr(m) is defined then Tr(m) ∈ L(m).

• Let m be a node with Tr(m) defined and let n ∈ P be a son of m. If a rule
applied in m does not reduce the formula Tr(m) then Tr(n) = Tr(m). If
Tr(m) is reduced in m then Tr(n) is one of the results of the reduction.
This should be clear for all the rules except (mod). In case m is a modal
node and n is labeled by {ψ} ∪ {∨ θ : (a → θ) ∈ Γ, θ 6= Ψ} for some
(a → Ψ) ∈ L(m) and ψ ∈ Ψ, then Tr(n) = ψ if Tr(m) = (a → Ψ) and
Tr(n) =

∨
θ if Tr(m) = (a → θ) for some (a → θ) ∈ Γ, θ 6= Ψ. Traces

from all other formulas end in node m.

Definition 12 (µ-trace) We say that there is a regeneration of a variable X
on a trace Tr on some path of a tableau for γ iff for some node m and its son
n on the path Tr(m) = X and Tr(n) = α(X), where Dγ (X) = σX.α(X).

We call a trace µ-trace iff it is an infinite trace (defined for the whole path)
on which the smallest with respect to ≤γ ordering variable regenerated infinite-
ly often is a µ-variable. Similarly a trace will be called a ν-trace iff it is an
infinite trace where the smallest variable which regenerates infinitely often is a
ν-variable.

Remark: Every infinite trace is either a µ-trace or a ν-trace because all
the rules except regenerations decrease the size of formulas and formulas are
guarded hence every formula is eventually reduced.

We are now going to define what does it mean for two tableaux to be equiv-
alent. It occurs that we can abstract from the order of application of non-modal
rules, but the structure of a tree designated by modal nodes will be very impor-
tant.

11

Definition 13 (Tableau equivalence) We say that two tableaux T1 and T2

are equivalent iff there is a bijection E between choice and modal nodes of T1

and T2 such that:

1. E maps the root of T1 onto the root of T2, it maps choice nodes to choice
nodes and modal nodes to modal nodes.

2. If n is a descendant of m then E(n) is a descendant of E(m). Moreover if
for some action a, node n is a 〈a〉-son of a modal node m then E(n) is a
〈a〉-son of E(m).

3. For every modal node m, the sets of literals and terminal formulas (i.e.
formulas of the form (a→ ∅)) occuring in L(m) and in L(E(m)) are equal.

4. There is a µ-trace on a path P of T1 iff there is a µ-trace on a path of T2

designated by the image of P under E .

Theorem 14
If two formulas (satisfying our proviso) have equivalent tableaux then they are
semantically equivalent.

Next we define the notion of disjunctive formula.

Definition 15 (Special conjunctions and disjunctive formulas) A conjunc-
tion α1∧ . . .∧αn is called special iff every αi is either a literal or a formula of a
form (a→ Ψ) and for every action a there is at most one conjunct of the form
(a→ Ψ) among α1, . . . , αn.

The set of disjunctive formulas, Fd is the smallest set defined by the following
clauses:

1. every literal is a disjunctive formula,

2. if α, β ∈ Fd then α ∨ β ∈ Fd; if moreover X occurs only positively in α

and not in the context X ∧ γ for some γ, then µX.α, νX.α ∈ Fd,

3. (a→ Ψ) ∈ Fd if Ψ ⊆ Fd,

4. special conjunction of disjunctive formulas is a disjunctive formula.

Remark: Modulo the order of application of (and) rules, disjunctive for-
mulas have unique tableaux. Moreover on every infinite path there is one and
only one infinite trace.

It turns out that every formula is equivalent to a disjunctive formula. This
is unfortunately not a normal form because there may be many equivalent dis-
junctive formulas.

12

Theorem 16
For every formula ϕ and every regular tableau T for ϕ (i.e. a tableau which can
be presented as a finite graph) there is a disjunctive formula ϕ̂ with the tableau
equivalent to T .

Proof
We give an outline of the proof. A tree with back edges is a tree with added
edges leading from some of the leaves to their ancestors. First we prove:

Lemma 16.1 It is possible to construct a finite tree with back edges Tl, satis-
fying the following conditions:

1. Tl unwinds to T .

2. Every node to which a back edge points can be assigned color magenta or
navy in such a way that for every infinite path of the unwinding of Tl we
have: there is a µ-trace on the path iff the closest to the root node of Tl
through which the path goes infinitely often is colored magenta.

Having such a tree one constructs from it a disjunctive formula ϕ̂ which has
a tableau equivalent to T . The construction starts in the leaves of the tree and
proceeds to the root. To every edge leading to a leaf n we assign a formula n̂
which is a conjunction of all the literals in the label of n plus the formula µXn.>
(with subscript n in Xn being the node). The later formula is used to distinguish
the label of the node. To every back edge leading to a node n we assign the
variable Xn. For every internal (or) node we take a disjunction of two formulas
assigned to the edges going from it. For (mod) node we construct appropriate
special conjunction. When coming to a node to which some back edge points
we know that all the back edges pointing to this node are assigned the same
variable Xn. The color of the node is used to decide which fixpoint operator
should be used to close this variable. We take for ϕ̂ the formula assigned to the
root of Tl.

It can be shown that T is equivalent to a tableau T̂ = 〈T̂ , L̂〉 for ϕ̂. Let
E : T → T̂ be this equivalence. The addition of µXn.> components in the
construction allows us to have the additional property:

Observation 16.2 For a modal or choice node m̂ of T̂ and a set of modal or
choice nodes N̂ of T̂ , if L̂(m̂) ⊆ ⋃

n̂∈N̂ L̂(n̂) then L(E−1(m̂)) ⊆ ⋃
n̂∈N̂ L(E−1(n̂)).

In particular if L̂(m̂) = L̂(n̂) then L(E−1(m̂)) = L(E−1(n̂)).

�

13

4 The system

Here we would like to present an axiomatisation of the µ-calculus proposed by
Kozen [4] and show some simple properties of the system.

We adopt the original formulation of Kozen. The basic judgement of the
system has the form α = β with the intended meaning that the two formulas
are semantically equivalent. Judgement α ≤ β is an abbreviation for α∧β = α.
A formula α is provable if α = > is provable.

The axiomatisation consists of the axioms and rules of equational logic (in-
cluding substitution of equals by equals, i.e., cut rule) and the following axioms
and rules:

(K1) axioms for Boolean algebra

(K2) 〈a〉ϕ ∨ 〈a〉ψ = 〈a〉(ϕ ∨ψ)

(K3) 〈a〉ϕ ∧ [a]ψ ≤ 〈a〉(ϕ ∧ψ)

(K4) 〈a〉⊥ = ⊥

(K5) α(µX.α(X)) ≤ µX.α(X)

(K6)
α(ϕ) ≤ ϕ

µX.α(X) ≤ ϕ

Because we have put ν and box directly into the language we have to define
them by equivalences:

[a]α = ¬〈a〉¬α
νX.α(X) = ¬µX.¬α(¬X)

It was proved in [4] that the following rules are admissible:

ψ ∧
∧
{
∨
θ : (a→ θ) ∈ Γ, θ 6= Ψ} ≤ ⊥

(a→ Ψ) ∧
∧

Γ ≤ ⊥
for some ψ ∈ Ψ(〈〉)

γ ∧ α(µX.¬γ ∧ α(X)) ≤ ⊥
γ ∧ µX.α(x) ≤ ⊥

(fix)

α ≤ β
ϕ(α) ≤ ϕ(β)

X occurs only positively in ϕ(X)(mon)

14

According to our proviso we restrict ourselves to well-named, positive and guard-
ed formulas. We must show that it is a harmless restriction if provability is
concerned.

Fact 17 Every formula is provably equivalent to a formula satisfying the proviso
on page 9

Proof: Just observe that all the steps used in transforming a formula to a
positive guarded form as described in Proposition 2 use provable equivalences. �

One of the nice properties of disjunctive formulas is that they are easy if
provability is concerned.

Theorem 18
For every unsatisfiable disjunctive formula α the formula ¬α is provable.

Proof
In [2] it was shown:

A disjunctive formula α is satisfiable iff β obtained form α by
replacing all µ-variables by ⊥ and all ν-variables by > is satis-
fiable.

(2)

We prove the theorem by induction on the structure of α.
Suppose α is a special conjunction α1∧. . .∧αn, we have two cases. If αi = ⊥

or αi = ¬αj for some i, j ∈ {1, . . . , n} then ¬α is easily provable. Otherwise
one of the conjuncts must be of the form (a→ Ψ) and one of the formulas from
Ψ must be unsatisfiable. From induction assumption using rule (〈〉) we obtain
the proof of ¬α.

