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Abstract

An overview of applications of two player path-forming
games to verification and synthesis is given. Several ex-
tensions of the standard model of finite games with regu-
lar winning conditions are discussed. One direction is that
of considering non-regular winning conditions. The other
concerns the ways games are played, in particular proba-
bilistic and multi-player games.

1 Introduction

We will discuss applications of two player path-forming
games on graphs. In most cases they will be particular cases
of Borel games [55, 39]. The research reported here is not
the mainstream of the classical game theory for at least two
reasons: (i) the winning conditions are a bit unusual as they
are motivated by the model-checking problem and automata
theory (ii) we are interested in the quality of winning strate-
gies. We will give an overview of problems in verification
and synthesis were games play a fundamental role. We want
to stress that this article is not a survey as it is impossible
to do it in a small number of pages. In consequence, an
disproportionally big part of the article is devoted to au-
thor’s results. Other aspects of the subject were covered,
among others, in recent invited talks at CSL’03 [23] and at
STACS’04 [34].

In what concerns verification, we will mostly concen-
trate on the model-checking problem, that is the problem
of verifying if a given formula holds in a given state of a
given model. We will discuss a close connection between
this problem and the problem of deciding a winner in some
games. This connection turns out to be very robust and
of great help even in extensions such like pushdown sys-
tems [75] or probabilistic concurrent games [23].

For the synthesis part, we will see that, here too, we can
reduce synthesis problems to problems of solving games.
Unlike for model-checking, there are many different ap-

proaches to the synthesis problem varying significantly, at
least at the first sight. Among others, we will discuss a pro-
posal of an extension of the µ-calculus that is capable of
expressing in a unified way many of the problems found in
the literature.

In the final part of this overview we will consider some
recent generalizations. We will present results on various
non-regular winning conditions. We will also discuss exten-
sions of the game model both to probabilistic and to multi-
player settings.

2 Intuitions and definitions

Intuitions about applications of games we are interested
in can be already seen on the level of propositional logic.
Consider the task of verifying whether a given propositional
formula is true under a given valuation. The solution can be
formulated in terms of model-checking game between two
players who we call Adam and Eve. The goal of Eve is to
show that a given formula ϕ is true under a given valuation
V . Assume that all negations inϕ appear only before propo-
sitional variables. Positions in the game are pairs (V, ψ),
where ψ is a subformula of ϕ. In a position (V, ψ), if ψ
is a disjunction then Eve picks a disjunct that she claims to
be true under V . If ψ is a conjunction then Adam picks a
conjunct that he claims to be false. Afterwards, the process
repeats with a chosen subformula in place of ψ. Arriving at
a propositional variable or its negation the winner is decided
by consulting the valuation. The formula ϕ is true under V
iff Eve has a winning strategy from (V, ϕ). Admittedly, the
structure of this game is very simple but it is enough to add
recursive definitions of objects (cf. Section 3) to appreciate
advantages of this formulation.

Observe that the above game is not useful for answer-
ing the satisfiability question. For this we need to consider
a different game that we call satisfiability-checking game.
The players now deal with sets of formulas {ψ1, . . . , ψk}
and the goal of Eve is to show that the conjunction of the
formulas in the set is satisfiable. At each turn Eve can re-



place a disjunction in the current set by one of its disjuncts.
Adam can replace a conjunction by the two conjuncts. At
the end, when there are no formulas to reduce, Eve wins iff
there is no variable and its negation in the set. A formula
ϕ is satisfiable iff Eve has a winning strategy from the po-
sition {ϕ}. An important point here is that we can consider
sets of formulas and not multisets, i.e., we have an implicit
contraction rule. While it is obvious in this setting, in gen-
eral this is linked with existence of positional strategies in
appropriate class of games. Satisfiability-checking games
(or rather their duals) are the starting point of recent game-
theoretic approaches to proof-theory [31, 9]. Let us make a
digression about extensions of satisfiability-checking games
to µ-calculi. While in this case each single game is still sim-
ple, the structure of the class of such games, from the point
of view of proof-theory, is not well understood yet. This
structure is very interesting and nontrivial even in a simpler
context where the conjunction and disjunction are free op-
erators [67, 68]. This is also related with fixpoint hierarchy
questions [12, 5, 6, 76].

Differences between model-checking and satisfiability-
checking games are rather subtle and not well visible in the
game structure, in particular with such a high level descrip-
tion. In the above simple examples the most striking differ-
ence is that Adam has not much to say in the satisfiability-
checking game. This is just a peculiarity of the extremely
simple setting. A more pertinent difference between the two
kinds of games is that in satisfiability-checking games we
deal with sets of formulas and the winning conditions be-
come more complicated.

We will argue below that extensions of model-checking
game play a prominent role in verification and are in-
valuable tools in designing verification algorithms. The
satisfiability-checking games appear in the context of syn-
thesis. In a sense that can be made precise these games de-
scribe all the models of a formula, i.e., all the systems satis-
fying the specification. While the formulation of a synthesis
problem is more complicated than this, still the connection
with satisfiability-checking games is very strong.

We finish this section with the formal definition of games
we are interested in. A game G is a tuple 〈VE , VA, T ⊆
(VE ∪ VA)2,Acc ⊆ V ω〉 where Acc is a set defining the
winning condition and 〈VE ∪ VA, T 〉 is a graph with the
vertices partitioned into those of Eve and those of Adam.
We say that a vertex v′ is a successor of a vertex v if T (v, v′)
holds.

