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3 LaBRI, CNRS/Université Bordeaux, France

Abstract. Asynchronous automata are parallel compositions of finite-
state processes synchronizing over shared variables. A deep theorem due
to Zielonka says that every regular trace language can be represented by
a deterministic asynchronous automaton. In this paper we improve the
construction, in that the size of the obtained asynchronous automaton
is polynomial in the size of a given DFA and simply exponential in the
number of processes. We show that our construction is optimal within the
class of automata produced by Zielonka-type constructions. In particular,
we provide the first non trivial lower bound on the size of asynchronous
automata.

1 Introduction

Zielonka’s asynchronous automata [15] is probably one of the simplest, and yet
rich, models of distributed computation. This model has a solid theoretical foun-
dation based on the theory of Mazurkiewicz traces [9,4]. The key property of
asynchronous automata, known as Zielonka’s theorem, is that every regular trace
language can be represented by a deterministic asynchronous automaton [15].
This result is one of the central results on distributed systems and has been
applied in many contexts. Its complex proof has been revisited on numerous oc-
casions (see e.g. [2,3,12,13,6] for a selection of such papers). In particular some
significant complexity gains have been achieved since the original construction.
This paper provides yet another such improvement, and moreover it shows that
the presented construction is in some sense optimal.

The asynchronous automata model is basically a parallel composition of
finite-state processes synchronizing over shared (state) variables. Zielonka’s the-
orem has many interpretations, here we would like to consider it as a result
about distributed synthesis: it gives a method to construct a deterministic asyn-
chronous automaton from a given sequential one and a distribution of the actions
over the set of processes. We remark that in this context it is essential that the
construction gives a deterministic asynchronous automaton: for a controller it is
the behaviour and not language acceptance that is important. The result has ap-
plications beyond the asynchronous automata model, for example it can be used
to synthesize communicating automata with bounded communication channels



[11,7] or existentially-bounded channels [5]. Despite these achievements, from
the point of view of applications, the biggest problem of constructions of asyn-
chronous automata is considered to be their high complexity. The best construc-
tions give either automata of size doubly exponential in the number of processes,
or exponential in the size of the sequential automaton.

This paper proposes an improved construction of deterministic asynchronous
automata. It offers the first algorithm that gives an automaton of size polynomial
in the size of the sequential automaton and exponential only in the number of
processes. We show that this is optimal for Zielonka-type constructions, namely
constructions where each component has complete information about its history.
For this we introduce the notion of locally rejecting asynchronous automaton and
remark that all Zielonka-type constructions produce this kind of automata. To
be locally rejecting means that a process should reject as soon as its history
tells him that there is no accepting extension. We believe that a locally reject-
ing behavior is quite desirable for applications, such as monitoring or control.
We show that when transforming a deterministic word automaton to a deter-
ministic locally rejecting automaton, the exponential blow-up in the number of
components is unavoidable. Thus, to improve our construction one would need
to produce automata that are not locally rejecting.

For the upper bound we start from a deterministic (I-diamond) word au-
tomaton. We think that this is the best point of departure for a study of the
complexity of constructing asynchronous automata: considering non determin-
istic automata would introduce costs related to determinization. The size of the
deterministic asynchronous automaton obtained is measured as the sum of the
sizes of the local states sets. It means that we do not take global accepting states
into account. This is reasonable in our opinion, as it is hardly practical to list
these states explicitly. From a deterministic I-diamond automaton A and a dis-
tributed alphabet with process set P, we construct a deterministic asynchronous
automaton of size 4|P|

4 · |A||P|2 . We believe that this complexity, although expo-
nential in the number of processes, is interesting in practice: an implementation
of such a device needs only memory of size logarithmic in |A| and polynomial in
|P|. We also show that computing the next state on-the-fly can be done in time
polynomial in both |A| and |P|.

Related work. Besides general constructions of Zielonka type, there are a cou-
ple of different constructions, however they either apply to subclasses of regular
trace languages, or they produce non deterministic automata (or both). The
first category includes [10,3], that provide deterministic asynchronous cellular
automata from a given trace homomorphism in case that the dependence al-
phabet is acyclic and chordal, respectively. These constructions are quite simple
and only polynomial in the size of the monoid (thus still exponential in the size
of a DFA). In the second category we find [16], who gives an inductive con-
struction for non deterministic, deadlock-free asynchronous cellular automata.
(A deadlock-free variant of Zielonka’s construction was proposed in [14]). The
paper [1] proposes a construction of asynchronous automata of size exponential
only in the number of processes (and polynomial in |A|) as our construction, but



it yields non deterministic asynchronous automata (inappropriate for monitoring
or control). Notice that while asynchronous automata can be determinized, there
are cases where the blow-up is doubly exponential in the number of processes [8].

