
A Note on Monitors and Büchi automata
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Abstract. When a property needs to be checked against an unknown
or very complex system, classical exploration techniques like model-
checking are not applicable anymore. Sometimes a monitor can be used,
that checks a given property on the underlying system at runtime. A
monitor for a property L is a deterministic finite automaton ML that
after each finite execution tells whether (1) every possible extension of
the execution is in L, or (2) every possible extension is in the comple-
ment of L, or neither (1) nor (2) holds. Moreover, L being monitorable
means that it is always possible that in some future the monitor reaches
(1) or (2). Classical examples for monitorable properties are safety and
cosafety properties. On the other hand, deterministic liveness properties
like “infinitely many a’s” are not monitorable.
We discuss various monitor constructions with a focus on deterministic
!-regular languages. We locate a proper subclass of deterministic !-
regular languages but also strictly large than the subclass of languages
which are deterministic and codeterministic; and for this subclass there
exists a canonical monitor which also accepts the language itself.
We also address the problem to decide monitorability in comparison with
deciding liveness. The state of the art is as follows. Given a Büchi automa-
ton, it is PSPACE-complete to decide liveness or monitorability. Given
an LTL formula, deciding liveness becomes EXPSPACE-complete, but
the complexity to decide monitorability remains open.

Introduction

Automata theoretic verification has its mathematical foundation in classical pa-
pers written in the 1950’s and 1960’s by Büchi, Rabin and others. Over the past
few decades it became a success story with large scale industrial applications.
However, frequently properties need to be checked against an unknown or very
complex system. In such a situation classical exploration techniques like model-
checking might fail. The model-checking problem asks whether all runs satisfy a
given specification. If the specification is written in monadic second-order logic,
then all runs obeying the specification can be expressed e↵ectively by some Büchi
automaton (BA for short). If the abstract model of the system is given by some
finite transition system, then the model-checking problem becomes an inclusion
problem on !-regular languages: all runs of the transition system must be ac-
cepted by the BA for the specification, too. In formal terms we wish to check
L(A) ✓ L(') where A is the transition system of the system and ' is a formula



for the specification. Typically testing inclusion is expensive, hence it might be
better to check the equivalent assertion L(A) \ L(¬') = ;. This is a key fact,
because then the verification problem becomes a reachability problem in finite
graphs.

Whereas the formulas are typically rather small, so we might be able to con-
struct the Büchi automaton for L(¬'), the transition systems tend to be very
large. Thus, “state explosion” on the system side might force us to use weaker
concepts. The idea is to construct a “monitor” for a given specification. A moni-
tor observes the system during runtime. It is a finite deterministic automaton
with at most two distinguished states ? and >. If it reaches the state ?, the
monitor stops and raises an “alarm” that no continuation of the so far observed
run will satisfy the specification. If it reaches >, the monitor stops because all
continuations will satisfy the specification. Usually, this means we must switch
to a finer monitor. Finally, we say that a language is monitorable, if in every
state of the monitor it is possible to reach either ? or > or both.

The formal definition of monitorable properties has been given in [18] by
Pnueli and Zaks. It generalizes the notion of a safety property because for a
safety property some deterministic finite automaton can raise an alarm ? by
observing a finite “bad prefix”, once the property is violated. The extension to
the more general notion of monitorability is that a monitorable property gives
also a positive feedback >, if all extensions of a finite prefix obey the specification.
Monitors are sometimes easy to implement and have a wide range of applications.
See for example [13] and the references therein. Extensions of monitors have been
proposed in more complex settings such as for stochastic automata [7,20] and
for properties expressed in metric first-order temporal logic [2]. For practical
use of monitors, various parameters may be relevant, in particular the size of
the monitor or the runtime overhead generated by the monitor (see also the
discussion in [24]).

In the present paper we discuss various monitor constructions. A monitor for
a safety property L can have much less states than the smallest DBA accepting
L. For example, let ⌃ = {a, b} and n 2 N. Consider the language L = a

n

ba⌃

! \
⌃

⇤
bb⌃

!. The reader is invited to check that L is a safety property and every
DBA accepting L has more than n states. But there is a monitor with three
states, only. The monitor patiently waits to see an occurrence of a factor bb

and then switches to ?. Hence, there is no bound between a minimal size of an
accepting DBA and the minimal size of a possible monitor. This option, that a
monitor might be much smaller than any accepting DBA, has had one of the
main motivations for the use of monitors.

There are many deterministic languages which are far away from being moni-
torable. Consider again ⌃ = {a, b} and let L be the deterministic language of
“infinitely many a’s”. It is shown in [5] that L cannot be written as any countable
union of monitorable languages. On the other hand, if L is monitorable and also
accepted by some DBA with n states and a single initial state, then there is
some monitor accepting L with at most n states.
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In the last section of this paper we discuss the question how to decide whether
a language is monitorable and its complexity. If the input is a Büchi automaton,
then deciding safety, liveness, or monitorability is PSPACE-complete. If the input
is an LTL formula, then deciding safety remains PSPACE-complete. It becomes
surprisingly di�cult for liveness: EXPSPACE-complete. For monitorability the
complexity is wide open: we only know that it is PSPACE-hard and that moni-
torability can be solved in EXPSPACE.