A play between Eve and Adam from some vertex v ∈
V = VE ∪ VA proceeds as follows: if v ∈ VE then Eve
makes a choice of a successor, otherwise Adam chooses a
successor; from this successor the same rule applies and the
play goes on forever unless one of the parties cannot make
a move. The player who cannot make a move looses. The
result of an infinite play is an infinite path v0v1v2 . . . This

path is winning for Eve if it belongs to Acc. Otherwise
Adam is the winner.

A strategy σ for Eve is a function assigning to every se-
quence of vertices ~v ending in a vertex v from VE a vertex
σ(~v) which is a successor of v. A play respecting σ is a
sequence v0v1 . . . such that vi+1 = σ(vi) for all i with
vi ∈ VE . The strategy σ is winning for Eve from a vertex v
iff all the plays starting in v and respecting σ are winning.
A vertex is winning if there exists a strategy winning from
it. The strategies for Adam are defined similarly.

A strategy with memory M is a triple:

c : M × VE → P(V ), up : M × V →M, m0 ∈ M

The role of the initial memory element m0 and the memory
update function up is to abstract some information from the
sequence ~v. This is done by iteratively applying up func-
tion:

up∗(m, ε) = m and up∗(m,~vv) = up∗(up(m,~v), v)

This way each sequence ~v of vertices is assigned a mem-
ory element up∗(m0, ~v). Then the choice function c de-
fines a strategy by σ(~vv) = c(up∗(m0, ~v), v). The strategy
is memoryless iff σ(~v) = σ(~w) whenever ~v and ~w end in
the same vertex; this is a strategy with a memory M that is
a singleton.

In most of the cases in this paper the winning conditions
Acc ⊆ V ω will be Muller conditions: that is, there will be
a colouring λ : V → Colours of the set of vertices with a
finite set of colours and a set F ⊆ P(Colours) that define
the winning sequences by:

~v ∈ Acc iff Infλ(~v) ∈ F

where Infλ(~v) is the set of colours appearing infinitely often
on ~v.

An important special case is a parity condition. It is a
condition determined by a function Ω : V → {0, . . . , d} in
the following way:

Acc = {v0v1 . . . ∈ V ω : lim inf
i→∞

Ω(vi) is even}

Hence, in this case, the colours are natural numbers and
we require that the smallest among those appearing in-
finitely often is even. This condition was discovered by
Mostowski [56] and is the most useful form of Muller con-
ditions. It is the only Muller condition that guarantees ex-
istence of memoryless strategies [28, 57, 53]. It is closed
by negation (the negation of a parity condition is a parity
condition). It is universal in the sense that very game with
a Muller condition can be reduced to a game with a parity
condition [56].

The main results about games that we need are summa-
rized in the following theorem.



Theorem 1 ([51, 28, 57])
Every game with Muller winning conditions is determined,
i.e., every vertex is winning for one of the players. It is algo-
rithmically decidable who is a winner from a given vertex in
a finite game. In a parity game a player has a memoryless
winning strategy from each of his winning vertices.

3 Verification

In this section we will be mostly interested in the model-
checking problem. We will start from the concrete example
of the µ-calculus model-checking and then consider the ex-
tensions and the restrictions of the problem.

Formulas of the µ-calculus over the sets Prop =
{p1, p2, . . .} of propositional constants, Act = {a, b, . . . }
of actions, and Var = {X,Y, . . .} of variables, are defined
by the following grammar:

F := Prop | ¬Prop | Var | F ∨ F | F ∧ F |

〈Act〉F | [Act ]F | µVar .F |νVar .F

Note that we allow negations only before propositional con-
stants. This is not a problem as we will be interested in sen-
tences, i.e., formulas where all variables are bound by µ or
ν. In the following, α, β, . . . will denote formulas.

Formulas are interpreted in transition systems of the
form M = 〈S, {Ra}a∈Act , ρ〉, where: S is a nonempty
set of states, Ra ⊆ S × S is a binary relation interpreting
the action a, and ρ : Prop → P(S) is a function assign-
ing to each propositional constant a set of states where this
constant holds.

For a given transition system M and an assignment V :
Var → P(S), the set of states in which a formula ϕ is true,
denoted ‖ ϕ ‖MV , is defined inductively as follows:

‖ p ‖MV = ρ(p) ‖ ¬p ‖MV = S − ρ(p)

‖ X ‖MV =V (X)

‖ 〈a〉α ‖MV ={s : ∃s′.Ra(s, s′) ∧ s′ ∈ ‖ α ‖MV }

‖ µX.α(X) ‖MV =
⋂

{S′ ⊆ S : ‖ α ‖MV [S′/X] ⊆ S′}

‖ νX.α(X) ‖MV =
⋃

{S′ ⊆ S : S′ ⊆ ‖ α ‖MV [S′/X]}

We have omitted here the obvious clauses for boolean oper-
ators and for [a]α formula. We will omit V in the notation if
α is a sentence and will sometimes write M, s � α instead
of s ∈ ‖ α ‖M.

The model-checking problem for the µ-calculus is: given
a sentence α and a finite transition system M with a distin-
guished state s0 decide if M, s0 � α.