If α = γ ∨ δ then by induction assumption we have proofs of ¬γ and ¬δ so
we can use propositional calculus laws.

If α = µX.γ(X) then because this formula is unsatisfiable so is γ(⊥). By
induction assumption there is a proof of ¬γ(⊥) and we can use the derivable
rule:

¬γ(⊥) = >
¬µX.γ(X) = >

If α = νX.γ(X) then we consider γ(>). It is of course a disjunctive formula.
By (2) γ(>) is satisfiable iff νX.γ(X) is satisfiable. As the later formula is not
satisfiable we have by induction assumption the proof of ¬γ(>) and we can use
the derivable rule:

¬γ(>) = >
¬νX.γ(X) = >

�

15

5 Provability for weakly aconjunctive formulas

In this section we will consider a class of formulas for which the provability is
easier than in the general case (although not as easy as for disjunctive formu-
las). We recall the notion of aconjunctive formulas [4] and propose its slight
generalisation called weakly aconjunctive formulas. Our goal in this section is to
obtain a generalisation of the main result from [4] which states that the negation
of every unsatisfiable aconjunctive formula is provable. To do this we introduce
the notion of thin refutation which isolates the cases for which the original proof
still goes through. It turns out that every refutation of a weakly aconjunctive
formula is thin.

Definition 19 (Weakly aconjunctive formulas) Let ϕ be a formula,Dϕ be
its binding function and ≤ϕ the dependency ordering (see Definitions 3 and 4).

— We say that a variable X is active in ψ, a subformula of ϕ, iff there is a
variable Y appearing in ψ and X ≤ϕ Y .

— Let X be a variable with its binding definition Dϕ(X) = µX.γ(X). The
variable X is called aconjunctive iff for all subformulas of γ of the form α∧β it
is not the case that X is active in α as well as in β.

— A variable X as above is called weakly aconjunctive iff for all subformulas
of γ of the form α ∧ β if X is active both in α and β then α ∧ β is a special
conjunction as defined in Definition 15.

— Formula ϕ is called (weakly) aconjunctive iff all µ-variables in ϕ are (weakly)
aconjunctive.

In the following we will be interested only in weakly aconjunctive formulas.
The definition of aconjunctive formulas was recalled just to give a comparison
of the two notions.

From the next observation follows that all formulas appearing in a tableau
for a weakly aconjunctive formula are weakly aconjunctive.

Fact 20 Every formula appearing in a tableau for ϕ is a subformula of ϕ.

The next proposition states some closure properties of the class of weakly a-
conjunctive formulas. Observe that weakly aconjunctive formulas are not closed
under negation nor under the least fixpoint operation.

Proposition 21 (Composition) If γ(X) and δ are weakly aconjunctive for-
mulas then γ[δ/X], νX.γ(X) and δ∧γ(X) are also weakly aconjunctive formulas.

16

Proof
As we consider only well named formulas, when conjunction is formed we make
sure that the bound variables in δ and γ(X) are different. With this observation
it should be easy to see that νX.γ(X) and δ ∧ γ(X) are weakly aconjunctive.

Also while performing substitution γ[δ/X] we keep bound variables of δ
distinct from the bound variables of γ. Let α = γ[δ/X] and let Y be a µ-
variable of α. This variable is bound either in γ or in δ. If it is a bound variable
from γ then because no bound variable of γ is free in δ we have that for every
Y ≤α Z, variable Z is a bound variable of γ. Hence Y is weakly aconjunctive
in α iff it was weakly aconjunctive in γ. For the similar reason every µ-variable
of δ is weakly aconjunctive in α. �

Definition 22 (Refutations) Refutation for a formulaϕ is defined as tableau,
but this time we modify system Sϕ (presented in Figure 1) by adding explicit
weakening rule and instead of (mod) rule we take (〈〉) rule:

{ψ} ∪ {
∨
θ : (a→ θ) ∈ Γ, θ 6= Ψ}

Γ
(a→ Ψ) ∈ Γ, ψ ∈ Ψ(〈〉)

This rule is similar to (mod) but has only one assumption. Additionally we
require that every leaf of the refutation must be labeled by a set containing ⊥
or some literal and its negation and on every infinite path there should be a
µ-trace.

We call a refutation thin iff whenever a formula of the form α∧ β is reduced
in some node of the refutation and some variable is active in α as well as in β

then either α∧β is a special conjunction or one of the conjuncts is immediately
discarded by the use of weakening rule.

The following is an easy consequence of Fact 20.

Fact 23 Every refutation for a weakly aconjunctive formula is a thin refutation.

It was shown in [6] that every unsatisfiable formula has a refutation. From
this perspective the next theorem essentially says that one can prove the nega-
tion of an unsatisfiable weakly aconjunctive formula. The theorem is stated
more generally because in Lemma 31 we deal with thin proof tableaux for pos-
sibly not weakly aconjunctive formulas.

Theorem 24
If a formula has a thin refutation then its negation is provable.

17

Proof
The proof is a reformulation of Kozen’s arguments from [4]. Let R be a thin
refutation for ϕ. We can assume that in R we reduce special conjunctions
only when no other formula can be reduced by rules other than (mod). This
restriction does not change the shape of the tableau. Let D be the binding
function associated with ϕ and let ≤ϕ be the dependency ordering on the bound
variables of ϕ. It will be convenient here to use some arbitrary linearisation of
≤ϕ. We will write <ϕ for strictly less relation determined by this linearisation.

We will assign to every node m of R a formula which will contain some
information about the path up to m. The information we are interested in
is what variables and in what nodes were regenerated. To see what we mean
consider a node m labeled {X,Γ} and its son n labeled {α(X),Γ}. The formula
assigned to m will have the form ¬(γ∧µX.β(X)). Now to remember the context
in whichX was regenerated we can use the rule (fix) and assign to n the formula
¬(γ ∧ β(µX.¬γ ∧ β(X))). If it ever happens that in some descendant o of n we
regenerate X in the same context then we can use this recorded information in
a sense that the formula assigned to o will be of the form ¬(γ ∧µX.¬γ ∧β(X));
hence it will be a provable formula. Summarising we want two properties from
our assignment of formulas:

1. If the formula assigned to a node is unprovable then the formula assigned
to one of the sons is unprovable.

2. At some nodes use remembering so that on every path there is a variable
regenerated in the context which is already recorded.

If ¬ϕ is not provable then by the first property we can find an infinite path of
R, every node of which has associated an unprovable formula. By the second
property we obtain the contradiction because a formula associated with the
node where some variable was regenerated in the same context for the second
time is provable.

Unfortunately the second condition is quite difficult to obtain. If we just
used remembering trick in every possible node it could happen that we could
get infinitely many different contexts. We have to be very careful about what
information we remember and what we should “forget”. This is why the assign-
ment of formulas to nodes is rather involved and is split into two steps. First,
starting from the root of R we assign a token list to every node; then we use
this list assignment to define formulas.

We assume that we have a countable set of tokens. Tokens can be removed
from the list and we can add tokens to the right end of the list. Removed tokens
are never used again. Each token has its own counter. We also assign a pair
(formula, bound varaible of ϕ) to every token on the list.

18

To the root of R we assign an empty list of tokens. A list of tokens for an
internal node n is constructed from the list for its father m according to the
following rules:

1. Suppose β is obtained by reduction of α and β appears already in L(m),
i.e., contraction is performed. Let Xα be the smallest in <ϕ ordering
variable such that some token tα in the list for m is labeled (α,Xα).
Similarly find Xβ and tβ. If Xβ <ϕ Xα or Xβ = Xα and tβ appears to the
left of tα on the list then remove all the tokens labeled (α, Y) for Y active
in β otherwise remove all the tokens having β in its label. The intuition is
that when contraction is performed two formulas in the label become the
same but they may not have the same history. We have to choose which
history to remember discarding the other.

2. Suppose (or) rule is applied in m to α ∨ β and, say, α is the result of
reduction which appears in n. The token list for n is obtained by taking
the token list for m an replacing every occurrence of α ∨ β in the labels
with α.

3. Suppose in m we apply the rule:

(reg)
{α(X),Γ}
{X,Γ}

D(X) = σX.α(X)

For every variable Y replace the label (X,Y) by (α(X), Y). Next we
increase by one the counter of the token labeled by (α(X), X) and reset
to 0 the counters of all the tokens to the right of it.