1 Preliminaries

We assume that the reader is familiar with the basic facts about automata theory
for infinite words as it is exposed in the survey [25]. In our paper ⌃ denotes a
finite nonempty alphabet. We let ⌃⇤ (resp. ⌃!) be the set of finite (resp. infinite)
words over ⌃. Usually, lower case letters like a, b, c denote letters in ⌃, u, . . . , z

denote finite words, 1 is the empty word, and ↵, �, � denote infinite words. By
language we mean a subset L ✓ ⌃

!. The complement of L w.r.t. ⌃! is denoted
by L

c0. Thus, L

c0 = ⌃

! \ L.
A Büchi automaton (BA for short) is a tuple A = (Q,⌃, �, I, F ) where Q is

the nonempty finite set of states, I ✓ Q is the set of initial states, F ✓ Q is the
set of final states, and � ✓ Q ⇥ ⌃ ⇥ Q is the transition relation. The accepted
language L(A) is the set of infinite words ↵ 2 ⌃

! which label an infinite path
in A which begins at some state in I and visits some state in F infinitely often.
Languages of type L(A) are called !-regular.

If for each p 2 Q and a 2 ⌃ there is at most one q 2 Q with (p, a, q) 2 �, then
A is called deterministic. We write DBA for deterministic Büchi automaton. In a
DBA we view � as a partially defined function and we also write p ·a = q instead
of (p, a, q) 2 �. Frequently it is asked that a DBA has a unique initial state.
This is not essential, but in order to follow the standard notation (Q,⌃, �, q0, F )
refers to a BA where I is the singleton {q0}.

A deterministic weak Büchi automaton (DWA for short) is a DBA where all
states in a strongly connected component are either final or not final. Note that
a strongly connected component may have a single state because the underlying
directed graph may have self-loops. A language is accepted by some DWA if and
only if it is deterministic and simultaneously codeterministic. The result is in
[22] which in turn is based on previous papers by Staiger and Wagner [23] and
Wagner [27].

According to [18] a monitor is a finite deterministic transition system M
with at most two distinguished states ? and > such that for all states p either
there exist a path from p to ?, or to >, or to both. It is a monitor for an

!-language L ✓ ⌃

! if the following additional properties are satisfied:

– If u denotes the label of a path from an initial state to ?, then u⌃

! \L = ;.
– If u denotes the label of a path from an initial state to >, then u⌃

! ✓ L.

A language L ✓ ⌃

! is called monitorable if there exists a monitor for L. Thus,
even non regular languages might be monitorable. If a property is monitorable,

3



then the following holds:

8x 9w : xw⌃

! ✓ L _ xw⌃

! \ L = ; . (1)

The condition in (1) is not su�cient for non-regular languages: indeed consider
L = {a

n

b

n

a | n 2 N}⌃!. There is no finite state monitor for this language.
In the present paper, the focus is on monitorable !-regular languages. For !-
regular languages (1) is also su�cient; and Remark 2 below shows an equivalent
condition for monitorability (although stronger for non-regular languages).

The common theme in “automata on infinite words” is that finite state de-
vices serve to classify !-regular properties. The most prominent classes are:

– Deterministic properties: there exists a DBA.
– Deterministic properties which are simultaneously codeterministic: there

exists a DWA.
– Safety properties: there exists a DBA where all states are final.
– Cosafety properties: the complement is a safety property.
– Liveness properties: there exists a BA where from all states there is a path

to some final state lying in a strongly connected component.
– Monitorable properties: there exists a monitor.

According to our definition of a monitor, not both states ? and > need to be
defined. Sometimes it is enough to see ? or >. For example, let ; 6= L 6= ⌃

!

be a safety property and A = (Q,⌃, �, I, Q) be a DBA accepting L where all
states are final. Since ; 6= L we have I 6= ;. Since L 6= ⌃

!, the partially defined
transition function � is not defined everywhere. Adding a state ? as explained
above turns A into a monitor M for L where the state space is Q [ {?}. There
is no need for any state >. The monitor M also accepts L. This is however not
the general case.

2 Topological properties

A topological space is a pair (X, O) where X is a set and O is collection of
subsets of X which is closed under arbitrary unions and finite intersections. In
particular, ;, X 2 O. A subset L 2 O is called open; and its complement X \ L

is called closed.
For L ✓ X we denote by L the intersection over all closed subsets K such

that L ✓ K ✓ X. It is the closure of L. The complement X \ L is denoted by
L

c0.
A subset L ✓ X is called nowhere dense if its closure L does not contain any

open subset. The classical example of the uncountable Cantor set C inside the
closed interval [0, 1] is nowhere dense. It is closed and does not have any open
subset. On the other hand, the subset of rationals Q inside R (with the usual
topology) satisfies Q = R. Hence, Q is “dense everywhere” although Q itself
does not have any open subset.

The boundary of L is sometimes denoted as �(L); it is defined by

�(L) = L \ L

c0
.
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In a metric space B(x, 1/n) denotes the ball of radius 1/n. It is the set of y

where the distance between x and y is less than 1/n. A set is open if and only
if it is some union of balls, and the closure of L can be written as

L =
\

n�1

[

x2L

B(x, 1/n).

In particular, every closed set is a countable intersection of open sets. Following
the traditional notation we let F be the family of closed subsets and G be the
family of open subsets. Then F

�

denotes the family of countable unions of closed
subsets and G

�

denotes the family of countable intersections of open subsets. We
have just seen F ✓ G

�

, and we obtain G ✓ F

�

by duality. Since G

�

is closed
under finite union, G

�

\ F

�

is Boolean algebra which contains all open and all
closed sets.

In this paper we deal mainly with !-regular sets. These are subsets of ⌃!;
and ⌃! is endowed with a natural topology where the open sets are defined by
the sets of the form W⌃

! where W ✓ ⌃

⇤. It is called the Cantor topology. The
Cantor topology corresponds to a complete ultra metric space: for example, we
let d(↵,�) = 1/n for ↵,� 2 ⌃

! where n � 1 2 N is the length of a maximal
common prefix of ↵ and �. (The convention is 0 = 1/1.)