3.1 From model-checking to games

The solution of the model-checking problem goes via
games and is a direct extension of the model-checking game

for the propositional logic. Positions in the game are of the
form (s, β) where s is a state of a given structure and β is a
subformula of a given sentence. In addition to the rules from
the propositional game we have rules handling modalities
and fixpoints. In a position (s, 〈a〉β), Eve must find a state
t such that (s, t) ∈ Ra and the new position becomes (t, β).
In a position (s, [a]β) Adam has to do the same. From
a position of the form (s, µX.β(X)) or (s, νX.β(X)) the
game proceeds to (s, α(µX.β(X))) and (s, α(νX.β(X)))
respectively. A play ends in a position of the form (s, p) or
(s,¬p) and the winner depends on whether p is true in s or
not.

A major difference between this game and the one for
propositional logic is that now the game may not terminate
due to the rules handling fixpoints. Hence, it is necessary
to decide who is the winner of an infinite play. For this
each fixpoint subformula is assigned a rank (natural num-
ber) in such a way that µ-subformulas have odd ranks, ν-
subformulas have even ranks and if γ is a subformula of β
then γ has a bigger rank than β. We refer to [70] for the
omitted details. After assignment of ranks the winning con-
dition can be expressed by a parity condition: the smallest
rank appearing infinitely often is even.

Thus the model-checking problem can be reduced in lin-
ear time to the problem of solving parity games. The re-
duction works in log-space. As it is well-known that the
problem is PTIME-hard, from the algorithmic point of view
we do not loose anything in the translation.

It should be also noted that the same kind of reduction can
be applied to CTL and (with some more work) to CTL∗,
ECTL∗, . . . The schema of translation actually works for
most programme logics over transition systems. Such a
translation is often fruitful as it exposes the real combinato-
rial structure hidden in the syntax of the logic. In [43] some
of these reductions are done in detail (the authors instead of
games prefer to use the terminology of alternating automata
over one letter alphabet.)

Let us remark that the above translation does not assume
anything about the system. Thus the reduction works for
model-checking over any class of labelled graphs closed
under product with finite graphs (in order to handle the for-
mula component of the reduction). Because of this we can
concentrate on the problem of solving parity games over
particular class of structures and get the results on the cor-
responding model-checking problem automatically.

An example is that of pushdown systems. In this case a
graph is not finite but it is finitely defined as the graph of
configurations of a push-down automaton. To define a game
each state of the automaton is assigned a rank and is desig-
nated to belong to Eve or Adam. Eve’s positions are config-
urations with Eve’s states and analogously for Adam. The
ranks define the parity winning condition. Such games can



be solved in EXPTIME [75]. Coupled with the reduction de-
scribed above this gives EXPTIME algorithm for the model-
checking problem. The pushdown model-checking prob-
lem is actually EXPTIME-complete. Hence, once again, we
do not loose anything by translating into games. Looking
at the structure of obtained games one can show that the
problem remains EXPTIME-complete if we consider CTL
instead of the µ-calculus [74]. Only when we prohibit the
use of “on all paths eventually” modality, the resulting frag-
ment of CTL is called EF, we obtain PSPACE-completeness
result [74].

Going further one can consider higher-order pushdown sys-
tems [29, 40]. These are very similar to pushdown sys-
tems but have higher-order stack. For example a stack of
level 2 is a stack of stacks of level 1. The additional power
is given by a new operation push2 of pushing a copy of
the topmost 1-level stack. Of course there are still ordi-
nary push and pop operations that work on the topmost
1-level stack. Just to give an example, with a stack of
level 2 a pushdown automaton can recognize the language
{aibjaibj : i, j ∈ N}. Somehow surprisingly it turns
out that the graphs of such systems are closely related to
graphs in Caucal hierarchy [19, 16]. This hierarchy was in-
troduced in the context of decidability of monadic second-
order logic and is obtained by repeated use of operations of
unwinding and inverse rational mapping. Through results
on games on higher-order pushdown systems we get that
the model-checking for the mu-calculus over systems with
k-level stack is k-EXPTIME complete [13, 15].

It is maybe worthwhile here to make a connection to dif-
ferent area namely to game semantics of programming lan-
guages. For example, a game semantics of a program in
3rd level idealized Algol can be described by a determin-
istic pushdown automaton [59]. This gives a possibility to
apply the model-checking techniques in the new area [2]. It
would be interesting to compare this with by now standard
applications of push-down model checking to programme
analysis [30, 63].

Let us finish with some results showing upper bounds
on the possible extensions. Push-down systems are prefix
word-rewriting systems (via representation of a stack as a
word). For a bigger class of prefix tree-rewriting systems
only very limited classes of games are decidable [45, 46].
Finally, for the class of well-structured systems we get de-
cidability only for reachability and safety games and with
important restrictions on the structure [1].

3.2 From parity games to model checking

The match between parity games and model-checking
works both ways. Above we were reducing model-checking
to parity games but it is also possible to go the other way
around. For every parity condition there is a µ-calculus for-

mula defining Eve’s winning positions in every game with
this winning condition [28]. Interestingly, these formulas
turn out to be very robust. Their natural generalization char-
acterizes the winning positions in much larger class of con-
current probabilistic games [25, 23] (cf. Section 5.2.1).

Let us observe that the discovery of this perfect match,
is the result of gradual understanding of the subject. This
understanding is far from being complete. As an example
let us mention the case of logics for traces. While by now
we know some number of them and understand them quite
well [26, 77], we have no reduction to an appropriate class
of games. A more formal way of saying this is that we
still do not know a good notion of alternating automaton on
traces. This should be some generalization of asynchronous
automaton where dualization gives an automaton accepting
the complement of the language. The situation is also not
clear in the real-time setting. There, it is still not settled
what is the right level of expressive power. Timed automata
are too strong from this point of view because they are not
closed under complement. Both deterministic timed au-
tomata [50] and event-clock automata [3, 36] have some ad-
vantages, but there are one too many and moreover there are
other appealing proposals and directions to explore [38, 37].