4. Suppose in m we apply rule (µ) or (ν):

(σ)
{X,Γ}

{σX.α(X),Γ}
D(X) = σX.α(X)

For every variable Y replace the label (σX.α(X), Y) by (α(X), Y) After
that if X is a µ-variable we add a new token to the right end of the list
labeled (α(X), X) and set its counter to 0.

5. Suppose we apply the rule (and) to α∧β which is not a special conjunction.
Because our proof tableau is thin we know that either one of the conjuncts
is deleted or every variable is active in at most one of the formulas α or
β. If only one of the formulas, say α remains then we proceed exactly as
in the case of (or) rule. If none of the formulas is deleted then for every

19

Y we change the label of a token labeled (α∧β, Y) to (α, Y) if Y is active
in α otherwise we change it to (β, Y).

6. Suppose we have zero or more applications of (and) rule to special con-
junctions followed by an application of (mod) rule. Let n′ be a node on
P labeled by the result of application of this (mod) rule and let a be an
action reduced by this rule application. We will skip all the nodes between
m and n′ and assign a token list directly to n′. A special conjunction is
of the form

γ ∧ (a1 → Φ1) ∧ (a2 → Φ2) ∧ . . .∧ (ai → Φi)

where γ is a conjunction of literals and there is at most one conjunct,
say number j, with action a. In a token list for n′ we replace the above
formula with

∨
Φj or some ϕj ∈ Φj depending on which formula appears

in n′.

7. After the above steps we remove tokens which are either: (i) labeled with
pairs (α, Y) with Y not active in α or (ii) labeled with formulas which do
not appear in the label of the node.

Observation 24.1 For every path P of R there is a counter which gets arbi-
trary big on P.

Proof
Let us take a µ-trace T on P and let X be the smallest µ-variable regenerated
i.o. on the trace. After some time X is the smallest variable regenerated on the
trace. Let n0 be a node of P where X is regenerated on T and after which no
variable smaller than X is regenerated on T . Let t0 be a token from the list for
n0 labeled (X,Y0) for the smallest possible (in <ϕ ordering) variable Y0. We
call t0 a support of the trace in n0. There is a support because (X,X) is a label
of some token. Because of step 7 of the construction we have Y0 ≤ϕ X

Suppose n1 is a node where t is deleted. As X is active in T (n1), it might
have happened only because of step 1 of the construction. This means that the
formula T (n1) appeared in the label of the father of n1 and there is a token t1
which is either labeled by (T (n1), Y1) for some variable Y1 <ϕ Y0 or t1 is labeled
(T (n1), Y0) but it is to the left of t0. This means that the support for the trace
changes.

It should be clear that a support can change only finitely many times. Let
m be a node after this last change, where X is regenerated on the trace. Let t
be a token labeled (X,X) on the list of m. Form this point t is never deleted
and its counter is increased every time X is regenerated.

20

If the counter of t is not unbounded then it must be the case that there is a
token to the left of it in the list which counter is being increased i.o. The counter
of the leftmost such token is unbounded. �

Next we assign a formula to every node ofR. To do this for every node n ofR
and every formula β ∈ L(n) we define a binding function Dn,β from the token
list for n. This binding functions will be obtained from D by modifications
of one kind. For some µ-variables instead of D(X) = µX.α(x) we will have
Dn,δ(X) = µX.¬γ1∧ . . .∧¬γk∧α(X), where formulas γ1, . . . , γk are determined
in the following way:

Consider ancestors of n up to the nearest node where a token
now labeled (δ,X) is added or its counter is reset to zero. Among
these ancestors choose all n1, . . . , nk where the counter of the
token was increased, then for i = 1, . . . , k:

γi =
∧
{〈[δ]〉Dni,δ : δ ∈ L(ni), δ 6= α(X)}

(*)

The formula assigned to a node n is:

¬
∧
{〈[β]〉Dn,β : β ∈ L(n)}

Observation 24.2 If for some node m formula ¬∧{〈[β]〉Dm,β : β ∈ L(m)} is
unprovable then there is a son n of m such that ¬∧{〈[β]〉Dn,β : β ∈ L(n)} is
unprovable. (In case special conjunctions are reduced in m, node n is not a son
of m but a son of the modal node near m.)

Proof: The proof is by cases depending on the rule which was applied in m.
We will consider only one case when the rule applied in m is a regeneration of
a µ-variable:

(reg)
{α(X),Γ}
{X,Γ}

D(X) = µX.α(X)

Assume tokens with X in the labels were not deleted in the first step of the
construction. Looking at the changes to the token list for the son n of m we
can see that for every β ∈ Γ and every variable Y , Dn,β(Y) is either Dm,β(Y)
or D(Y). This implies that 〈[β]〉Dm,β ≤ 〈[β]〉Dn,β is provable for all β ∈ Γ.

By definition 〈[X]〉Dn,α(X) is of the form µX.γ ∧ α(X) and let us denote
{〈[β]〉Dn,β : β ∈ L(n), β 6= α(X)} by θ. We know that

¬(
∧
θ ∧ (µX.γ ∧ α(X)))

21

is unprovable. By rule (fix)

¬(
∧
θ ∧ γ ∧ α(µX.¬

∧
θ ∧ γ ∧ α(X)))

is unprovable, hence

¬(
∧
θ ∧ α(µX.¬

∧
θ ∧ γ ∧ α(X)))

is unprovable. But α(µX.¬∧ θ ∧ γ ∧ α(X)) = 〈[α(X)]〉Dn,α(X) . �
For the root n0 of R we have Dn0,ϕ = D. Using the assumption that ¬ϕ is

unprovable and the above observation we obtain an infinite path P of R such
that for every node n of P the formula ¬∧{〈[β]〉Dn,β : β ∈ L(n)} is unprovable.

Let t be a token for which the counter can be arbitrary big on P. Let X be a
variable from the label of t and let D(X) = µX.α(X) be its original definition.
Because the counter of t is unbounded there must be two nodes n1, n2 such that:
(i) L(n1) = L(n2), (ii) the parts of the lists to the left of t are identical, (iii) t
is labeled by (α(X), X) and (iv) the counter of t was increased and it was not
reset between n1 and n2. Let us assume that n2 is a descendant of n1. We will
show that ¬∧{〈[γ]〉Dn2 ,γ

: γ ∈ L(n2)} is provable.
As binding functions are established by (*) we have that

Dn2,δ = Dn1,δ for every formula δ ∈ L(n1), δ 6= α(X)(3)

This is because by (iii) and (iv) the counters of all the tokens to the right of t
are 0 and all the counters to the left of t are the same in n1 and n2. Of course
the counter of t in n1 is strictly smaller than in n2.

We have:

Dn1,X(X) = µX.¬γ1 ∧ . . .∧ ¬γi ∧ α(X)

Dn2,X(X) = µX.¬γ1 ∧ . . .∧ ¬γj ∧ α(X)

where j > i and formulas γ1, . . . , γj are determined by the rule (*). We know
that γi is

∧{〈[δ]〉Dn1,δ
: δ ∈ L(n1), δ 6= α(X)} and by (3) it is the same as∧{〈[δ]〉Dn2,δ

: δ ∈ L(n2), δ 6= α(X)}. Finally we have that ¬∧{〈[γ]〉Dn2,γ
: γ ∈

L(n2)} is of the form

¬
(
¬γi ∧ β(µX.¬γi ∧ β(X))

)
∨ ¬

∧
{〈[δ]〉D(n2,δ) : δ 6= α(X), δ ∈ L(n2)}

which is just an instance of the propositional tautology ¬(α∧β)∨α. A contra-
diction with the choice of P. �

22

6 Completeness

Our main goal is:

Theorem 25 (Completeness)
For every unsatisfiable formula ϕ formula ¬ϕ is provable.

Having Theorem 18 to prove completeness it is enough to show that for every
unsatisfiable formula ϕ there is a disjunctive unsatisfiable formula ϕ̂ such that
ϕ ≤ ϕ̂ is provable. Of course we could just take ϕ̂ to be ⊥ but then the proof of
this fact would be exactly as difficult as showing completeness. So in general we
will look for more complicated formulas than ⊥. Because we will prove this fact
by induction on ϕ we clearly need to consider also satisfiable formulas. From
this considerations it follows that we need:

Theorem 26
For every positive, guarded formula ϕ there is a semantically equivalent disjunc-
tive formula ϕ̂ such that ϕ ≤ ϕ̂ is provable. Moreover if a variable occurs only
positively in ϕ then it occurs only positively in ϕ̂.