2 Preliminaries

We fix a finite set P of processes and a finite alphabet Σ. Each letter a ∈ Σ is an
action associated with the set of processes dom(a) ⊆ P involved in its execution.
A pair (Σ,dom) is called distributed alphabet. A deterministic automaton over
the alphabet Σ is a tuple A = 〈Q,Σ,∆, q0, F 〉 with a finite set of states Q, a
set of final states F , an initial state q0 and a transition function ∆ : Q × Σ →
Q. As usual we extend ∆ to words in Σ∗. The automaton accepts w ∈ Σ∗ if
∆(q0, w) ∈ F . We use L(A) to denote the language accepted by A. The size |A|
of A is the number of its states.

Concurrent executions of systems with shared actions given by a distributed
alphabet (Σ,dom), are readily modeled by Mazurkiewicz traces [9]. The idea is
that the distribution of the alphabet defines an independence relation among
actions I ⊆ Σ × Σ, by setting (a, b) ∈ I if and only if dom(a) ∩ dom(b) = ∅.
We call (Σ, I) an independence alphabet. The independence relation induces a
congruence ∼ on Σ∗ by setting u ∼ v if there exist words u1, . . . , un ∈ Σ∗ with
u1 = u, un = v and such that for every i < n we have ui = xaby, ui+1 = xbay
for some x, y ∈ Σ∗ and (a, b) ∈ I. An ∼-equivalence class is simply called
a (Mazurkiewicz) trace. We denote by [u] the trace associated with the word
u ∈ Σ∗ (for simplicity we do not refer to I, neither in ∼ nor in [u], as the
independence alphabet is fixed). Trace prefixes and trace factors are defined as
usual, with [p] a trace prefix (trace factor, resp.) of [u] if p is a word prefix (word
factor, resp.) of some v ∼ u. As usual, we write ≤ for the prefix order. For two
prefixes T1, T2 of T , we let T1 ∪ T2 denote the smallest prefix T ′ of T such that
Ti ≤ T ′ for i = 1, 2.

For several purposes it is convenient to represent traces by (labeled) pomsets.
Formally, a trace T = [a1 · · · an] (ai ∈ Σ for all i) corresponds to a labeled pomset
〈E, λ,≤〉 defined as follows: E = {e1, . . . , en} is a set of events (or nodes), one
for each position in T . Event ei is labeled by λ(ei) = ai, for each i. The relation
≤ is the least partial order on E with ei ≤ ej whenever (ai, aj) /∈ I and i ≤ j. In
Figure 1 we give an example for the pomset of a trace T , depicted by its Hasse
diagram. The labeling of a total order on E that is compatible with ≤ is called
a linearization of T .

An automaton A is called I-diamond if for all (a, b) ∈ I, and s a state of A:
∆(s, ab) = ∆(s, ba). Note that the I-diamond property implies that the language
of A is I-closed : that is, u ∈ L(A) if and only if v ∈ L(A) for every u ∼ v. This
permits us to write ∆(s, T ) where T is a trace, to denote the state reached by A
from s on some linearization of T . Languages of I-diamond automata are called
regular trace languages.

Definition 1. A deterministic asynchronous automaton over the distributed al-
phabet (Σ, dom) is a tuple B = 〈(Sp)p∈P , (δa)a∈Σ , s

0,Acc〉 where:
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Fig. 1. The pomset associated with the trace T = [c b a d c b a d b], with dom(a) =
{p, q}, dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}.

– Sp is the finite set of local states of a process p ∈ P,
– δa :

∏
p∈dom(a) Sp →

∏
p∈dom(a) Sp is the local transition function associated

with an action a ∈ Σ,
– s0 ∈

∏
p∈P Sp is the global initial state,

– Acc ⊆
∏
p∈P Sp is a set of global accepting states.