4 Synthesis

The synthesis problem is to construct a system from a
given specification. This general statement can be made
precise in a variety of ways. The simplest interpretation
is that a specification is a formula and a system is a model
for it. In the extreme, we can think of a propositional for-
mula as a specification and of a valuation of variables as a
model. In this case our satisfiability-checking game from
Section 2 may be considered as a solution of the synthesis
problem. Observe that it has an appealing property that ev-
ery satisfying valuation is a result of some winning strat-
egy in this game. Complicating a little, we can take µ-
calculus formulas as specifications and transition systems
as models. We will need to refine our game by adding rules
for dealing with new constructs. These are variations of
the ones for the model-checking game. The wining condi-
tion becomes slightly complicated because we need to deal
with sets of formulas. After setting everything correctly we
get the same situation as in the first case: every model of
a formula can be obtained from a winning strategy in the
satisfiability-checking game for this formula [58].

These reductions are by far not the end of the story.
There is another approach to formulating the synthesis
problem. A game itself can be considered as a specifica-
tion of a reactive system. One player, say Eve, takes the
role of the controller and the other player that of the envi-
ronment. The objective is that the system must satisfy the
specification no matter what the environment does. If the



specification is given as a winning condition in the game
then the controller is nothing else but a winning strategy in
the game against the environment. This setting is not as far
from the previous one as it appears. We will see it while
examining even more elaborate formulation of the problem.

Among several ways of specifying the synthesis problem
we will use here the formalism from discreet event system
control theory of Ramadge and Wonham [62, 41, 17]. This
formalism is easy to explain and quite general. For example,
a simple extension of it to distributed synthesis setting [66,
7] can easily encode the formalizations in the style proposed
by Pnueli and Rosner [60, 42].

In the control theory of discreet event systems a process
(also called a plant) is a deterministic non-complete finite
state automaton over an alphabet Σ of events, which defines
all possible sequential behaviours of the process. Some of
the states of the plant are termed marked.

The alphabet Σ is the disjoint union of two subsets: the
set Σcont of controllable events and the set Σunc of uncon-
trollable events. Σ is also the disjoint union of the sets Σobs

of observable events and Σuno of unobservable events.
A controller is a process R which satisfies the following

two conditions:

(C) For any state q of R, and for any uncontrollable event
a, there is a transition from q labelled by a.

(O) For any state q of R, and for any unobservable event
a, if there is a transition from q labelled by a then this
transition is a loop over q.

In other words, a controller must react to any uncontrol-
lable event and cannot detect an occurrence of an unobserv-
able event.

If P is a process and R is a controller, the supervised
system is the product P × R. Thus, if this system is in the
state (p, r) and if for some controllable event a, there is no
transition labelled by a from r, the controller forbids the su-
pervised system to perform the event a. On the other hand,
if an unobservable event occurs in the supervised system,
the state of the controller does not change, as if the event
had not occurred.

Of course, a supervised system has less behaviours than
its plant alone. One can a priori define a set of admissible
behaviours of the plant, and the control problem is to find a
controller R such that all behaviours of the supervised sys-
tem are admissible. For instance, one can demand that some
dangerous states are never reachable, or that one can always
go back to the initial state of the plant. More formally, the
basic control problem is the following:

Given a plant P and a set S of behaviours, does
there exist a controller R satisfying (C) and (O)

such that the behaviours of the supervised system
P ×R are all in S?

and the synthesis problem is to construct such a controller
if it does exist. Some variants of this problem take into
account the distinction between terminal and non terminal
behaviours (in [62] called marked and non marked) of the
plant.

In their works Ramadge and Wonham are mainly inter-
ested in finding maximal controllers, i.e., controllers such
that the behaviours of the supervised system are exactly the
admissible behaviours of the plant. A less restrictive prob-
lem than finding maximal controllers is finding controllers
such that the set of supervised behaviours lies between a set
of admissible behaviours and a set of required behaviours,
for instance, to discard controllers which forbid everything.

Indeed, all these constraints on the behaviour of the su-
pervised system, amount to saying that all paths in the sys-
tem are in some regular language, and/or that all words of
a given language are paths of the system, can be expressed
by formulas of the µ-calculus. Therefore, the Ramadge-
Wonham’s approach can be extended by using any formula
of the µ-calculus to specify the desired property of the su-
pervised system [7]. Hence, the control problem becomes

Given a plant P and a formula α , does there exist
a controller R satisfying (C) and (O) such that
P ×R satisfies α?

An example of such a formula α characterizing the con-
troller is the following. Let a, c, f be three events where
only c is controllable. The event f symbolizes a failure of
the device which controls c so that after an occurrence of f ,
the event c becomes uncontrollable. The formula express-
ing this phenomenon is νx.(〈a〉x ∧ [c]x ∧ 〈f〉νy.(〈a〉y ∧
〈c〉y ∧ 〈f〉y)). Another example is the case where only one
out of two events c1 and c2 is controllable at a time. This is
expressed by νx.(〈a〉x∧ ((〈c1〉x∧ [c2]x)∨ ([c1]x∧〈c2〉x)).