The following dictionary translates notation about !-regular sets into its
topological counterpart.

– Safety = closed sets = F .
– Cosafety = open sets = G.
– Liveness = dense = closure is ⌃!.
– Deterministic = G

�

, see [12].
– Codeterministic = F

�

, by definition and the previous line.
– Deterministic and simultaneously codeterministic = G

�

\ F

�

, by definition.
– Monitorable = the boundary is nowhere dense, see [5].

Monitorability depends on the ambient space X. Imagine we embed R into
the plane R2 in a standard way. Then R is a line which is nowhere dense in
R2. As a consequence every subset L ✓ R is monitorable in R2. The same
phenomenon happens for !-regular languages. Consider the embedding of {a, b}!
into {a, b, c}! by choosing a third letter c. Then {a, b}! is nowhere dense in
{a, b, c}! and hence, every subset L ✓ {a, b}! is monitorable in {a, b, c}!. The
monitor has 3 states. One state is initial and by reading c we switch into the state
?. The state > can never be reached. In some sense this 3-state minimalistic
monitor is useless: it tells us almost nothing about the language. Therefore the
smallest possible monitor is rarely the best one.

Remark 1. In our setting many languages are monitorable because there exists
a “forbidden factor”, for example a letter c in the alphabet which is never used.
More precisely, let L ✓ ⌃

! be any subset and assume that there exists a finite
word f 2 ⌃

⇤ such that either ⌃⇤
f⌃

! ✓ L or ⌃⇤
f⌃

! \ L = ;. Then L is moni-
torable. Indeed, the monitor just tries to recognize ⌃⇤

f⌃

!. Its size is |f |+2 and
can be constructed in linear time from f by algorithms of Matiyasevich [16] or
Knuth-Morris-Pratt [10].
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3 Constructions of monitors

Remark 1 emphasizes that one should not try simply to minimize monitors. The
challenge is to construct “useful” monitors. In the extreme, think that we encode
a language L in printable ASCII code, hence it is a subset of {0, 1}⇤. But even
in using a 7-bit encoding there were 33 non-printable characters. A monitor can
choose any of them and then waits patiently whether this very special encoding
error ever happens. This might be a small monitor, but it is of little interest. It
does not even check all basic syntax errors.

3.1 Monitors for !-regular languages in G� \ F�

The !-regular languages in G

�

\F

�

are those which are deterministic and simulta-
neously codeterministic. In every complete metric space (as for example the Can-
tor space ⌃!) all sets in G

�

\F

�

have a boundary which is nowhere dense. Thus,
deterministic and simultaneously codeterministic languages are monitorable by
a purely topological observation, see [5].

Recall that there is another characterization of !-regular languages in G

�

\F

�

due to Staiger, [22]. It says that these are the languages which are accepted by
some DWA, thus by some DBA where in every strongly connected component
either all states are final or none is final.

In every finite directed graph there is at least one strongly connected com-
ponent which cannot be left anymore. In the minimal DWA (which exists and
which is unique and where, without restriction, the transition function is totally
defined) these end-components consist of a single state which can be identified
either with ? or with >. Thus, the DWA is itself a monitor. Here we face the
problem that this DWA might be very large and also too complicated for useful
monitoring.

3.2 General constructions

Let w 2 ⌃

⇤ be any word. Then the language L = w⌃

! is clopen meaning si-
multaneously open and closed. The minimal monitor for w⌃

! must read the
whole word w before it can make a decision; and the minimal monitor has ex-
actly |w| + 2 states. On the other hand, its boundary, L \ L

c0 is empty and
therefore nowhere dense. This suggests that deciding monitorability might be
much simpler than constructing a monitor. For deciding we just need any DBA
accepting the safety property L \L

c0 . Then we can see on that particular DBA
whether L is monitorable, although this particular DBA might be of no help for
monitoring. Phrased di↵erently, there is no bound between the size of a DBA
certifying that L is monitorable and the size of an actual monitor for L.

Indeed, the standard construction for a monitor M

L

is quite di↵erent from
a direct construction of the DBA for the boundary, see for example [5]. The
construction for the monitor M

L

is as follows. Let L ✓ ⌃

! be monitorable
and given by some BA. First, we construct two DBAs: one DBA with state
set Q1, for the closure L and another one with state set Q2 for the closure of
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the complement L

c0 . We may assume that in both DBAs all states are final
and reachable from a unique initial state q01 and q02, respectively. Second, let
Q

0 = Q1 ⇥ Q2. Now, if we are in a state (p, q) 2 Q

0 and we want to read a letter
a 2 ⌃, then exactly one out of the three possibilities can happen.

1. The states p ·a and q ·a are defined, in which case we let (p, q) ·a = (p ·a, q ·a).
2. The state p · a is not defined, in which case we let (p, q) · a = ?.
3. The state q · a is not defined, in which case we let (p, q) · a = >.

Here ? and > are new states. Moreover, we let q ·a = q for q 2 {?, >} and a 2 ⌃.
Hence, the transition function is totally defined. Finally, we let Q ✓ Q

0 [ {?, >}
be the subset which is reachable from the initial state (q01, q02). Since L is moni-
torable, Q \ {?, >} 6= ;; and Q defines a set of a monitor M

L

. Henceforth, the
monitor M

L

above is called a standard monitor for L. The monitor has exactly
one initial state. From now on, for simplicity, we assume that every monitor M
has exactly one initial state and that the transition function is totally defined.
Thus, we can denote a monitor M as a tuple

M = (Q,⌃, �, q0, ?, >). (2)

Here, � : Q ⇥ ⌃ ! Q, (p, a) 7! p · a is the transition function, q0 is the unique
initial state, ? and > are distinguished states with Q \ {?, >} 6= ;.