We call
∏
p∈P Sp the set of global states (whereas Sp is the set of p-local

states). In this paper the size of an asynchronous automaton B is the total
number of local states

∑
p∈P |Sp|. This definition is very conservative, as one

may want to count also Acc or the transition functions (that can be exponential
in |B|). We will see that our construction allows to compute both Acc and the
transition functions in polynomial time.

With the asynchronous automaton B one can associate a global automaton
AB = 〈Q,Σ,∆, q0,Acc〉 where:

– The set of states is the set of global states Q =
∏
p∈P Sp of B, the initial

and the accepting states are as in B.
– The transition function∆ : Q×Σ → Q is defined by∆((sp)p∈P , a) = (s′p)p∈P

with (s′p)p∈dom(a) = δa((sp)p∈dom(a)) and s′p = sp, for every p /∈ dom(a).

Clearly AB is a finite deterministic automaton with the I-diamond property.

Definition 2. The language of an asynchronous automaton B is the language
of the associated global automaton AB.

We conclude this section by introducing some basic notations on traces. For a
trace T , we denote by dom(T ) =

⋃
e∈E dom(λ(e)) the set of processes occurring

in T . For a process p ∈ P, we denote by prefp(T ) the minimal trace prefix of T
containing all events of T on process p. Hence, prefp(T ) has a unique maximal
event that is the last (most recent) event of T on process p. This maximal
event is denoted as lastp(T ). Intuitively, prefp(T ) corresponds to the history of
process p after executing T . We extend this notation to a set of processes P ⊆ P
and denote by prefP (T ) the minimal trace prefix containing all events of T on
processes from P . By last(T ) we denote the set of events {lastp(T ) | p ∈ P}. For
example, in Figure 1 we have prefp(T ) = [cbadcba] and lastp(T ) is the second a
of the pomset. The set last(T ) contains the second a and the third b.



3 Zielonka-type constructions: state of the art

All general constructions of deterministic asynchronous automata basically fol-
low the main ideas of the original construction of Zielonka [15]. These con-
structions start with a regular, I-closed word language, that is given either by a
homomorphism to a finite monoid, or by an I-diamond automaton. In most appli-
cations we are interested in the second case, where we start with a (possibly non
deterministic) automaton. The general constructions yield either asynchronous
automata as defined in the previous section, or asynchronous cellular automata,
that correspond to a concurrent-read-owner-write model.

Theorem 1. [15] Let A be an I-diamond automaton over the independence
alphabet (Σ, I). A deterministic asynchronous automaton B can be effectively
constructed with L(A) = L(B).

We now review the constructions of [2,12,6] and recall their complexities. It
is well known that determinization of word automata requires an exponential
blow-up, hence the complexity of going from a non deterministic I-diamond
automaton A to a deterministic asynchronous automaton is at least exponential
in |A|. In that case, [6] gives an optimal construction as it is simply exponential
in both parameters |A| and |P|. Since determinization has little to do with
concurrency, we assume from now on that A is a deterministic automaton.

– [2] introduces asynchronous mappings and constructs asynchronous cellular

automata of size |Σ||Σ|2 · |A|2|Σ| .
– [12] constructs asynchronous automata of size |P||P|2 · |A||A|·2|P| .
– [6] introduces zone decompositions and constructs asynchronous automata

of size 23|P|
3 · |A||A|·|P|2 .

Comparing our present construction with previous ones, we obtain asyn-
chronous automata of size 4|P|

4 · |A||P|2 . In all these constructions, the obtained
automata are such that every process knows the state reached by A on its his-
tory. We abstract this property below, and show in the following section that
our construction is optimal in this case.

Definition 3. A deterministic asynchronous automaton B is called locally re-
jecting if for every process p, there is a set of states Rp ⊆ Sp such that for every
trace T :

prefp(T ) /∈ pref(L(B)) iff the p-local state reached by B on T is in Rp.

Notice that Rp is a trap: if B reaches Rp on trace T , then so it does on every
extension T ′ of T . Obviously, no reachable accepting global state of B has a
component in Rp. For these reasons we call states of Rp rejecting.