It turns out, moreover, that the condition (C) is express-
ible in the µ-calculus by the formula νx.(

∧
b∈Σunc

〈b〉x ∧∧
c∈Σcont

[c]x). It remains to deal with the condition (O)
which, unfortunately, is not expressible in the µ-calculus
because it is not invariant under bisimulation. That is why
we extend the µ-calculus into a loop µ-calculus. This ex-
tension consists in associating with each event a a basic
proposition 	a whose interpretation is that there is an a-
transition from a state that ends in the same state, i.e., it is a
self-loop. This way the condition (O) can be expressed as
νx.(

∧
a∈Σobs

[a]x ∧
∧

a∈Σuno
([a]false∨ 	a). Besides, we

can express that an observable event becomes unobservable
after a failure: νx.(· · · ∧ [a]x∧ 〈f〉νy.(· · · ∧ ([a]false∨ 	a

) ∧ 〈f〉y)), or that at most one out of two events a and b is
observable: [a]false∨ 	a ∨[b]false∨ 	b.

Summarizing, the general form of a control problem is:



(*) Given a plant P and two formulas α and β,
does there exist a controller R satisfying β such
that P ×R satisfies α?

where α and β are loop µ-calculus formulas. Paper [7] de-
scribes the construction of a loop µ-calculus formula α/P
that is satisfied by precisely those controllers R for which
P × R � α. This way a process R is a solution of the
synthesis problem (*) if and only if R � (α/P ) ∧ β.

Therefore, all control problems of the form (*) are in-
deed satisfiability problems in the loop µ-calculus and the
synthesis problems amount to finding models of loop for-
mulas. Fortunately, the loop µ-calculus has properties very
similar to the ordinary one and finding such models can be
reduced to finding winning strategies in parity games [7].
Reciprocally, finding a winning strategy is itself a control
problem: your moves are controllable and the moves of
your opponent are not.

We have not discussed till now the complexity is-
sues. The satisfiability checking for the loop µ-calculus
is EXPTIME-complete, hence not worse than for the stan-
dard one. Nevertheless for the issues of feasibility one
would probably prefer to work with automata rather than µ-
calculus. A solution of a synthesis problem involves several
constructions on formulas (or equivalently on automata). It
is not a surprise that in this case it would be very helpful to
have good procedures for decreasing the size of formulas or
automata. There are also numerous issues connected with
reductions between different acceptance conditions [73].

In the next section we will consider the task of synthesiz-
ing several controllers. Here we finish with a short remark
on synthesis for real time systems. There are several new
issues that arise here as one wants to avoid pathological sit-
uations like controller preventing time to diverge, see [24]
for a discussion. If the conditions do not talk about time
then the region construction allows to get the solution in a
pretty much the same way as for the untimed case [8, 24]. If
specifications are given by a timed automaton then there are
numerous variants of the problem depending on the variant
of automaton used and whether the automaton specifies de-
sired or undesired behaviours. Very roughly, the problem
is decidable if one limits the granularity of the controller
(which limits the constants that can occur in its guards). It
is also decidable for deterministic specifications but only
when all the events are observable [27, 18, 11].

5 Going further

All the results we have described so far use reductions
to parity games over finite or finitely presented graphs. In
this last section we will give some examples where it is nec-
essary to explore new kinds of games. One direction calls

for more complex winning conditions. The other concerns
extensions of the way the game is played.

5.1 Generalizing the class of winning conditions.

Let us come back to the model of push-down games (cf.
Section 3.1). As noted in [71, 14] there exists “natural win-
ning conditions exploiting the infinity of pushdown transi-
tion graphs”. The condition proposed in [14] is strict un-
boundedness: no configuration appears infinitely often on
the play.

In [10] we propose a new winning condition for push-
down games that we call unboundedness: there is no bound
on the size of the stack during the play. We consider
Boolean combinations of this condition and the parity con-
dition, for example, such a condition can say that a stack
is unbounded and some state appears infinitely often. We
characterize conditions for which there is a strategy with
finite memory for both players. We show that the prob-
lem of deciding a winner in pushdown games with Boolean
combinations of Büchi and unboundedness conditions is
EXPTIME-complete (in the size of the automaton defining
the game graph). While the method from [10] becomes
prohibitively complicated when dealing with boolean com-
binations of parity conditions and unboundedness, a differ-
ent approach [33] gives an EXPTIME algorithm in this more
general case.

These results lead to a natural question: what is a good
class of winning conditions for push-down games? All the
conditions given by finite automata can be reduced to games
with parity conditions alone. If conditions are given by
push-down automata then the problem of determining the
winner becomes undecidable. It is so even if an automaton
defining the winning condition is deterministic. Recently a
new class of pushdown automata, called visibly pushdown
automata, has been defined [4]. It has numerous good clo-
sure properties and is capable of encoding strict unbound-
edness condition. It would be only natural to investigate
pushdown games with winning conditions defined by visi-
bly pushdown automata. Let us also remark that the class
of interesting conditions for push-down games is apparently
quite large. In [69] a family of decidable winning condi-
tions of arbitrary high finite Borel complexity has been con-
structed.