Before proving this theorem let us show how to use it in the completeness
proof.
Proof (Completeness)
Let ϕ be an unsatisfiable formula. By Proposition 17 we may assume that ϕ
satisfies our proviso from page 9. Form Theorem 26 it follows that there is a
disjunctive formula ϕ̂ equivalent to ϕ and ϕ ≤ ϕ̂ is provable. Hence it is enough
to show that ¬ϕ̂ is provable. But this follows from Theorem 18. �

The rest of this section is devoted to the proof of Theorem 26.
Proof (Theorem 26)
The proof is by induction on the structure of the formula ϕ.

Case: ϕ is a literal In this case ϕ̂ is just ϕ.

Case: ϕ = α∨β By induction assumption there are disjunctive formulas α̂, β̂
equivalent to α and β respectively. We let α̂ ∨ β to be α̂ ∨ β̂. Because α ≤ α̂

and β ≤ β̂ are provable, α ∨ β ≤ (α̂ ∨ β̂) is also provable.

Case: ϕ = (a→ Φ) This case is very similar to the one above.

23

Case: ϕ = µX.α(X) The proof of this case will take a significant part of this
section. Fortunately the tools developed here can be also used for the remaining
cases.

By induction assumption there is a disjunctive formula α̂(X) equivalent to
α(X). It is easy to see that µX.α(X) is semantically equivalent to µX.α̂(X)
and µX.α(X) ≤ µX.α̂(X) is provable. Unfortunately µX.α̂(X) may not be a
disjunctive or even weakly aconjunctive formula. This is because X may occur
in a context X ∧ γ for some γ. Therefore we have to construct ϕ̂ from scratch.

By Theorem 16 there is a disjunctive formula ϕ̂ which has the tableau e-
quivalent to some tableau T for µX.α̂(X). By Theorem 14 the two formulas
are equivalent. We are left to show that µX.α̂(X) ≤ ϕ̂ is provable in Kozen’s
system. To do this it is enough to prove α̂(ϕ̂) ≤ ϕ̂ and then use the rule (K6).
Now, it is possible to show that if α and δ have equivalent tableaux, α is weakly
aconjunctive and δ is disjunctive then α ≤ δ is provable. Unfortunately the no-
tion of tableau equivalence is to strong for us because there may be no tableau
for α̂(ϕ̂) equivalent to a tableau for ϕ̂. We need some weaker notion of cor-
respondence between tableaux but it should be strong enough to allow us to
construct a proof of α̂(ϕ̂) ≤ ϕ̂. Below we propose such a notion which we call
tableau consequence. It is defined in terms of games.

Definition 27 (Tableau consequence) Given a pair of tableaux (T̃ , T), where
T̃ = 〈T̃ , L̃〉 and T = 〈T, L〉, we define a two player game G(T̃ , T) with the fol-
lowing rules.

1. The starting position is a pair of the roots of both tableaux.

2. Suppose a position of a play is (ñ, n), both nodes being choice nodes of
T̃ and T respectively. Player I must choose a modal node m̃ near ñ and
player II must respond by choosing a modal node m near n. Node m

must have the property that every literal and terminal formula from L(m)
appears in L̃(m̃).

3. Suppose a position of a play is (Ñ ,N) with Ñ ,N being sets of choice
nodes of T̃ and T respectively. Player I must choose a modal node m̃
near some ñ ∈ Ñ and player II must respond with a modal node m near
some n ∈ N , such that, every literal and terminal formula from L(m)
appears in L̃(m̃).

4. Suppose a position consists of a pair of modal nodes (m̃,m) from T̃ and
T respectively. Player I chooses some action a and has two possibilities
afterwards. He can choose a 〈a〉-son n of m and player II has to respond

24

with a 〈a〉-son ñ of m̃. Otherwise player I can choose all 〈a〉-sons of m
and player II must respond with the set of all 〈a〉-sons of m̃.

The game may end in a finite number of steps because one of the players
cannot make a move. In this case the opposite player wins. When the game has
infinitely many steps we get as the result two infinite paths: P̃ from T̃ and P
from T . Player I wins if there is no µ-trace on P̃ but there is a µ-trace on P,
otherwise player II is the winner.

Definition 28 (Strategy) A strategy S for the second player in the game
G(T̃ , T) is a function assigning to a position consisting of two modal nodes
(m̃,m) and a son n of m a son S(m̃, n) of m̃ of the same type as n. If (ñ, n) is
a pair of choice nodes and m̃ is a modal node near ñ then the strategy gives us
a modal node S(m̃, n) near n. If a position consists of two sets (Ñ ,N) then for
every modal node m̃ near some ñ ∈ Ñ strategy S gives a modal node S(m̃,N)
near some n ∈ N . A strategy is winning if it guarantees that player II wins no
matter what the moves of player I are.

We will say that a wide tableau T is a consequence of a wide tableau T̃ iff
player II has a winning strategy in G(T̃ , T).

The definition of the game is based on the following intuition about tableaux.
Tableau for a formula describes “operationally” semantics of a formula. In order
to satisfy formulas in a choice node n we must provide a state which satisfies the
label of one of the modal nodes near n. The sons of a modal node describe the
transitions from a hypothetical state satisfying its label. Every 〈a〉-son describes
an a-successor which is required. The set of all 〈a〉-sons puts a restriction on all
possible a-successors of the node. In this way tableau of a formula describes all
possible models of that formula.

The game is defined so that whenever player II has a winning strategy from
a position (ñ, n) then every model of the label of ñ, L̃(ñ), is also a model of
the label of n, L(n). If ñ and n are both choice nodes then a model of L̃(ñ)
must satisfy the label of one of the modal nodes near ñ. Hence for every modal
node near ñ we must show a modal node near n which label is implied by it. If
ñ, n are modal nodes then every 〈a〉-son of n describes a state the existence of
which is required in order to satisfy L(n). We must show that existence of such
a state is also required by L̃(ñ). The set of all the 〈a〉-sons represents general
requirements on states reachable by action a imposed by L(n). We must show
that they are implied by the general requirements in L̃(ñ)

The following lemma shows that tableau consequence is indeed weaker than
equivalence.

25

Lemma 29 If two tableaux T1 and T2 are equivalent then T1 is a consequence
of T2.

Proof: Let E : T1 → T2 be an equivalence function. Consider the game
G(T1, T2). The strategy for player II is to keep to positions of the form (n, E(n)).
The initial position is of this form. The strategy is defined by the following rules:

• If a position of a play is a pair of choice or modal nodes (m, E(m)), then
player I chooses some node n and player II replies by choosing E(n).

• If a position of a play is (N, E(N)) with N being a set of choice nodes of
T1 and E(N) = {E(n) : n ∈ N} then player I chooses a modal node m
near some n ∈ N and player II responds with the node node E(m).

By the definition of the equivalence this strategy is winning. �

Lemma 30 The tableau T for µX.α̂(X) is a consequence of the tableau T̃ for
α̂(ϕ̂).

Proof
Let T = 〈T, L〉, T̃ = 〈T̃ , L̃〉 and let T̂ = 〈T̂ , L̂〉 be the tableau for ϕ̂. Recall
that T̂ was constructed from T using Theorem 16. Hence we can assume that
T̂ satisfies the properties from Observation 16.2. As the tableaux for µX.α̂(X)
and α̂(µX.α̂(X)) differ just by one application of the fixpoint rule in the root
we will denote by T also the tableau for α̂(µX.α̂(X)).

By assumption ϕ̂ and α̂(X) are disjunctive formulas. We will use β[µX.α̂(X)/ϕ̂]
and β[ϕ̂/µX.α̂(X)] to stand for the obvious replacement, it will be always the
case that no free variable in µX.α̂(X) or ϕ̂ is bound by the context β. From
Fact 20 we obtain:

Observation 30.1 For every node ñ of T̃ , every formula in L̃(ñ) is either a
disjunctive formula or of the form δ(ϕ̂) with δ(X) being a disjunctive formula.

As the first step, for every node m̃ of T̃ we will define two functions:

p
m̃

: L̃(m̃)→ N ∪ {∞} n̂d
m̃

: Ran(p
m̃

) ∩ N→ P(T̂)

The first function assigns a priority which is a natural number or ∞ to every
formula in L̃(m̃). The function n̂d

m̃
assigns sets of nodes of T̂ to finite priorities

in the range of p
m̃

; Ran(p
m̃

) = {q : p−1
m̃

(q) 6= ∅}. Sometimes we will identify

a singleton set {m} with the element m. For example we will write L̂(n̂d
m̃

(q))
when n̂d

m̃
(q) is a singleton.