Our interest in locally rejecting automata is motivated by observing that all
general constructions [15,2,3,13,12,6] of deterministic asynchronous automata
produce such automata. Suppose that A is a (possibly non deterministic) I-
diamond automaton, and B a deterministic asynchronous automaton produced



by one of the constructions in [15,13,12,6] (a similar statement applies to the
asynchronous cellular automata in [2,3]). Then the local p-state sp reached by
B after processing the trace T determines the set of states reached by A on
prefp(T ), for every process p. Thus, if no state in this set can reach a final state
of A, then we put sp in Rp. This makes B locally rejecting.

4 An exponential lower bound

In this section we present our lower bound result. We show that transforming
an I-diamond deterministic automaton into a locally rejecting asynchronous
automaton may induce an exponential blow-up in the number of processes. For
this we define a family of languages Pathn, such that the minimal sequential
automaton for Pathn has size O(n2) but every locally rejecting asynchronous
automaton recognizing Pathn is of size at least 2n/4.

Let P = {1, . . . , n} be the set of processes. The letters of our alphabet are
pairs of processes, two letters are dependent if they have a process in common.
Formally, the distributed alphabet is Σ =

(P
2

)
with dom({p, q}) = {p, q}.

The language Pathn is the set of traces [x1 · · ·xk] such that every two con-
secutive letters have a process in common: xi ∩ xi+1 6= ∅ for i = 1, . . . , k − 1.
Observe that a deterministic sequential automaton recognizing this language
simply needs to remember the last letter it has read. So it has less than |P|2
states.

Theorem 2. Every locally rejecting asynchronous automaton recognizing Pathn
is of size at least 2n/4.

Proof. Take a locally rejecting automaton recognizing Pathn. Without loss of
generality we suppose that n = 4k. To get a contradiction we suppose that
process n of this automaton has less than 2k (local) states.

We define for every integer 0 ≤ m < k two traces: am = {4m, 4m+ 1}{4m+
1, 4m+2}{4m+2, 4m+4} and bm = {4m, 4m+1}{4m, 4m+3}{4m+3, 4m+4}.
To get some intuition, the reader may depict traces a0 and b0 and see that both
a0 and b0 form a path from process 0 to process 4, the difference is that trace
a0 goes through process 2 while trace b0 goes through process 3.

Consider the language L defined by the regular expression (a0 + b0)(a1 +
b1) · · · (ak−1 + bk−1). Clearly, language L is included in Pathn and contains 2k =
2n/4 different traces. As we have assumed that process n has less than 2k states,
there are two different traces t1, t2 from L such that process n is in the same
state after t1 and t2. For simplicity of presentation we assume that t1 and t2
differ on the first factor: t1 starts with a0, and t2 with b0.

We can remark that processes 0 and n are in the same state after reading
t1{0, 3} and t2. For process 0 it is clear as in both cases it sees the same trace
{0, 1}{0, 3}. By our hypothesis, process n is in the same local state after traces
t1 and t2, therefore also after traces t1{0, 3} and t2.

Consider now the state sn reached by n after reading t2{0, n}. Since t2{0, n} ∈
Pathn, the state sn is not in Rn. By the above, the same state sn is also reached



after reading t1{0, 3}{0, n}. Trace t1 starts with a0 = {0, 1}{1, 2}{2, 4} and
continues with processes whose numbers are greater than 4, so {0, 3} commutes
with all letters of t1 except {0, 1}. Hence t1{0, 3} 6∈ pref(Pathn). Since trace t1
ends with an action of process n, we have prefn(t1{0, 3}{0, n}) = t1{0, 3}{0, n} /∈
pref(Pathn). Since we have assumed that the automaton is locally rejecting, we
should have sn ∈ Rn. A contradiction. 2

5 A matching upper bound

Our goal is to modify the construction from [6] in order to make it polynomial
with respect to the size of the sequential automaton. We give an overview of
the new construction, first describing the objects the asynchronous automaton
manipulates. Some details of the mechanics of the automaton will follow. Overall,
although described in a different way, the present construction follows closely [6].
The main difference is the state information computed on the zone decomposition
of a trace. This state information becomes polynomial (instead of exponential),
but its update is much more involved than in [6].