Definition 1. Let M = (Q,⌃, �, q0, ?, >), M0 = (Q0
,⌃, �

0
, q

0
0, ?, >) be moni-

tors. A morphism between M and M0
is mapping ' : Q[{?, >} ! Q

0 [{?, >}
such that '(q0) = q

0
0, '(?) = ?, '(>) = >, and '(p · a) = '(p) · a for all p 2 Q

and a 2 ⌃.

If ' is surjective, then ' is called an epimorphism.

Another canonical monitor construction uses the classical notion of right-
congruence. A right-congruence for the monoid ⌃⇤ is an equivalence relation ⇠
such that x ⇠ y implies xz ⇠ yz for all x, y, z 2 ⌃

⇤. There is a canonical right-
congruence ⇠

L

associated with every !-language L ✓ ⌃

!: for x 2 ⌃

⇤ denote
by L(x) = {↵ 2 ⌃

! | x↵ 2 L} the quotient of L by x. Then defining ⇠
L

by
x ⇠

L

y () L(x) = L(y) yields a right-congruence. More precisely, ⌃⇤ acts
on the set of quotients Q

L

= {L(x) | x 2 ⌃

⇤} on the right, and the formula for
the action becomes L(x) · z = L(xz). Note that this is well-defined. This yields
the associated automaton [22, Section 2]. It the finite deterministic transition
system with state set Q

L

and arcs (L(x), a, L(xa)) where x 2 ⌃

⇤ and a 2 ⌃.
There is a canonical initial state L = L(1), but unlike in the case of regular

sets over finite words there is no good notion of final states in Q

L

for infinite
words. The right congruence is far too coarse to recognize L, in general. For ex-
ample, consider the deterministic language L of “infinitely many a’s” in {a, b}!.
For all x we have L = L(x), but in order to recognize L we need two states.

It is classical that if L is !-regular, then the set Q

L

is finite, but the converse
fails badly [22, Section 2]: there are uncountably many languages where |Q

L

| = 1.
To see this define for each ↵ 2 ⌃

! a set

L

↵

= {� 2 ⌃

! | ↵ and � share an infinite su�x}.
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All L

↵

are countable, but the union {L

↵

| ↵ 2 ⌃

!} covers the uncountable
Cantor space ⌃!. Hence, there are uncountably many L

↵

. However, |Q
L↵ | = 1

since L

↵

(x) = L

↵

for all x.
Recall that a monitor is a DBA where the monitoring property is not defined

using final states, but it is defined using the states ? and >. Thus, a DBA with
an empty set of final states can be used as a monitor as long as ? and > have
been assigned and the required properties for a monitor are satisfied.

Proposition 1. Let L ✓ ⌃

!

be !-regular and monitorable. Assume that L is

accepted by some BA with n states. As above let Q

L

= {L(x) | x 2 ⌃

⇤} and

denote ? = ; and > = ⌃

!

. Then |Q
L

|  2n and Q

L

[ {>, ?} is the set of

states for a monitor for L. At least one of the states in {>, ?} is reachable from

the initial state L = L(1).

The monitor in Proposition 1 with state space Q

L

is denoted by A
L

henceforth.
We say that A

L

is the right-congruential monitor for L.

Proposition 2. Let A be the right-congruential monitor for L. Then the map-

ping

L(x) 7! '(L(x)) = (L (x), Lc0 (x))

induces a canonical epimorphism from A
L

onto some standard monitor M
L

.

Proof. Observe that L (x) = L(x) and L

c0(x) = L(x)c0. Hence, (L (x), Lc0 (x)) =
(L(x) , L(x)c0 ) and '(L(x)) is well-defined. Now, if L (x) 6= ; and L

c0 (x) 6= ;,
then '(L(x)) 2 Q where Q is the state space of the standard monitor M. If
L (x) = ; then we can think that all (;, L

c0 (x)) denote the state ?; and if
L

c0 (x) = ; then we can think that all (L (x), ;) denote the state >. ut
Corollary 1. Let L ✓ ⌃

!

be monitorable and given by some BA with n states.

Then some standard monitor M
L

for L has at most 2n states.

Proof. Without restriction we may assume that in the BA (Q,⌃, �, I, F ) accept-
ing L every state q 2 Q leads to some final state. The usual subset construction
leads first to a DBA accepting L , where all states are final and the states of
this DBA are the nonempty subsets of Q. Thus, these are 2n � 1 states. Adding
the empty set ; = ? we obtain a DBA with 2n states where the transition
function is defined everywhere. If the complement L

c0 is dense, this yields a
standard monitor. In the other case we can use the subset construction also
for a DBA accepting L

c0 . In this case we remove all subsets P ✓ Q where
L(Q,⌃, �, P, F ) = ⌃

!. (Note, for all a 2 ⌃ we have: if L(Q,⌃, �, P, F ) = ⌃

!

and P

0 = {q 2 Q | 9p 2 P : (p, a, q) 2 �}, then L(Q,⌃, �, P

0
, F ) = ⌃

!, too.)
Thus, if L

c0 is not dense, then the construction for a standard monitor has at
most 2n � 2 states of the form (P, P ) where ; 6= P and L(Q,⌃, �, P, F ) 6= ⌃

!.
In addition there exists the reachable state > and possibly the state ?. ut

Proposition 2 leads to the question of a canonical minimal monitor, at least
for a safety language where a minimal accepting DBA exists. The answer is “no”
as we will see in Example 1 later.
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Let us finish the section with a result on arbitrary monitorable subsets of ⌃!

which is closely related to [21, Lemma 2]. Consider any subset L ✓ ⌃

! where
the set of quotients Q

L

= {L(x) | x 2 ⌃

⇤} is finite (=“zustandsendlich” or
“finite state”in the terminology of [21]). If Q

L

is finite, then L is monitorable
if and only if the boundary is nowhere dense. In every topological space this
latter condition is equivalent to the condition that the interior of L is dense in
its closure L . Translating Staiger’s result in [21] to the notion of monitorability
we obtain the following fact.