The above results suggest that it may be worthwhile to
investigate for what kind of winning conditions there ex-
ist finite memory strategies in all possible graphs. In [35]
we have considered Muller conditions over infinite number
of colours. A particular case of such a condition is when
colours are natural numbers and the winner is decided by
looking at the parity of the smallest number appearing in-
finitely often (additionally we can assume that Eve wins
if there is no such number). For example, strict unbound-



edness condition is a condition of this form. It turns out
that this infinite kind of a parity condition is the only type
of condition that guarantees the existence of memoryless
strategies in all games. It is important to add that for this re-
sult to hold all positions of the game need to have a colour
assigned. If we permit partial assignments of colours or
put coloring on edges of the game graph and not on posi-
tions then only ordinary (i.e. finite) parity conditions admit
memoryless strategies [22].

5.2 Generalizing the game model

5.2.1 Concurrent probabilistic games

Apart from generalizing the class of winning conditions,
one can generalize the rules according to which games are
played. Instead of playing in turns, the players may be
required to make the moves simultaneously (as in “paper,
scissors, stone” game). The other extension is that transi-
tions may be probabilistic, i.e., giving a probability distri-
bution on the successor states.

Here is a definition encompassing the two extensions
at the same time [25]. A game is a tuple G =
〈V,M,ΓE ,ΓA, θ,Acc〉 where V is a set of positions, M
the set of moves, ΓE ,ΓA : V → (P(M) − {∅}) are
choice of move functions for Eve and Adam respectively,
and θ : V × M × M → D(V ) is a function giving for
each position and a pair of moves a probability distribution
of reaching a next position. Finally, Acc is an accepting
condition which is a parity condition in all the cases consid-
ered in the literature. At every position v, Eve and Adam
choose moves me ∈ ΓE(v) and ma ∈ ΓA(v) respectively
and the game proceeds to a position v′ with the probability
θ(v,me,ma)(v′).

A position v is deterministic if for every me,ma ∈ M
there is v′ ∈ V with θ(v,me,ma)(v′) = 1. A position
v is Adam independent if ΓA(v) is a singleton. Hence,
the games we have considered before are the special case
when all the positions are deterministic and either Adam or
Eve independent. Markov decision processes are the special
case where all positions are Adam independent. Perfect-
information stochastic games are obtained by requiring that
each position should be Adam or Eve independent and
moreover if a position is not deterministic then it should
be both Adam and Eve independent. In other words, these
are ordinary turn based games with additional randomized
positions where a successor is chosen according to the dis-
tribution assigned there.

Changing the notion of a game suggests also changing
the notion of a strategy. An example of “paper, scissors,
stone” game shows that there are concurrent games where
none of the players has a winning strategy understood as a
function form the history of a play to positions; such strate-
gies are called pure in this context. More interesting are

randomized strategies that suggest a probability distribution
instead of a single next move. Having these, we need also to
talk about the probability of winning when Eva and Adam
choose their randomized strategies. (see [25] for the defi-
nition). A value for Eva of the game is the supremum over
all Eva’s strategies of infimum over all Adam’s strategies
of the probability of winning when playing the two chosen
strategies. The value for Adam is defined dually. The quan-
titative determinacy result of Martin [52] states the values
for Eva and Adam sum up to 1. In [23] de Alfaro and Ma-
jumdar show how to calculate the values of a game using
appropriate extension of the µ-calculus.

This general model of games may be too powerful if we
are concerned with the quality of the strategies. First, in
some cases there may exist only ε-optimal strategies, i.e.,
guaranteeing the probability of winning ε-smaller than op-
timal. Moreover even those may need to be randomized
and use infinite memory [23]. It turns out that in perfect-
information parity stochastic games the situation is much
better and both players have optimal pure and memoryless
strategies [20, 78]. The values of such games are always ra-
tional numbers and there is an exponential-time algorithm
for computing them.

5.2.2 Distributed games

In Section 4 we have discussed the problem of synthesiz-
ing a single controller. In a distributed system one can have
multiple processes. The system specifies possible interac-
tions between the processes and the environment and also
the interactions among the processes themselves. The syn-
thesis problem here is to find a program for each of the pro-
cesses such that the overall behaviour of the system satis-
fies a given specification. We call this distributed synthesis
problem (DSP).

The distributed synthesis problem has been considered
by Pnueli and Rosner in the setting of an architecture with
fixed channels of communication among processes [60].
They have shown that distributed synthesis is undecidable
for most classes of architectures. They have obtained decid-
ability result for a special class of hierarchical architectures
called pipelines which was recently extended to branch-
ing time specifications over two-way pipelines and one-way
rings [42]. These are essentially the only architectures for
which the problem is decidable [47, 48]. In [49] it is sug-
gested to overcome this undecidability result by restricting
the class of allowed controllers.

The other approach to distributed synthesis, initiated
roughly at the same time as the work of Pnueli and Rosner,
comes from control theory of discrete event systems [62, 44,
66]. A system is given as a plant (deterministic finite state
automaton) and the distributed synthesis problem is to syn-
thesize a number of controllers, each being able to observe



and control only a specific subset of actions of the plant.
While the original problem refers only to safety properties,
an extension to the µ-calculus specifications has also been
considered [7, 65, 64]. Except for some special cases, the
problem turns out to be undecidable ([7, 72]). It is one of
the important goals of the area of decentralized control syn-
thesis to identify conditions on a plant and a specification
such that DSP is decidable.

As we have seen in Section 4, game theory provides an
approach to solving the (centralized) synthesis problem. An
interaction of a process with its environment can be viewed
as a game between two players and the synthesis problem
reduces to finding a finite-state winning strategy for Eve.
The winning strategy can then be implemented as the re-
quired program. This approach does not extend directly to
DSP because there we have more than two parties.