We fix a set of processes P and a distributed alphabet (Σ,dom). Let A =
〈Q,Σ,∆, q0, F 〉 be a deterministic I-diamond automaton. A candidate for an
equivalent asynchronous automaton B = 〈(Sp)p∈P , (δa)a∈Σ , s

0,Acc〉 has a set of
states for each process and a local transition function. The goal is to make B
calculate the state reached by A after reading a linearization of a trace T . Let us
examine how B can accomplish this task. After reading a trace T the local state
of a component p of B depends only on prefp(T ). Hence, B can try to calculate
the state reached by A after reading (some linearization of ) prefp(T ). When a
next action, say a, is executed, processes in dom(a) can see each others’ states
and make the changes accordingly. Intuitively, this means that these processes
can now compose their information in order to calculate the state reached by A
on prefdom(a)(T ) a. To do so they will need some information about the structure
of the trace.

As usual, the tricky part of this process is to reconstruct the common view
of prefdom(a)(T ) from separate views of each process: prefp(T ) for p ∈ dom(a).
For the sake of example suppose that dom(a) = {p, q, r}, and we know the
states sp, sq and sr, reached by A after reading prefp(T ), prefq(T ) and prefr(T ),
resp. We would like to know the state of A after reading pref{p,q,r}(T ). This is
possible if we can compute the contributions of prefq(T )\prefp(T ) and prefr(T )\
pref{p,q}(T ). The automaton B should be able to do this by looking at sp, sq,
and sr, only. This remark points out the challenge of the construction: find the
type information that allows to deduce the behaviour of A, and that at the same
time is updatable by an asynchronous automaton.

5.1 General structure

Before introducing formal definitions it may be worth to say what is the general
structure of the states of the automaton B. Every local state will be a triple
(ts, ZO,∆), where



– ts will be a time stamping information as in all general constructions of
asynchronous automata;

– ZO will be a zone order, a bounded size partial order on a partition of the
trace;

– ∆ will be state information, recording the behavior of A on the partition
given by ZO.

Roughly, we will use time stamping to compute zone orders, and zone orders
to compute state information. The latter provides all the necessary information
about the behaviour of A on (a linearization of) the trace.

Time stamping: The goal of the time stamping function [15] is to determine
for a set of processes P and a process q the set last(prefP (T )) ∩ last(prefq(T )).
This set uniquely determines the intersection of prefP (T ) and prefq(T ) (for
details see e.g. [13]). Computing such intersections is essential when compos-
ing information about prefp(T ) for every p ∈ dom(a) into information about
prefdom(a)(T ). The main point is that there exists a deterministic asynchronous
automaton that can accomplish this task:

Theorem 3. [13] There exists a deterministic asynchronous automaton ATS =
〈(Sp)p∈P , (∆a)a∈Σ , s

0〉 such that for every trace T and state s = ∆(s0, T ) reached
by ATS after reading T :

for every P ⊆ P and q, r, r′ ∈ P, the set of local states {sp | p ∈ P ∪{q}}
allows to determine if lastr(prefP (T )) = lastr′(prefq(T )).

Moreover, such an automaton can be effectively computed and its local states can
be described using O(|P|2 log(|P|)) bits.

For instance, if a new b is executed after T = [cbadcbad] in Figure 2, process r
and processes p, q can determine that the intersection of their last-sets consists of
the second b. Indeed, last(prefp,q(T )) is made of the second a (for lastp = lastq)
and the second b (for lastr). Also, last(prefr(T )) is made of the second d (for
lastr), the second b (for lastq) and the first a (for lastp).

Zone orders: Recall that one of our objectives is to calculate, for every
p ∈ P, the state reached by A on prefp(T ). As the discussion on page 7 pointed
out, for this we may need to recover the transition function of A associated with
prefq(T ) \ prefP (T ) for a process q and a set of processes P . Hence we need
to store information about the behaviour of A on some relevant factors of T
that are not prefixes. Zones are such relevant factors. They are defined in such a
way that there is a bound on the number of zones in a trace. The other crucial
property of zones is that for every extension T ′ of T and every P ⊆ P, q ∈ P, if
a zone of T intersects prefq(T

′) \ prefP (T ′) then it is entirely in this set. A zone
order is an abstract representation of the decomposition of a trace into zones.

Definition 4. [6] Let T = 〈E,≤, λ〉 be a trace. For an event e ∈ E we define
the set of events L(e) = {f ∈ last(T ) | e ≤ f}. We say that two events e, e′ are
equivalent (denoted as e ≡ e′) if L(e) = L(e′). The equivalence classes of ≡ are
called zones. We denote by dom(Z) the set of processes active in a zone Z.



c

b

c

a

d

b

d

a

p

q

r

Fig. 2. The three zones of prefr(T ) (darker) are marked with solid lines. The
two zones of pref{p,q}(T ) (lighter) are represented by dotted lines.