Proposition 3. Let L ✓ ⌃

!

be any monitorable language and let M be a moni-

tor for L with n states. Then there exists a finite word w of length at most (n�1)2

such that for all x 2 ⌃

⇤
we have either xw⌃

! ✓ L or xw⌃

! \ L = ;.
Proof. We may assume that n � 1 and that the state space of M is included in
{1, . . . , n � 1, ?, >}. Merging > and ? into a single state 0 we claim that there
is a word w of length at most (n � 1)2 such that q · w = 0 for all 0  q  n � 1.
Since L is monitorable, there is for each q 2 {0, . . . , n � 1} a finite word v

q

of
length at most n�1 such that q ·v

q

= 0. By induction on k we may assume that
there is a word w

k

of length at most k(n�1) such that for each q 2 {0, . . . , k} we
have q · w

k

= 0. (Note that the assertion trivially holds for k = 0.) If k � n � 1
we are done: w = w

n�1. Otherwise consider the state q = k + 1 and the state
p = q · w

k

. Define the word w

k+1 by w

k+1 = w

k

v

p

. Then the length of w

k+1 is
at most (k + 1)(n � 1). Since w

k

is a prefix of w

k+1 and since 0 · v = v for all v,
we have q · w

k+1 = 0 for all 0  q  k + 1. ut
Remark 2. The interest in Proposition 3 is that monitorability can be charac-
terized by a single alternation of quantifiers. Instead of saying that

8x 9w (8↵ : xw↵ 2 L) _ (8↵ : xw↵ /2 L)

it is enough to say

9w 8x (8↵ : xw↵ 2 L) _ (8↵ : xw↵ /2 L).

The length bound (n � 1)2 is not surprising. It confirms Černý’s Conjecture in
the case of monitors. (See [26] for a survey on Černý’s Conjecture.) Actually, in
the case of monitors with more than 3 states the estimation of the length of the
“reset word” is not optimal. For example in the proof of Proposition 3 we can
choose the word v1 to be a letter, because there must be a state with distance
at most one to 0. The precise bound is

�
n+1
2

�
= (n + 1)n/2 if the alphabet is

allowed to grow with n [19, Theorem 6.1]. If the alphabet is fixed, then the lower
bound for the length of w is still in n

2
/4 +⌦(n) [15].

4 Monitorable deterministic languages

The class of monitorable languages form a Boolean algebra and every !-regular
set L can be written as a finite union L =

S
n

i=1 L

i

\ K

i

where the L

i

and K

i
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are deterministic !-regular, [25]. Thus, if L is not monitorable, then one of the
deterministic L

i

or K

i

is not monitorable. This motivates to study monitorable
deterministic languages more closely.

Definition 2. Let L ✓ ⌃

!

be deterministic !-regular. A deterministic Büchi
monitor (DBM for short) for L is a tuple

B = (Q,⌃, �, q0, F, ?, >)

where A = (Q,⌃, �, q0, F ) is a DBA with L = L(A) and where (Q,⌃, �, q0, ?, >)
is a monitor in the sense of Equation (2) for L.

The next proposition justifies the definition.

Proposition 4. Let L ✓ ⌃

!

be any subset. Then L is a monitorable determin-

istic !-regular language if and only if there exists a DBM for L.

Proof. The direction from right to left is trivial. Thus, let L be monitorable and
let L = L(A) for some DBA A = (Q,⌃, �, q0, F ) where all states are reachable
from the initial state q0. For a state p 2 Q let L(p) = L(Q,⌃, �, p, F ). If L(p) = ;,
then L(p · a) = ;; and if L(p) = ⌃

!, then L(p · a) = ⌃

!. Thus, we can merge
all states p with L(p) = ; into a single non-final state ?; and we can merge all
all states p with L(p) = ⌃

! into a single final state > without changing the
accepted language. All states are of the form q0 · x for some x 2 ⌃

⇤; and, since
L is monitorable, for each x either there is some y with xy⌃

! \ L = ; or there
is some y with xy⌃

! ✓ L (or both). In the former case we have q0 · xy = ? and
in the latter case we have q0 · xy = >. ut
Corollary 2. Let L ✓ ⌃

!

be a monitorable deterministic !-regular language

and A be a DBA with n states accepting L. Let B be a DBM for L with state set

QB where the size of QB is as small as possible. Let further QR (resp. QM) be

the state set of the congruential (resp. smallest standard) monitor for L. Then

we have

n � |QB| � |QR| � |QM| .
Example 1. Let ⌃ = {a, b} and � = {a, b, c, d}.

1. For n 2 N consider L = a

n

b⌃

! \⌃⇤
bb⌃

!. It is a safety property. Hence, we
have L = L. Moreover, ⌃⇤

bb⌃

! is a liveness property (i.e., dense). Hence
L

c0 = ⌃

!. It follows that the standard monitor is just the minimal DBA
for L augmented by the state ?. There are exactly n + 4 right-congruence
classes defined by prefixes of the words a

n

ba and a

n

b

2. We have L(an

b

2) = ;.
Hence reading a

n

b

2 leads to the state ?. This, shows that the inequalities
in Corollary 2 become equalities in that example. On the other hand b

2 is a
forbidden factor for L. Hence there is a 3 state monitor for L. Still there is
no epimorphism from the standard monitor onto that monitor, since in the
standard monitor we have L(an+1) = ; but in the 3-state monitor ? has not
an incoming arc labeled by a.