In [54] we suggest an approach to DSP by directly encod-
ing the problem game-theoretically. We extend the notion
of games to n players playing a game against a single hos-
tile environment. (Here, it will be convenient to change the
nomenclature and talk about games between players and en-
vironment rather than between Eves and Adam.) We call
this model distributed games. In this model, there are no
explicit means of interaction among players. Any such in-
teraction must take place through the environment. More-
over, each player has only a local view of the global state of
the system. Hence, a local strategy for a player is a func-
tion of its local history (of player’s own states and the partial
view of the environment’s states). A distributed strategy is
a collection of local strategies; one for each of the players.
The environment in distributed games, on the other hand,
has access to the global history. Any play in a distributed
game consists of alternating sequence of moves of (some
of) the players and of the environment.

Distributed synthesis in this model amounts to finding a
distributed winning strategy. This means finding a collec-
tion of local strategies that can win against the global envi-
ronment. A side effect of the requirement that the players
need to win together is that they need to implicitly com-
municate when they make their moves. The card game of
bridge is a good example of the kind of implicit communi-
cation we have in mind. When n = 1, distributed games
reduce to the usual two-party games.

Let us define the model more formally. A local game
is thus any game G = 〈P,E, T 〉 as defined in Section 2,
where P are positions for the player (Eve) and E are the
positions for the environment (Adam). There is no winning
condition in this game and we require that it is bipartite, i.e.,
a successor of a player position is always an environment
position and vice versa.

Let Gi = 〈Pi, Ei, Ti〉, for i = 1, . . . , n, be local games.
A distributed game constructed from G1, . . . , Gn is G =
〈P,E, T,Acc ⊆ (E ∪ P )ω〉 where:

1. E = E1 × · · · ×En.

2. P = (P1 ∪E1) × · · · × (Pn ∪ En) \E.

3. From a player’s position, we have (x1, . . . , xn) →
(x′1, . . . , x

′
n) ∈ T if and only if xi → x′i ∈ Ti for

all xi ∈ Pi and xi = x′i for all xi ∈ Ei.

4. From environment’s position, if we have
(x1, . . . , xn) → (x′1, . . . , x

′
n) ∈ T then for ev-

ery xi, either xi = x′i or x′i ∈ Pi and moreover
(x1, . . . , xn) 6= (x′1, . . . , x

′
n)

5. Acc is any winning condition.

Notice that there is an asymmetry in the definition of en-
vironment’s and players’ moves. In a move from players’
to environment’s position, all components which are play-
ers’ positions must change, and the change respects transi-
tions in local games. In the move from environment’s to
players’ position, all components are environment’s posi-
tions but only some of them need to change; moreover these
changes need not to respect local transitions. Hence, while
global moves of the player are a kind of free product of
moves in local games, it is not the case for the environment.
The moves from environment positions are the only part
of a distributed game that is not determined by the choice
of components, i.e., of local games. This freedom makes
it possible to encode different communication patterns and
other phenomena.

We interpret a distributed game as a game of n players
against environment. This intuition will become clear when
we will define the notions of views and local strategies.

For an n-tuple η and i = 1, . . . , n, let η[i] denote the i-th
component of η. Similarly, for a sequence ~v = η1η2 . . . of
n-tuples, let ~v[i] = η1[i]η2[i] . . . denote the projection of
the sequence on the i-th component.

From the definition of the moves it is easy to observe
that given a play ~v in a distributed game G, the projection
of ~v to the positions of the i-local game, ~v[i], is of the form
e+0 p0e

+
1 p1 . . . Note that the player’s positions do not repeat

since as soon as the local game moves to a player position,
he reacts immediately with an environment position. The
view of process i of ~v is view i(~v) = e0p0e1p1 . . .

An i-local strategy is a strategy in the game Gi. A dis-
tributed (player’s) strategy σ is a tuple of local strategies
〈σ1, . . . , σn〉. A distributed strategy σ defines a strategy in
G by σ(~v · (x1, . . . , xn)) = (e1, . . . , en) where ei = xi if
xi ∈ Ei and ei = σi(view i(~v · xi)) otherwise. We call
σ the global strategy associated with the given distributed
players’ strategy.

Let us se how to code a pipeline synthesis problem into dis-
tributed games. A pipeline is a sequence of processes com-
municating via unidirectional channels:



C1 Cn−2 Cn−1 Cn

A0 An−2 An−1 An

We assume that the alphabets A0, . . . , An are disjoint.
The execution follows in rounds. Within a round, processes
get inputs and produce outputs in a step-wise fashion. At
the beginning of a round, process Cn gets input an ∈ An

from the environment and gives an output an−1 ∈ An−1. In
the next step, this output is given as input to process Cn−1

and so on. When C1 has given an output, the round finishes
and another round starts.

A local controller for the i-th component is a function
fi : (Ai)

∗ → Ai−1. A sequence a0b0a1b1 · · · ∈ (Ai ·
Ai−1)

ω respects fi if fi(a0a1 . . . aj) = bj for all j.
A pipeline controller F is a tuple of local controllers

〈f1, . . . , fn〉, one for each component. An execution of the
pipeline is a string in (AnAn−1 · · ·A0)

ω. An execution ~v
respects F if ~v|(Ai∪Ai−1) respects fi, for all i = 1, . . . , n.

Let Σ =
⋃

i=0...,nAi. A controller F defines a set of
Σ-labeled paths L(F ) which is the set of all the executions
respecting F .