26

These two functions will satisfy the following condition which we call I1.

• if n̂d
m̃

(q) is a singleton then:

p−1
m̃

(q) ⊆ L̂(n̂d
m̃

(q)) ⊆
⋃

q′≤q
p−1
m̃

(q′)

• if n̂d
m̃

(q) is not a singleton then:

p−1
m̃

(q) = {
∨
{ψ : {ψ} = L̂(m̂), m̂ ∈ n̂d

m̃
(q)}}

• if m̃ is a modal node then n̂d
m̃

(q) is a singleton
for all q ∈ Ran(p

m̃
) ∩ N

(I1)

The idea behind these two functions comes from considering T̃ to be some
kind of composition of T and many copies of T̂ . To see what we mean consider
a part of a path of T̃ which is represented in the middle of Figure 2. To the left
of it we have put a corresponding path of T and to the right we have represented
a part of T̂ . Arrows represent traces.

α̂(µX.α̂(X))

Γ2[µX.α̂(X)/ϕ̂], µX.α̂(X),∆0
1

Γ3[µX.α̂(X)/ϕ̂],∆1
1,∆

0
2

Γ3[µX.α̂(X)/ϕ̂],∆0
2

Γ1[µX.α̂(X)/ϕ̂], µX.α̂(X)

α̂(ϕ̂)

Γ1, ϕ̂

Γ2, ϕ̂, δ
0
1

Γ3, δ
1
1, δ

0
2

Γ3, δ
0
2

δ0
1 δ1

1

δ0
2 δ0

2

ϕ̂

Figure 2: Decomposition of a path of T̃

The label of a node of T̃ can be divided into a set of formulas to which there
is no trace going through ϕ̂, and the rest which have such a trace. Every formula
γ of the first kind corresponds to a formula γ[µX.α̂(X)/ϕ̂] of T . These formulas
will have priority ∞. In our figure they are represented by Γ with indices. For
a formula δ of the second type there is the earliest occurrence of ϕ̂ from which

27

there is a trace to δ. This occurrence determines the priority of the formula and
the whole trace determines the node of T̂ . We use priorities when contraction
occurs between two formulas. Consider for example a situation represented in
the last two nodes of the part of the path in Figure 2. Formula δ1

1 is reduced
and becomes the same as δ0

2 . Nevertheless the node associated with δ0
2 may

be different than the son of the node associated with δ1
1 because the histories

of reductions of these formulas could have been different. The priority tells us
that the path from the son of δ1

1 should not be followed but the path from the
left occurrence of δ0

2 should continue. We can say that the trace jumps from δ1
1

to the left occurrence of δ0
2. Arranging formulas this way we have that every

trace on a path of T̃ is either some trace on the corresponding path of T or is
eventually (after finitely many jumps) a trace on a path of T̂ designated by n̂d
function.

The two functions will be defined by simultaneous induction on the distance
of the node from the root. For the root r̃ of T̃ we let p

r̃
(α̂(ϕ̂)) = ∞. The

induction step is handled by the following two observations.

Observation 30.2 Suppose m̃ ∈ T̃ is a modal node, both p
m̃

and nd
m̃

are
defined and satisfy condition I1. For every son ñ of m̃ we can define p

ñ
and nd

ñ

so that I1 will be satisfied.

Proof: Let {(a→ θ1), . . . , (a→ θk)} be all the formulas from L̃(m̃) having the
form (a→ θ).

Let ñ be a 〈a〉-son of m̃ and to keep indexing simple say it is labeled by
{ϕ1} ∪ {

∨
θ2, . . . ,

∨
θk} for some ϕ1 ∈ θ1.

If ϕ1 6=
∨
θi for all i = 2, . . . , k then set p

ñ
(
∨
θi) = p

m̃
(a → θi) and

let n̂d
ñ
(p
ñ
(
∨
θi)) be the set of all 〈a〉-sons of nd

m̃
(p
m̃

(a → θi)). For ϕ1 let
p
ñ
(ϕ1) = p

m̃
(a → θ1) and let n̂d

ñ
(p
ñ
(ϕ1)) be the son of n̂d

m̃
(p
m̃

(a → θ1))
which is labeled by {ϕ1}. Of course we set n̂d

ñ
only whenever the priority is

finite.
Suppose now that ϕ1 =

∨
θi for some i = 2, . . . , k. We must decide whether

to treat this formula as ϕ1 or as
∨
θi.

• If p
m̃

(a → θi) < p
m̃

(a → θ1) then let p
ñ
(
∨
θi) = p

m̃
(a → θi) and let

n̂d
ñ
(p
ñ
(
∨
θi)) be the set of all the 〈a〉-sons of n̂d

m̃
(p
m̃

(a→ {θi})).

• If p
m̃

(a → θi) > p
m̃

(a → θ1) then let p
ñ
(ϕ1) = p

m̃
(a → θ1) and let

n̂d
ñ
(p
ñ
(ϕ1)) to be the son of n̂d

m̃
(p
m̃

(a→ θ1)) which is labeled by ϕ1.

With all
∨
θj for j = 2, . . . , k, j 6= i we proceed as before. �

28

Observation 30.3 Suppose m̃ ∈ T̃ is not a modal node, both p
m̃

and nd
m̃

are
defined and satisfy condition I1. For every son ñ of m̃ we can define p

ñ
and nd

ñ

so that I1 will be satisfied.

Proof: If m̃ is not a modal node then only one formula, say β is reduced by
the rule applied in m̃. Let q = p

m̃
(β). Let ñ be a son of m̃ and let γ ∈ L(ñ) be

one of the formulas obtained by reducing β. We have several cases depending
on the type of formula β.

• If n̂d
m̃

(q) is not a singleton then β =
∨{ψ : {ψ} = L̂(m̂), m̂ ∈ n̂d

m̃
(q)}.

In this case γ is a disjunct of β. Let p
ñ
(γ) = q and let n̂d

ñ
(q) be an

appropriate subset of n̂d
m̃

(q). For every δ ∈ L̃(ñ), δ 6= γ let p
ñ
(δ) = p

m̃
(δ)

and n̂d
ñ
(p
ñ
(δ)) = n̂d

m̃
(p
m̃

(δ)).

• If β = µX.α̂(X) then we let p
ñ
(γ) to be the smallest priority not in the

range of p
m̃

and set n̂d
ñ
(p
ñ
(γ)) to the root of T̂ . For every δ ∈ L̃(ñ),

δ 6= γ we proceed as before.

• If not the previous cases, γ ∈ L̃(m̃) and p
m̃

(γ) > p
m̃

(β) then for every
δ ∈ L̃(ñ) let p

ñ
(δ) = p

m̃
(δ) and n̂d

ñ
(p
ñ
(δ)) = n̂d

m̃
(p
m̃

(δ)).

• If not the previous cases, γ 6∈ L̃(m̃) or p
m̃

(γ) ≤ p
m̃

(β) then p
ñ
(γ) = p

m̃
(β)

and n̂d
ñ
(p
ñ
(γ)) is the son of n̂d

m̃
(p
m̃

(β)) containing γ. For all δ ∈ L̃(ñ),
δ 6= γ we proceed as in the first case.

�
Next step is to define a winning strategy in the game G(T̃ , T). We will

write nd
m̃

(q) for E−1(n̂d
m̃

(q)). All positions (m̃,m) reachable in a game played
according to the strategy will have the following property.

If m̃ is a choice or modal node then (whenever defined) nd
m̃

(q) is either a
singleton or a set of all the 〈a〉-sons of some node. Let L

m̃
(q) stand for L(n)

if {n} = nd
m̃

(q) and let L
m̃

(q) = {∨ θ1, . . . ,
∨
θk} if nd

m̃
(q) is the set of all

〈a〉-sons of some node m and {(a → θ1), . . . , (a → θn)} ⊆ L(m) is the set of
all the formulas of the form (a→ θ) in L(m). With this definition we have the
property:

L(m) ⊆
⋃

q∈Ran(p
m̃

)∩N
L
m̃

(q) ∪ {ψ[µX.α̂(X)/ϕ̂] : ψ ∈ p−1
m̃

(∞)}(I2)

Condition I2 allows us to define function p
m̃,m

: L(m) → N ∪ {∞}. For
every γ ∈ L(m) let p

m̃,m
(γ) be the smallest priority q such that γ ∈ L

m̃
(q); in

case there is no such q let p
m̃,m

(γ) =∞.
The strategy is described in the next three observations.