10



2. Every monitor for the language ⌃⇤(bab [ b

3)⌃! has at least 4 states. There
are three monitors with 4 states which are pairwise non-isomorphic.

3. Let L = (b⇤
a)! [ {a, b}⇤

c{a, b, c}! ✓ �

!. Then L is monitorable and de-
terministic, but not codeterministic. Its minimal DBM has 4 states, but the
congruential monitor QR has 3 states, only. We have L = {a, b, c}! and
L

c0 = �

!. Hence, the smallest standard monitor has two states. In partic-
ular, we have |QB| > |QR| > |QM|, see also Figure 1.

0B : 1 2

?

b

a

b a

c

c

a, b, c

d
d

d

�

0, 1R : 2

?

c

a, b a, b, c

d
d

�

0, 1, 2M :

?

a, b, c

d

�

Fig. 1. Monitors B, R, M for L = L(B).
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5 Deciding liveness and monitorability

5.1 Decidability for Büchi automata

It is well-known that decidability of liveness (monitorability resp.) is PSPACE-
complete for Büchi automata. The following result for liveness is classic, for
monitorability it was shown in [6].

Proposition 5. The following two problems are PSPACE-complete:

– Input: A Büchi automaton A = (Q,⌃, �, I, F ).
– Question 1: Is the accepted language L(A) ✓ ⌃

!

live?

– Question 2: Is the accepted language L(A) ✓ ⌃

!

monitorable?

Proof. Both problems can be checked in PSPACE using standard techniques. We
sketch this part for monitorability. The procedure considers, one after another,
all subsets P such that P is reachable from I by reading some input word. For
each such P the procedure guesses some P

0 which is reachable from P . It checks
that either L(A0) = ; or L(A0) = ⌃

!, where A0 = (Q,⌃, �, P

0
, F ). If both tests

fail then the procedure enters a rejecting loop.
If, on the other hand, the procedure terminates after having visited all P ,

then L(A) is monitorable.
For convenience of the reader we show PSPACE-hardness of both problems

by adapting the proof in [6].
We reduce the universality problem for non-deterministic finite automata

(NFA) to both problems. The universality problem for NFA is well-known to be
PSPACE-complete.

Start with an NFA A = (Q0
,�, �

0
, q0, F

0) where � 6= ;. We use a new letter
b /2 � and we let ⌃ = � [ {b}.

We will construct Büchi automata B1 and B2 as follows. We use three new
states d, e, f and we let Q = Q

0 [ {d, e, f}, see Figure ??. The initial state is the
same as before: q0. Next, we define �. We keep all arcs from �

0 and we add the
following new arcs.

– q

b�! d

a�! e

a�! e for all q 2 Q

0 \ F

0 and all a 2 � .

– e

b�! d

b�! d

– q

b�! f

c�! f for all q 2 F

0 and all c 2 ⌃.

Let us define two final sets of states: F1 = {f} and F2 = {d, f}. Thus, we
have constructed Büchi automata B1 and B2 where

B
i

= (Q,�, �, q0, Fi

) for i = 1, 2.

For the proof of the proposition it is enough to verify the following two claims
which are actually more precise than needed.

1. The language L(B1) is monitorable. It is live if and only if L(A) = �

⇤.
2. The language L(B2) is live. It is monitorable if and only if L(A) = �

⇤.

12



Q

0 \ F

0

F

0

d

e

f

b

b

�

b

�

b

�

Fig. 2. PSPACE-hardness for liveness and monitorability for Büchi automata.

If L(A) = �

⇤, then we have L(B1) = L(B2) = ⌃

!, so both languages are live
and monitorable.

If L(A) 6= �

⇤, then there exists some word u /2 L(A) and hence reading ub

we are necessarily in state d. It follows that ub⌃

! \ L(B1) = ; and L(B1) is
not live. Still, L(B1) is monitorable. Now, for all w 2 ⌃

⇤ we have wb

! 2 L(B2).
Hence, L(B2) is live. However, if u /2 L(A), then after reading ub we are in state
d. Now, choose some letter a 2 � . For all v 2 ⌃

⇤ we have ubva

!

/2 L(B2), but
ubvb

! 2 L(B2). Hence, if L(A) 6= �

⇤, then L(B2) is not monitorable. ut

5.2 Decidability for LTL

We use the standard syntax and semantics of the linear temporal logic LTL for
infinite words over some finite nonempty alphabet ⌃. We restrict ourselves the
pure future fragment and the syntax of LTL

⌃

[XU] is given as follows.

' ::= > | a | ¬' | ' _ ' | ' XU ',

where a ranges over ⌃. The binary operator XU is called the next-until modality.
In order to give the semantics we identify each ' 2 LTL

⌃

with some first-
order formula '(x) in at most one free variable. The identification is done as
usual by structural induction. The formula a becomes a(x) = P

a

(x), where
P

a

(x) is the unary predicate saying that the label of position x is the letter a.
The formula “' neXt-Until  ” is defined by:

(' XU  )(x) = 9z : (x < z ^  (z) ^ 8y : '(y) _ y  x _ z  y).

Finally let ↵ 2 ⌃

! be an infinite word with the first position 0, then we
define ↵ |= ' by ↵ |= '(0); and we define

L(') = {↵ 2 ⌃

! | ↵ |= '}.

Languages of type L(') are called LTL definable, It is clear that every LTL
definable language is first-order definable; and Kamp’s famous theorem [9] states

13



the converse. In particular, given L(') there exists a BA A such that L(') =
L(A). There are examples where the size of the formula ' is exponentially smaller
than the size of any corresponding BA A.