There is a useful partial order on zones that we define now. Let Z,Z ′ be two
zones of some trace T . We write Z l Z ′ if Z 6= Z ′ and e < e′ for some events
e ∈ Z, e′ ∈ Z ′. It is easy to see that ZlZ ′ implies that L(Z ′) ( L(Z). Thanks to
this property we can define the order on zones, denoted Z ≤ Z ′, as the smallest
partial order containing the l relation.

Lemma 1. A trace is partitioned in at most |P|2 zones.

The lemma above gives a slightly better bound than [6]. Moreover, it can
be shown that its bound is asymptotically optimal. Figure 2 depicts the trace
T = [cbadcbad]. Recall that last(prefr(T )) consists of the first a, the second b
and the second d. There are three zones in prefr(T ): Z1 contains the first a, b and
c, Z2 the first d and the second b, and Z3 the second d. We have Z1 < Z2 < Z3.

Definition 5. A zone order is a labeled partial order ZO = 〈V,≤, ξ : V → 2P〉,
where every element is labeled by a set of processes. We require that every two
elements whose labels have non empty intersection are comparable: ξ(v)∩ξ(v′) 6=
∅ ⇒ (v ≤ v′ ∨ v′ ≤ v). We say that such a zone order is the zone order of a
trace T , if there is a bijection µ from V to zones of T preserving the order and
satisfying ξ(v) = dom(µ(v)).

Lemma 2. The zone order of a trace can be stored in |P|2(|P|2 + |P|) space. So

there are at most 2O(|P|4) zone orders.

State information: We describe now the state information for each zone of
the trace. Let ZO = 〈V,≤, ξ : V → 2P〉 be the zone order of some trace T , via a
bijection µ. For an element v ∈ V we denote by Tv the factor of T consisting of
zones up to µ(v): that is, the factor covering µ(v′) for all v′ ≤ v. Observe that
Tv is a prefix of T . For instance, in Figure 2 the zone order of prefr(T ) contains
three vertices v1 < v2 < v3, and Tv2 is the trace [bcadb].

Definition 6. We say that a function ∆ : V → Q is state information for the
zone order ZO of a trace T if for every v we have ∆(v) = ∆(q0, Tv), namely the
state of A reached on a linearization of Tv.



Observe that a zone order for a trace of the form prefp(T ) has one maximal

element vp: it corresponds to the last action of p. If ∆ is the state information for
T , then the state reached by A on reading a linearization of prefp(T ) is ∆(vp).

5.2 The construction of the asynchronous automaton

Let us come back to the description of the asynchronous automaton B. For every
p ∈ P, a local state in Sp will have the form (tsp, ZOp,∆p). The automaton will
be defined in such a way that after reading a trace T the state sp reached at the
component p will satisfy:

– tsp is the time stamping information;
– ZOp is the zone order of prefp(T );

– ∆p is the state information for ZOp.

By [13] we know that B can update the tsp component. The proposition below
says that B can update the ZOp and ∆p components.

Proposition 1. Let T be a trace and a ∈ Σ an action. Suppose that for every
p ∈ dom(a) we have the time stamping information tsp and the zone order with
state information (ZOp,∆p) of prefp(T ). We can then calculate the zone order
and the state information of prefp(Ta), for every p ∈ dom(a).

We also need to define the sets of rejecting states Rp and the global accepting
states Acc of B. Observe that by Proposition 1, from the local state sp we
can calculate ∆(q0,prefp(T )), namely the state of A reached after reading a
linearization of prefp(T ). This state is exactly the state associated to the unique
maximal element of the zone order in sp. Hence, B can be made locally rejecting
by letting sp ∈ Rp if ∆(q0,prefp(T )) is not productive in A, i.e., no final state
can be reached from it.

To define accepting tuples of states of B we use the following proposition:

Proposition 2. Let T be a trace. Given for every p ∈ P the time stamping tsp,
and the zone order ZOp with state information ∆p of prefp(T ), we can calculate
∆(q0, T ), the state reached by A on a linearization of T .