29

Observation 30.4 Assume the game is in a position (m̃,m) consisting of two
modal nodes and the condition I2 is satisfied. Suppose player I chooses a 〈a〉-son
n of m. We can find a 〈a〉-son ñ of m̃ so that: (i) condition I2 will be satisfied,
and (ii) if β ∈ L(n) is obtained from α ∈ L(m) then p

ñ,n
(β) ≤ p

m̃,m
(α).

Proof: Let n be a 〈a〉-son of m. It is labeled by

{ξ} ∪ {
∨
θ : (a→ θ) ∈ L(m), θ 6= Ξ}

for some (a → Ξ) ∈ L(m) and ξ ∈ Ξ. Let q = p
m̃,m

(a → Ξ). If q = ∞ we take
a son of m̃ labeled

{ξ[ϕ̂/µX.α̂(X)]} ∪ {
∨
θ : (a→ θ) ∈ L̃(m̃), θ 6= Ξ[ϕ̂/µX.α̂(X)]}

The case when q ∈ N is represented in Figure 3.

=⇒

m

n n′

E
=⇒ =⇒

E(nd
m̃

(q))

E(n′) ñ

nd
m̃

(q) m̃

Figure 3: Finding a 〈a〉-son of m̃ for a 〈a〉-son of m.

By I2 there is a 〈a〉-son n′ of nd
m̃

(q) labeled

{ξ} ∪ {
∨
θ : (a→ θ) ∈ L(nd

m̃,m
(q)), θ 6= Ξ}

Using equivalence E we get 〈a〉-son E(n′) of n̂d
m̃

(q) = E(nd
m̃

(q)). It is labeled
by some {ψ} for ψ ∈ Ψ and (a → Ψ) ∈ L̂(n̂d

ñ
(q)). By I1 we can take as ñ a

〈a〉-son of m̃ labeled:

{ψ} ∪ {
∨
θ : (a→ θ) ∈ L̃(m̃), θ 6= Ψ}

It is quite straightforward to show that (i) and (ii) are satisfied if we use the
fact that for every two choice nodes n̂1, n̂2 of T̂ , whenever L̂(n̂1) = L̂(n̂2) then
L(E−1(n̂1)) = L(E−1(n̂2)). We can assume this property by Observation 16.2.�

Observation 30.5 Assume the game is in a position (m̃,m) consisting of two
choice nodes and the condition I2 is satisfied. Suppose player I chooses a modal
node ñ near m̃. We can find a modal node n near m so that: (i) the condition I2

30

will be satisfied, and (ii) the traces from m to n will be preserved. This means
that whenever there is a trace from α ∈ L(m) to β ∈ L(n) and Y is the smallest
in ≤

µX.α̂(X) ordering variable regenerated on the trace then either:

• p
m̃,m

(α) > p
ñ,n

(β) or

• p
m̃,m

(α) = p
ñ,n

(β) = q and when q ∈ N there is a trace from α ∈
L(nd

m̃
(q)) to β ∈ L(nd

ñ
(q)) or when q = ∞ there is a trace from

α[ϕ̂/µX.α̂(X)] ∈ L(m̃) to β[ϕ̂/µX.α̂(X)] ∈ L(ñ). In both cases Y is
the smallest regenerated variable on the trace.

Proof: We will find desired n by constructing a path to it from m. In some
sense n is determined by ñ and all nd

ñ
(q) for q ∈ N. For every q ∈ Ran(p

m̃
)∩N

let θq = {ψ : {ψ} = L̂(m̂), m̂ ∈ n̂d
m̃

(q)}. By I1 we have:

L̃(m̃) = {
∨
θq : q ∈ Ran(p

m̃
) ∩ N} ∪ p−1

m̃
(∞)

On the path to ñ there is a node s̃ where exactly one disjunct is chosen from
each θq . Say its label is

L̃(s̃) = {ψq : q ∈ Ran(p
m̃

) ∩ N} ∪ p−1
m̃

(∞)

for some ψq ∈ θq, (q ∈ Ran(p
m̃

) ∩N). For this node we can define n̂d
s̃
(q) to be

a node from n̂d
m̃

(q) labeled {ψq}. As before we define nd
s̃
(q) = E−1(n̂d

s̃
(q)).

Switching to the other tableau by I2 we have:

L(m) ⊆
⋃

q∈N
L
m̃

(q) ∪ {ψ[µX.α̂(X)/ϕ̂] : ψ ∈ p−1
m̃

(∞)}

If nd
m̃

(q) is a singleton then
∨
θq = ψq and L(nd

m̃
(q)) = L(nd

s̃
(q)). Otherwise

L
m̃

(q) = {∨∆1, . . . ,
∨

∆k} and L(nd
s̃
(q)) = {∨∆1, . . . , δi, . . . ,

∨
∆k} for some

i = 1, . . . , k and δi ∈ ∆i. First apply (or) rules from m to obtain a node s such
that:

L(s) ⊆
⋃

q∈N
L(nd

s̃
(q)) ∪ {ψ[µX.α̂(X)/ϕ̂] : ψ ∈ p−1

m̃
(∞)}(4)

The obtained situation and the rest of the construction is represented in Fig-
ure 4. From s we will construct a path choosing one node at the time. For every
considered node o we will define a priority function p

s̃,o
: L(o)→ N ∪ {∞}. We

31

.

m̃

s̃

ñ

n̂d
m̃

(1) n̂d
m̃

(i) nd
m̃

(1)

n

m

nd
m̃

(i)

s

n̂d
ñ
(i)n̂d

ñ
(1) nd

ñ
(1) nd

ñ
(i)

Figure 4: Finding a modal node n for the modal node ñ

will assume that for every considered node o and every ψ ∈ L(o):

If p
s̃,o

(ψ) =∞ then ψ[ϕ̂/µX.α̂(X)] appears on the path from m̃

to ñ, otherwise if p
s̃,o

(ψ) = q ∈ N then ψ appears on the path
from nd

m̃
(q) to nd

ñ
(q)

(I3)

Function p
s̃,s

is defined by (4) by letting p
s̃,s

(ψ) to be the smallest q such that
ϕ ∈ L(nd

s̃
(q)) or∞ if there is no such q. Actually it may happen that s does not

satisfy I3 or rather I3 does not make sense because Ran(p
ñ
) 6= Ran(p

m̃
). Let us

extend n̂d
m̃

and n̂d
ñ
. The only element which can appear in Ran(p

ñ
)\Ran(p

m̃
)

is the smallest priority q which does not appear in Ran(p
m̃

). We take care
about this by extending the definition of n̂d

m̃
and letting n̂d

m̃
(q) to be the

root of T̂ . Let q ∈ Ran(p
m̃

) \ Ran(p
ñ
) and let Γ ⊆ L̃(ñ) be the set of all

the formulas to which there is a trace from the unique formula of priority q in
L̃(m̃). Γ is the label of some modal node n̂ near n̂d

m̃
(q). Let n̂d

ñ
(q) = n̂. As

Γ ⊆ ⋃{L̂(n̂d
ñ
(q′)) : q′ ∈ Ran(p

ñ
), q′ < q} we know by Observation 16.2 that

nd
ñ
(q) ⊆

⋃
{L(nd

ñ
(q′)) : q′ ∈ Ran(p

ñ
), q′ < q}(5)

With this extensions I3 is satisfied for the node s and we may proceed with the
construction of the path.

• If ψ is not a disjunction then there is only one son o′ of o. Let ψ′ be
the result of reducing ψ. For every β ∈ L(o′), β 6= ψ′ we let p

s̃,o′(β) =
p
s̃,o

(β). If ψ′ 6∈ L(o) then let p
s̃,o′(ψ

′) = p
s̃,o

(ψ) otherwise let p
s̃,o′ (ψ

′) =
min{p

s̃,o
(ψ), p

s̃,o
(ψ′)}. If ψ 6= µX.α̂(X) then function p

s̃,o′ satisfies the
condition I3. If ψ = µX.α̂(X) then ψ′ = X and letting p

s̃,o′ (X) = ∞

32

would be unsound with respect to I3. We let p
s̃,o′(X) to be the smallest

priority q not in Ran(p
ñ
). This is sound as nd

ñ
(q) is a modal node near

the root of T .

• If ψ = α∨β then o has two sons o1, o2 and we have to choose one of them.
If p

s̃,o
(ψ) =∞ then ψ[ϕ̂/µX.α̂(X)] is on the path from ñ to m̃ otherwise

ψ appears on the path from nd
m̃

(p
s̃,o

(ψ)) to nd
ñ
(p
s̃,o

(ψ)). We choose a
son of o with the same disjunct as the one appearing on the appropriate
path. For the chosen o′ we define p

s̃,o′ as in the case of unary rule. It
should be easy to check that for so defined o′ and p

s̃,o′ the condition I3
holds.