For a survey on first-order definable languages we refer to [4]. By LTL decid-
ability of a property P we mean that the input is a formula ' 2 LTL

⌃

and we ask
whether property P holds for L('). By Proposition 5 we obtain straightforwardly
the following lower and upper bounds for the LTL decidability of monitorability
and liveness.

Remark 3. The following two problems are PSPACE-hard and can be solved in
EXPSPACE:

– Input: A formula ' 2 LTL
⌃

.
– Question 1: Is the accepted language L(') ✓ ⌃

! live?
– Question 2: Is the accepted language L(') ✓ ⌃

! monitorable?

Remark 3 is far from satisfactory since there is huge gap between PSPACE-
hardness and containment in EXPSPACE. Very unfortunately, we were not able
to make the gap any smaller for monitorability. There was some belief in the
literature that, at least, LTL liveness can be tested in PSPACE, see for exam-
ple [17]. But surprisingly this last assertion is wrong: testing LTL liveness is
EXPSPACE-complete!

Proposition 6. Deciding LTL liveness is EXPSPACE-complete:

– Input: A formula ' 2 LTL
⌃

.

– Question Is the accepted language L(') ✓ ⌃

!

live?

EXPSPACE-completeness of liveness was proved by Muscholl and Walukiewicz
in 2012, but never published. Independently, it was proved by Orna Kupferman
and Gal Vardi in [11].

We give a proof of Proposition 6 in Sections 5.3 and 5.4 below. We also point
out why the proof technique fails to say anything about the hardness to decide
monitorability. Our proof for Proposition 6 is generic. This means that we start
with a Turing machine M which accepts a language L(M) ✓ �

⇤ in EXPSPACE.
We show that we can construct in polynomial time a formula '(w) 2 LTL

⌃

such
that

w 2 L(M) () L('(w)) ✓ ⌃

! is not live.

5.3 Encoding EXPSPACE computations

For the definition of Turing machines we use standard conventions, very closely
to the notation e.g. in [8]. Let L = L(M) be accepted by a deterministic Turing
machine M , where M has set of states Q and the tape alphabet is � containing
a “blank” symbol B. We assume that for some fixed polynomial p(n) � n+2 the
machine M uses on an input word w 2 (� \ {B})⇤ of length n strictly less space
than 2N �2, where N = p(n). (It does not really matter that M is deterministic.)
Configurations are words from �

⇤(Q ⇥ � )� ⇤ of length precisely 2N , where the

14



head position corresponds to the symbol from Q ⇥ � . For technical reasons we
will assume that the first and the last symbol in each configuration is B. Let
A = � [ (Q ⇥ � ).

If the input is nonempty word w = a1 · · · a
n

where the a

i

are letters, then
the initial configuration is defined here as

C0 = B(q0, a1)a2 · · · a
n

BBBBB · · · B| {z }
2N�n�1 times

.

For t � 0 let C

t

be configuration of M at time t during the computation
starting with the initial configuration C0 on input w. We may assume that the
computation is successful if and only if there is some t such that a special symbol,
say q

f

, appears in C

t

. Thus, we can write each C

t

as a word C

t

= a0,t · · · a
m,t

with m = 2N � 1; and we have w 2 L(M) if and only if there are some i � 1
and t � 1 such that a

i,t

= q

f

.
In order to check that a sequence C0, C1, . . . is a valid computation we may

assume that the Turing machine comes with a table � ✓ A

4 such that the
following formula holds:

8t > 0 81  i < 2N � 1 : (a
i�1,t�1, ai,t�1, ai+1,t�1, ai,t

) 2 �.

Without restriction we have (B, B, B,B) 2 �, because otherwise M would ac-
cept only finitely many words.

We may express that we can reach a final configuration C

t

by saying:

9t � 1 91  i < 2N : a

i,t

= q

f

.

As in many EXPSPACE-hardness proofs, for comparing successive configura-
tions we need to switch to a slightly di↵erent encoding, by adding the tape
position after each symbol from A. To do so, we enlarge the alphabet A by
new symbols 0, 1, $, #, k1, . . . kN which are not used in any C

t

so far. Hence,
⌃ = A [ {0, 1, $, #, k1, . . . kN}. We encode a position 0  i < 2N by us-
ing its binary representation with exactly N bits. Thus, each i is written as
a word bin(i) = b1 · · · b

N

where each b

p

2 {0, 1}. In particular, bin(0) = 0N ,
bin(1) = 0N�11, . . . , bin(2N � 1) = 1N .

Henceforth, a configuration C

t

= a0,t · · · a
m,t

with m = 2N � 1 is encoded as
a word

c

t

= a0,t bin(0) · · · a
m,t

bin(m)$.

Words of this form are called stamps in the following. Each stamp has length
2N · N + 1. If a factor bin(i) occurs, then either i = m (i.e., bin(i) = 1N ) and
the next letter is $ or i < m and the next letter is some letter from the original
alphabet A followed by the word bin(i + 1).

Now we are ready to define a language L = L(w) which has the property
that L is not live if and only if w 2 L(M). We describe the words ↵ 2 ⌃

! which
belong to L as follows.

1. Assume that ↵ does not start with a prefix of the form c0 · · · c
`

#, where c0

corresponds to the initial configuration w.r.t. w, each c

t

is a stamp and in
the stamp c

`

the symbol q

f

occurs. Then ↵ belongs to L.
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2. Assume now that ↵ starts with a prefix c0 · · · c
`

# as above. Then we let
↵ belong to L if and only if the set of letters occurring infinitely often in
↵ witness that the prefix c0 · · · c

`

of stamps is not a valid computation.
Thus, we must point to some t � 1 and some position 1  i < m such
that (a

i�1,t�1, ai,t�1, ai+1,t�1, ai,t

) /2 �. The position i is given as bin(i) =
b1 · · · b

N

2 {0, 1}N . The string bin(i) defines a subset of ⌃:

I(i) = {k

p

2 {k1, . . . , kN

} | b

p

= 1}.