In the light of Proposition 2, a tuple of states of B is accepting if the state
∆(q0, T ) of A is accepting. The two propositions give us:

Theorem 4. Let A be a deterministic I-diamond automaton over the distributed
alphabet (Σ, dom). We can construct an equivalent deterministic, locally rejecting

asynchronous automaton B with at most 4|P|
4 · |A||P|2 states.

We now describe informally the main ingredients of the proof of Proposition 1
(Proposition 2 is proved along similar lines). The zone order ZO of prefP∪{q}(T )
is built in two steps from ZOP and ZOq: first we construct a so-called pre-
zone order ZO′ by adding to ZOP the zones from prefq(T ) \ prefP (T ) [6]. Then
we quotient ZO′ in order to obtain ZO. The quotient operation amounts to



merge zones. The difficulty compared to [6] is posed by the update of the state
information. Since the state information for the pre-zone ZO′ is inconsistent due
to the merge, the crucial step is to compute this information on downward closed
sets of zones:

Lemma 3. Let ZO = 〈V,≤, ξ〉, ∆ be the zone order and state information for a
trace T (via the bijection µ). For every downward closed B ⊆ V we can compute
the state reached by A on a linearization of TB =

⋃
{Tv | v ∈ B}, using only ZO

and ∆.

The proof of the lemma above is based on a nice observation about I-diamond
automata A, taken from [2]. It says that for every three traces T0, T1, T2 with
dom(T1) ∩ dom(T2) = ∅, the state reached by A on a linearization of T0T1T2
can be computed from dom(T1) and the states reached on (linearizations of) T0,
T0T1, T0T2, respectively.

We now sketch the proof of the lemma. We first choose some linearization
v1, . . . , vn of B. For each i, k with i ≤ k, let Bi,k = {v1, . . . , vi} ∪ {vj | j >
i, vj ≤ vk}. For instance, if there are four zones v1, v2, v3, v4 with v1 < v2 < v4,
v1 < v3 < v4, and ξ(v2) ∩ ξ(v3) = ∅, then B1,2 = {v1, v2}, B1,3 = {v1, v3}, and
B2,3 = {v1, v2, v3}.

We show now how to compute inductively ∆(q0, TBi,k). Notice that the base

case is trivial, as B0,k = ∆(vk) for all k. Let i ≤ n. Suppose that for all k ≥
i− 1, we know ∆(q0, TBi−1,k

). In particular, note that the states qi−1, qi reached
on µ(v1 · · · vi−1) and µ(v1 · · · vi), respectively, are known (cases k = i − 1 and
k = i). We compute now ∆(q0, TBi,k), for all k > i. Two cases arise. If vi 6<
vk then we apply the observation of [2] to qi−1, qi, ∆(q0, TBi−1,k

), ξ(vi), which
yields ∆(q0, TBi,k). If vi < vk, then Bi−1,k = Bi,k and the state ∆(q0, TBi,k) is
already known. At the end of this polynomial time procedure, we have computed
∆(q0, TB) = ∆(q0, TBn,n).

Remark 1. The automaton B of Theorem 4 can be constructed on-the-fly, i.e.,
given the action a ∈ Σ and the local states sp of B, p ∈ dom(a), one can compute
the successor states δa((sp)p∈dom(a)). The question is now how much time we
need for this computation. The update of the time stamping and the update of
zone orders take time polynomial in |P|. The update of state information can be
done in time polynomial in |P| and linear in the number of transitions of |A|.
So overall, we can compute transitions on-the-fly in polynomial time. Similarly,
we can decide whether a global state is accepting in polynomial time.

6 Conclusion

In this paper we have presented an improved construction of asynchronous au-
tomata. Starting from a zone construction of [6], we have shown how to keep
just one state per zone instead of a transition table. This allows to obtain the
first construction that is polynomial in the size of the sequential automaton and
exponential only in the number of processes.



It is tempting to conjecture that our construction is optimal. Unfortunately,
it is very difficult to provide lower bounds on sizes of asynchronous automata. We
have given a matching lower bound for the subclass of locally rejecting automata.
It is worth to recall that all general constructions in the literature produce
automata of this kind. Moreover the concept of locally rejecting automaton is
interesting on its own from the point of view of applications.

We conjecture that the translation from deterministic word automata to
asynchronous automata must be exponential in the number of processes (where
the size means the total number of local states).
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