Repeating this procedure we arrive at a modal node n near m. Let us check
that condition I2 holds. Suppose ψ ∈ L(n) and q = p

s̃,n
(ψ). Because n is a

modal node, ψ can be reducible only by application of (mod) rule. By I3 if
q = ∞ then ψ[ϕ̂/µX.α̂(X)] ∈ L̃(ñ) otherwise q ∈ N and ψ ∈ L(nd

ñ
(q)). In

the later case either q ∈ Ran(p
ñ
) or by (5) we have q′ ∈ Ran(p

ñ
), q′ ≤ q with

ψ ∈ nd
ñ
(q′).

Finally it is easy to see that the traces are preserved. �

Observation 30.6 Suppose a position in the game is (Ñ ,N) for Ñ being a
set of all the 〈a〉-sons of some node m̃ and N being a set of all the 〈a〉-sons
of some node m. Suppose also that I2 holds for the pair (m̃,m). For every
modal node õ near some ñ ∈ Ñ we can find a modal node o near some n ∈ N
so that: (i) condition I2 holds for position (õ, o) and (ii) the traces from m to o
are preserved.

Proof:
For every q ∈ Ran(p

ñ
) ∩ N let θq =

∨{ψ : {ψ} = L(ñ), ñ ∈ n̂d
ñ
(q)}. By I1

we have:

L̃(ñ) = {
∨
θq : q ∈ Ran(p

ñ
) ∩ N} ∪ p−1

ñ
(∞)

On the way to õ we reach a node s̃ where exactly one formula ψq is chosen
from each θq .

L̃(s̃) = {ψq : q ∈ Ran(p
m̃

) ∩ N} ∪ p−1
ñ

(∞)

For this node we can define n̂d
s̃
(q) to be a node from n̂d

m̃
(q) labeled {ψq}.

As before we define nd
s̃
(q) = E−1(n̂d

s̃
(q)).

Now L(nd
s̃
(q)) = {δ1}∪{

∨
∆2, . . . ,

∨
∆k} and L(nd

ñ
(q)) is either the same

set of formulas or it is {∨∆1, . . . ,
∨

∆k} for some ∆1 3 δ1.

33

We can find a choice node n ∈ N and a descendant s of n such that:

L(s) ⊆
⋃

q∈N
L(nd

s̃
(q)) ∪ {ψ[µX.α̂(X)/ϕ̂] : ψ ∈ p−1

m̃
(∞)}

From this point we can repeat the arguments from the previous observa-
tion. �

Finally we would like to show that the defined strategy is winning. Let us
take some play of G(T̃ , T) where II plays according to the strategy. By the
three observations above player II can always make a move so II cannot loose
in a finite number of steps. Assume that the play was infinite. The result of the
play are two paths P̃ = {ñ0, ñ1, . . .} of T̃ and P = {n0, n1, . . .} of T . If there
is no µ-trace on P then II wins, so assume that there is a µ-trace on P.

By condition I2 for every choice or modal node ni of P we can define priority
p
ñi,ni

. By trace preservation this priority cannot increase, hence after some
index j it is constant, say equal q.

If q =∞ then j = 0 and for every k ≥ 0 by I2 we have T (nk)[ϕ̂/µX.α̂(X)] ∈
L̃(ñk). By trace preservation we obtain a µ-trace on P̃ going thorough this
formulas.

If q ∈ N then for k ≥ j by I2 we have T (nk) ∈ L(nd
ñk

(q)) which by trace
preservation gives us a µ-trace on the path P ′ = {nd

ñj
(q), nd

ñj+1
(q), . . .} of T .

By equivalence E we have a µ-trace on the path P̂ = {n̂d
ñj

(q), n̂d
ñj+1

(q), . . .}
of T̂ . By condition I1 we have a µ-trace on P̃ which means that player II wins.

�

In the next lemma we show how to use the fact that a tableau for a formula
δ is a consequence of a tableau for a formula α to prove α ≤ δ.

Lemma 31 Suppose that we have a weakly aconjunctive formula α and a dis-
junctive formula δ. If there is a tableau for δ which is a consequence of a tableau
for α then ¬(α ∧ ¬δ) is provable.

Proof
Let Tα = 〈Tα, Lα〉 and Tδ = 〈Tδ , Lδ〉 be tableaux for α and δ respectively such
that the second is a consequence of the first. Let S be a winning strategy for
player II in the game G(Tα, Tδ). We will construct a thin refutation R = 〈T, L〉
for α ∧ ¬δ.

To facilitate the construction we will define two correspondence functions Cα
and Cδ which assign to every considered node of R (that is not to all the nodes)
a node of Tα and Tδ respectively. It will be always the case that:

34

C1 L(n) = Lα(Cα(n)) ∪ {¬∧Lδ(Cδ(n))},

C2 strategy S is defined for the position (Cα(n), Cδ(n)).

The root of R will be of course labeled by {α∧¬δ}, the next node, say m0,
by {α,¬δ}. We let Cα(m0) and Cδ(m0) to be the roots of Tα and Tβ respectively.
The next two observations show how to prolong R.

Observation 31.1 Suppose we have already constructed R up to a node m,
Cα(m), Cδ(m) are choice nodes of appropriate tableaux and satisfy C1, C2. We
can construct a finite part of R and define for each leaf n of the constructed part
Cα(n) and Cδ(n) so that: (i) Cδ(n) = S(Cα(n), Cδ(m)), (ii) conditions C1 and C2
are satisfied and (iii) traces from m to n are reflected. This last property means
that the traces form m to n are exactly the traces from Cα(m) to Cα(n) with the
exception of the trace from ¬∧Lδ(Cδ(m)) to ¬∧Lδ(Cδ(n)) which corresponds
to negated (unique) trace from Cδ(m) to Cδ(n).

Proof: By assumption L(m) = Lα(Cα(m)) ∪ {¬γ} as Cδ(m) is labeled by one
formula because δ is a disjunctive formula. The idea of the construction is
represented in Figure 5.

n

n′

Lα(F (n)) ∪ {¬γ}

m Lα(Cα(m)) ∪ {¬γ}

Cα(m) Cδ(m)

Cα(n) = F (n)

Lα(Cα(n)) ∪ ¬∧Lδ(Cδ(n))

Cδ(n) = S(Cα(n), Cδ(m))

Figure 5: Construction of R

From m we apply as long as possible rules other than (〈〉) and weakening
to all formulas in L(m) except ¬γ. We apply them in the same order as they
were applied from Cα(m). This way we obtain a finite tree rooted in m. This

35

tree is isomorphic to the part of Tα between Cα(m) and nearest modal nodes.
Denoting this isomorphism F we have the property that for every leaf n of this
part L(n) = Lα(F (n)) ∪ {¬γ}. Set Cα(n) = F (n). Strategy S gives us a node
Cδ(n) which is a reply of player II to choosing Cα(n) by player I . From the
definition of the game it follows that Cδ(n) is a modal node near Cδ(m). Let us
look at the path from Cδ(m) to Cδ(n) in Tδ. Because δ is a disjunctive formula,
on this path first only (σ), (cons) and (or) rules may be applied and then we
have zero or more applications of (and) rule. Let us apply dual rules to ¬γ
(dual to (µ) is (ν), (cons) is self-dual). When it comes to an application of (or)
rule in Tδ, apply (and) rule followed by weakening to leave only the conjunct
which appears on the path to Cδ(n). This way we make sure that the resulting
tableau will be thin.

After these reductions we get a node n′ which is labeled by L(Cα(n)) ∪
{¬∧Lδ(Cδ(n))}. Setting Cα(n′) = Cα(n) and Cδ(n′) = Cδ(n) establishes con-
ditions C1 and C2. Finally trace reflection follows directly from the construc-
tion. �

Observation 31.2 Suppose we have constructed the tableau up to a node m.
Assume that Cα(m) and Cδ(m) are modal nodes and C1, C2 are satisfied. We
can construct a finite part of the tableau and define Cα(n), Cδ(n) for every leaf
n of this part in such a way that: (i) position (Cα(n), Cδ(n)) will be reachable
from (Cα(m), Cδ(m)) when player II plays according to S (ii) conditions C1, C2
will be satisfied, (iii) traces will be reflected.