The pipeline synthesis problem is: given a pipeline over
alphabets A0, . . . , An and a deterministic parity word au-
tomaton A over the alphabet Σ =

⋃
i=0...,nAi, find a

pipeline controller F = 〈f1, . . . , fn〉 such that L(F ) ⊆
L(A).

A pipeline synthesis problem is coded as a distributed
game G = 〈P,E, T,Acc〉 constructed from local games
G0, . . . , Gn, with G0 taking the role of the automaton
A = 〈Q,Σ, q0, δ : Q × Σ → Q,Ω : Q → N〉 and Gi

the role of the i-th component Ci. The game G0 is defined
by :

• P0 = Q× Σn+1; E0 = Q;

• (q, w) → q′ ∈ T0 if q′ = δ(q, w); and q → (q, w) ∈
T0 for all w ∈ Σn+1.

For each component i = 1, . . . , n we have the game Gi

which is defined by: Pi = Ai; Ei = (Ai → Ai−1); and
there is a complete set of transitions between Pi and Ei.
The intuition is that the gameG0 simulates the specification
automaton A and each game Gi models a process which
reads an input and responds with a declaration for the next
round: a function of type Ai → Ai−1 declares what will be
the output depending on the input.

From an environment position (q, f1, . . . , fn), for a letter
an ∈ An we have a move to ((q, w(an)), a1, . . . , an) where
w(an) = anan−1 . . . a0 is a word such that ai−1 = fi(ai).
With this definition of environment moves we code the
pipeline communication model. Indeed the letters emitted

on the channels are determined by iteratively using the dec-
laration functions fi.

The winning condition Acc is the set of sequences such
that the projection on the states in the first component sat-
isfies the the parity condition of the automaton A. Here we
need to assume some special form of A. This is because
we “jump” over the states by using δ(q, w) for w a word of
n + 1 letters. We need to be sure that while doing this we
do not jump over states of small priority. As the length of
w is fixed we can easily guarantee this. The initial position
is η0 = (q0, a1, . . . , an) for some arbitrarily chosen letters
a1, . . . , an.

It is not difficult to show that there is a distributed win-
ning strategy in G from η0 iff the pipeline synthesis problem
has a solution. A distributed winning strategy gives a con-
troller for the pipeline.

The main technical results about these games [54] are two
theorems allowing their simplification. In general it is not
decidable to check whether there is a distributed winning
strategy in a finite distributed game. The simplification
theorems allow to reduce the number of players and to re-
duce nondeterminism in the game. For example, these the-
orems would allow to simplify the above game into a game
between one player and the environment (where the exis-
tence of a winning strategy is decidable). In some other
examples, after simplification we get a game where envi-
ronment has no choice of moves; and this case is also de-
cidable. This technique is enough to solve decidable cases
of distributed control problems considered in the literature:
pipelines [60, 42], local specifications and double flanked
pipelines [48, 47], communicating state machines [49], de-
centralized control synthesis [66].

To make a link with the previous subsection, observe
that distributed games are quite different from concurrent
games. In both cases the players need to make moves with-
out having full information, but in distributed games these
payers are on the same side hence they want to cooper-
ate. On the other hand it seems reasonable to introduce
and study randomized strategies in the setting of distributed
games. It is well-known from the theory of distributed com-
puting that some distributed communication problems can
have only randomized solutions [61, 32, 21].
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[22] T. Colcombet and D. Niwi ński. On the positional determi-
nacy of edge–labeled games. Submitted, 2004.

[23] L. de Alfaro. Quantitative verification and control via the
mu-calculus. In CONCUR’03, volume 2761 of Lecture
Notes in Computer Science, pages 102–126, 2003.

[24] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga. The element of surprise in timed games. In
CONCUR’03, volume 2761 of Lecture Notes in Computer
Science, pages 142–156, 2003.

[25] L. de Alfaro and R. Majumdar. Quantitative solution of
omega-regular games. In STOC’01: 33rd Annual ACM Sym-
posium on Theory of Computing, pages 675–683, 2001.

[26] V. Diekert and P. Gastin. Pure future local temporal log-
ics are expressively complete for mazurkiewicz traces. In
LATIN’04, Lecture Notes in Computer Science, 2004. to
appear.

[27] D. D’Souza and P. Madhusudan. Timed control synthesis
for external specifications. In STACS’02, volume 2285 of
Lecture Notes in Computer Science, pages 571–582, 2002.

[28] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy. In Proc. FOCS’91, pages 368–377, 1991.

[29] J. Engelfriet. Iterated push-down automata and complexity
classes. In 15th STOC’83, pages 365–373, 1983.

[30] J. Esparza and J. Knoop. An automata-theoretic approach to
interprocedural data-flow analysis. In FOSSACS’99, volume
1578 of Lecture Notes in Computer Science, pages 14–30,
1999.

[31] W. Felscher. Dialogues as a foundation for intuitionistic
logic. In D. Gabbay and F. Guenther, editors, Handbook
of Philosophical Logic, volume III, pages 341–372. Reidel
Publishing Company, 1986.

[32] M. Fisher. The consensus problem in unreliable distributed
systems (a brief survey). In Proc. International Conference
on Foundations of Computation, 1983.

[33] H. Gimbert. Parity and explosion games on context-free
graphs. Manuscript, 2003.
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[45] C. Löding. Model-checking infinite state systems generated
by ground tree rewriting. In FOSSACS’02, volume 2303 of
Lecture Notes in Computer Science, pages 280–294, 2002.
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