The condition for ↵ to be in L is that for some t the mistake from c

t�1 to
c

t

is reported by (a
i�1,t�1, ai,t�1, ai+1,t�1, ai,t

) /2 � and the position i such
that I(i) equals the set of letters k

p

which appear infinitely often in ↵. Note
that since we excluded mistakes at positition i = 0 (because of the leftmost
B), the set I(i) is non-empty.

Lemma 1. The language L = L(w) is not live if and only if w 2 L(M).

Proof. First, let w 2 L(M). Then we claim that L is not live. To see this let
u = c0 · · · c

`

#, where the prefix c0 · · · c
`

is a valid accepting computation of M .
There is no mistake in c0 · · · c

`

. Thus we have u⌃

! \ L = ;, so indeed, L is not
live.

Second, let w /2 L(M). We claim that L is live. Consider any u 2 ⌃

⇤.
Assume first that u does not start with a prefix of the form c0 · · · c

`

#, where c0

corresponds to the initial configuration w.r.t. w, each c

t

is a stamp and in the
stamp c

`

the symbol q

f

occurs. Then we we have u⌃

! ✓ L.
Otherwise, assume that c0 · · · c

`

# is a prefix of u and that all c

t

’s are stamps,
with c0 initial and c

`

containing q

f

. There must be some mistake in c0 · · · c
`

#,
say for some i and t. Let I(i) be as defined a above. As i � 1 we have I(i) 6=
;. Therefore we let � be any infinite word where the set of letters appearing
infinitely often is exactly the set I(i). By definition of L we have u� 2 L. Hence,
L is live. ut

There are other ways to encode EXPSPACE computations which may serve
to prove Proposition 6, see for example [11]. However, these proofs do not re-
veal any hardness for LTL monitorability. In particular, they do not reveal EX-
PSPACE or EXPTIME hardness. For our encoding this is explained in Remark 4.

Remark 4. Since are interested in EXPSPACE-hardness, we may assume that
there infinitely many w with w /2 L(M). Let n be large enough, say n � 3 and
w /2 L(M), then (B, (q0, a1), a2, qf ) /2 �, where w = a1a2 · · · because otherwise
w 2 L(M). Define c1 just as the initial stamp c0 with the only di↵erence that
the letter (q0, a1) is replaced by the symbol q

f

. Let u = c0c1#, then for every
v 2 ⌃

⇤ we have that uv(k
N

)! 2 L (i.e., there is a mistake at position 1), but
uv(k1k2 · · · k

N

)! \ L = ; (i.e., there is no mistake at position 2N � 1) because
(B, B, B,B) 2 �. Thus, L is not monitorable.
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5.4 Proof of Proposition 6

LTL liveness is in EXPSPACE by Remark 3. The main ideas for the proof are
in the previous subsection. We show that we can construct in polynomial time
on input w some ' 2 LTL

⌃

such that L(') = L(w). This can be viewed as
a standard exercise in LTL. The solution is a little bit tedious and leads to a
formula of at most quadratic size in n. The final step in the proof is to apply
Lemma 1. ut

6 Conclusion and outlook

In the paper we studied monitorable languages from the perspective of what is
a “good monitor”. In some sense we showed that there is no final answer yet,
but monitorability is a field where various interesting questions remain to be
answered.

Given an LTL formula for a monitorable property one can construct monitors
of at most doubly exponential size; and there is some indication that this is the
best we can hope for, see [3]. Still, we were not able to prove any hardness for
LTL monitorability beyond PSPACE. This does not mean anything, but at least
in theory, it could be that LTL monitorability cannot be tested in EXPTIME,
but nevertheless it is not EXPTIME-hard.

There is also another possibility. Deciding monitorability might be easier
than constructing a monitor. Remember that deciding monitorability means to
test that the boundary is nowhere dense. However we have argued that a DBA
for the boundary does not give necessarily any information about a possible
monitor, see the discussion at the beginning of Section 3.2.

A more fundamental question is about the notion of monitorability. The
definition is not robust in the sense that every language becomes monitorable
simply by embedding the language into a larger alphabet. This is somewhat
puzzling, so the question is whether a more robust and still useful notion of
monitorability exist.

Finally, there is an interesting connection to learning. In spite of recent
progress to learn general !-regular languages by [1] it not known how to learn a
DBA for deterministic !-regular languages in polynomial time. The best result
is still due to Maler and Pnueli in [14]. They show that it is possible to learn a
DWA for a !-regular language L in G

�

\ F

�

in polynomial time. The queries to
the oracle are membership question “uv

! 2 L?” where u and v are finite words
and the query whether a proposed DWA is correct. If not, the oracle provides a
shortest counterexample of the form uv

!.
Since a DWA serves also as a monitor we can learn a monitor the very same

way, but beyond G

�

\ F

�

it is not known that membership queries to L and
queries whether a proposed monitor is correct su�ce. As a first step one might
try find out how to learn a deterministic Büchi monitor in case it exists. This
is a natural class beyond G

�

\ F

�

because canonical minimal DBA for these
languages exist. Moreover, just as for DWA this minimal DBA is an DBM, too.
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Another interesting branch of research is monitorability in a distributed set-
ting. A step in this direction for infinite Mazurkiewicz traces was outlined in
[6].
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