Proof: Let γ =
∧
Lδ(Cδ(m)) =

∧{γ1, . . . , γl} and Γ = Lα(Cα(m)). By
C1 we have L(m) = {¬γ} ∪ Γ. Node Cδ(m) is a modal node hence every γi
is either a literal or a formula of the form (a → Φ). When we negate γ we
obtain a disjunction of negations of such formulas. Let us apply (or) rule to
eliminate these disjunctions. This way we obtain new leaves m1, . . . ,ml. For
every i ∈ 1, . . . , l node mi is labeled by {¬γi} ∪ Γ . We use γi to decide what
rule to apply in mi.

If γi is a literal or a terminal formula then we are done because γi appears
in Γ. This follows directly from C2 and the definition of the game.

If γi is of the form (a→ Φ) with Φ 6= ∅ then negated it becomes

∨
{[a]¬ϕ : ϕ ∈ Φ} ∨ 〈a〉

∧
{¬ϕ : ϕ ∈ Φ}

or rather a translation of this formula to (a→ θ) notation. We apply disjunction
rules as long as possible. This way we obtain a part of a tree. Each leaf u of
this part is labeled by Γ and one of the disjuncts.

36

• Suppose this disjunct is (a → ∅). As Φ 6= ∅, there is an 〈a〉-son of Cδ(m)
so there is a 〈a〉-son of Cα(n). Hence there is (a→ θ) ∈ Γ with θ 6= ∅. We
obtain an axiom after one application of (〈〉).

• If it is (a → {¬ϕ}) for some ϕ ∈ Φ then let us consult the strategy in
the case when player I chooses the 〈a〉-son uδ of Cδ(m) labeled by {ϕ}.
Strategy S gives us in this case a 〈a〉-son uα of Cα(m). This son is labeled
by {ψ} ∪ {∨ θ : (a → θ) ∈ Γ, θ 6= Ψ} for some (a → Ψ) ∈ Γ and ψ ∈ Ψ.
We apply (〈〉) rule to (a → Ψ) in L(u) and obtain a son u′ of u labeled
{ψ} ∪ {∨ θ : (a → θ) ∈ Γ, θ 6= Ψ} ∪ {¬ϕ}. We let Cα(u′) = uα and
Cδ(u′) = uδ.

• If it is (a→ {∧{¬ϕ : ϕ ∈ Φ},>}) then we apply (〈〉) rule to this formula
and obtain a son u′ of u labeled

{
∧
{¬ϕ : ϕ ∈ Φ}} ∪ {

∨
θ : (a→ θ) ∈ Γ}

The construction from this point is presented in Figure 6.

Cδ(m)

oα

n′

u′

o

n

oδ

Cα(m) n′′

F (n) nδ = S(Cα(n), Nδ)

Figure 6: Constructing part of R

Let us choose one formula
∨

Ψ ∈ {∨ θ : (a→ θ) ∈ Γ} and apply (or) rules
to it. This way we obtain a part of R each leaf of which is labeled by the

37

set:

{
∧
{¬ϕ : ϕ ∈ Φ}} ∪ {ψ} ∪ {

∨
θ : (a→ θ) ∈ Γ, θ 6= Ψ}

for some ψ ∈ Ψ. Let o be one of such leaves and let oα be a 〈a〉-son of
Cα(m) labeled by {ψ} ∪ {∨ θ : (a → θ) ∈ Γ, θ 6= Ψ}. As in the previous
observation apply rules other than (mod) and weakening to this set to
obtain a finite part of a tree isomorphic to the part of Tα between oα and
the nearest modal nodes. Let F denote this isomorphism. Let n be a leaf
of this part. We have: L(n) = L(F (n)) ∪∧{¬ϕ : ϕ ∈ Φ}. Now it is time
to consult the strategy.

Let player I choose Nδ , the set of all 〈a〉-sons of Cδ(n). Player II responds
with Nα being the set of all 〈a〉-sons of Cα. For every modal node nα
near oα ∈ Nα the strategy S gives us a modal node nδ = S(nα, Nδ). Let
nδ = S(F (n), Nδ) and let oδ be a modal node on the path to nδ. We have
Lδ(oδ) = {ϕ} for some ϕ ∈ Φ. Apply (and) rule followed by contraction
to obtain a node n′ labeled {¬ϕ} ∪ L(n). Then reduce ¬ϕ in n′ as in
the proof of the previous observation. We arrive at a node n′′ labeled
{¬∧Lδ(nδ)} ∪ Lα(F (n)). Let Cα(n′′) = F (n) and Cδ(n′′) = nδ.

�
The above two observations describe R completely. All the leaves are labeled

by sets containing ⊥ or some literal and its negation. For every infinite path P
we have two possibilities. There may be a µ-trace on a path of Tα designated
by the image of P under Cα. If it is so then by trace reflection there is also a
µ-trace on P. If there is no µ-trace on Cα(P) then there cannot be a µ-trace
on Cδ(P) because we were choosing our moves accordingly to the strategy S.
Hence there is a ν-trace on Cδ(P) which negated in R becomes a µ-trace.

This shows that R is a refutation. R is also a thin refutation because α is
a weakly aconjunctive formula and whenever we reduce a conjunction coming
from ¬δ we leave only one of the conjuncts. Hence by Theorem 24 ¬(α∧¬δ) is
provable.

�

Summarising the case of the proof of Theorem 26 for ϕ = µX.α(X). By in-
duction assumption we have a disjunctive formula α̂(X) equivalent to α(X) and
know that α(X) ≤ α̂(X) is provable. By Theorem 24 we a obtain a disjunctive
formula ϕ̂ which has a tableau T̂ equivalent to some tableau T for µX.α̂(X).
By Theorem 14, formula ϕ̂ is equivalent to ϕ. By Lemma 30 T is a consequence
of T̃ . By Lemma 29 T̂ is a consequence of T . Hence, as consequence relation is
transitive, T̂ is a consequence of T̃ . Now by Proposition 21, α̂(ϕ̂) is a weakly

38

aconjunctive formula and ϕ̂ is by definition a disjunctive formula. By Lem-
ma 31 α̂(ϕ̂) ≤ ϕ̂ is provable. Then µX.α̂(X) ≤ ϕ̂ is provable by rule (K6) and
ϕ ≤ µX.α̂(X) is provable by induction assumption, hence ϕ ≤ ϕ̂ is provable.

Case: ϕ = νX.α(X) By induction assumption we have equivalent disjunctive
formula α̂(X) and α(X) ≤ α̂(X) is provable. By Theorem 24 we obtain a
disjunctive formula ϕ̂ which has a tableau T̂ equivalent to some tableau T for
νX.α̂(X). Fortunately, by Proposition 21, νX.α̂(X) is a weakly aconjunctive
formula and by Lemma 29 T̂ is a consequence of T . Hence we can use Lemma 31
to show that νX.α(X) ≤ ϕ̂ is provable.

Case: ϕ = α∧β By induction assumption there are disjunctive formulas α̂, β̂
equivalent to α and β respectively and such that both α ≤ α̂ and β ≤ β̂ are
provable. Hence α ∧ β ≤ α̂ ∧ β̂ is provable. By Theorem 24 there is a disjunctive
formula ϕ̂ which has a tableau equivalent to some tableau for α̂ ∧ β̂. Because,
by Proposition 21, α̂∧ β̂ is a weakly aconjunctive formula, we can as in the case
before use Lemma 31 to show that α ∧ β ≤ ϕ̂ is provable.

�

References

[1] D. Harel, D Kozen, and R. Parikh. Process logic: Expressiveness, decidabili-
ty and completeness. Journal of Computer and System Sciences, 25:144–201,
1982.

[2] David Janin and Igor Walukiewicz. Automata for the µ-calculus and related
results. In MFCS’95, volume 969 of LNCS, pages 552–562, 1995.

[3] Roope Kaivola. Axiomatising linear time mu-calculus. In CONCUR’95,
volume 962 of LNCS, pages 423–437.

[4] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

[5] Dexter Kozen. A finite model theorem for the propositional µ-calculus.
Studia Logica, 47(3):234–241, 1988.

[6] D. Niwiński and I. Walukiewicz. Games for µ-calculus. Technical Report
TR 94-03(192), Institute of Informatics, Warsaw Univeristy, February 1994.
To appear in TCS.

[7] Colin S. Stirling and David J. Walker. Local model checking in the modal
mu-calculus. Theoretical Computer Science, 89:161–171, 1991.

39

[8] Robert S. Street and E. Allan Emerson. An automata theoretic procedure for
the propositional mu-calculus. Information and Computation, 81:249–264,
1989.

[9] Igor Walukiewicz. On completeness of the µ-calculus. In LICS ’93, pages
136–146, 1993.

40

