
Nondeterministic controllers of nondetermin-
istic processes

André Arnold and Igor Walukiewicz

1 LaBRI
CNRS and University Bordeaux I
33405 Talence, France

Abstract

The controller synthesis problem as formalized by Ramadge and
Wonham consists of finding a finite controller that when synchronized
with a given plant results in a system satisfying a required property.
In this setting, both a plant and a controller are deterministic fi-
nite automata, while synchronization is modelled by a synchronous
product. Originally, the framework was developed only for safety and
some deadlock properties. More recently, Arnold et. al. have extended
the setting to all mu-calculus expressible properties and proposed a
reduction of the synthesis problem to the satisfiability problem of the
mu-calculus. They have also presented some results on decidability
of distributed synthesis problem where one requires to find several
controllers that control the plant at the same time. The additional
difficulty in this case is that each controller is aware of a different
part of the whole system.

In this paper, an extension of the setting to nondeterministic pro-
cesses is studied. In other words, the case when both a system and
a controller can be presented by a nondeterministic automaton. This
extension is motivated by examples in control where a continuous
quantity is measured and digitized thereby introducing imprecision
and uncertainty. It is shown that nondeterminism of the plant can be
handled at no extra cost, both for centralized and decentralized con-
trol. Centralized synthesis remains decidable even for nondetermin-
istic controllers. In contrast, very few cases of decentralized control
are decidable when controllers are allowed to be nondeterministic.
A classification of decidable/undecidable variants of this problem is
given.

1 Introduction

At the end of the eighties, Ramadge and Wonham introduced the theory
of control of discrete event systems (see the survey [13] and the books [6]

2 A. Arnold and I. Walukiewicz

and [3]). In this theory a process (also called a plant) is a deterministic
non-complete finite state automaton over an alphabet A of events, which
defines all possible sequential behaviours of the process. The goal is to find
for a given plant another process, called controller, such that a synchronous
product of the plant and the controller satisfies desired properties. The
usual properties considered are for instance, that some dangerous states are
never reachable, or that one can always go back to the initial state of the
plant. In decentralized control one looks for a fixed number of controllers
that control the plant simultaneously.

In the setting described above one assumes that both a plant and con-
trollers are deterministic automata. This paper examines what changes
when assumption on determinism is dropped. It is shown that nondeter-
minism in a plant can be handled at no cost, while nondeterminism in
controllers may lead to undecidability in the case of decentralized control.

The synthesis problem would be interesting neither form theoretical nor
from practical point of view if there were no additional restrictions on con-
trollers. In the most standard form a restriction is determined by two sub-
sets Aunc and Auobs of the alphabet A with the associated requirement
that:

(C) For any state q of the controller, and for any uncontrollable event a,
there is a transition from q labelled by a.

(O) For any state q of the controller, and for any unobservable event a, if
there is a transition from q labelled by a then this transition is a loop
over q.

In other words, a controller must react to any uncontrollable event and
cannot detect the occurrence of an unobservable event.

In [1] an extension of this setting was proposed that handles specifica-
tions expressed in the mu-calculus, or rather in its extension called modal
loop mu-calculus. This allowed a more general formulation of the synthesis
problem:

(CC) Given a plant P and two formulas α and β, does there exist a
controller R satisfying β such that P ×R satisfies α?

With formulas α and β one can express properties (C) and (O) but also
much more, as for example that an action becomes unobservable after a
failure has occurred, or that always one of two actions is controllable but
never both at the same time.

The problem (CC) can be solved thanks to the division operation [1].
For a process P and a formula α there is a formula α/P such that: R � α/P
iff P × R � α. This way a process R is a solution to (CC) if and only if
R � (α/P) ∧ β. As (α/P) ∧ β is a formula of the modal loop mu-calculus

Nondeterministic controllers of nondeterministic processes 3

the synthesis problem reduces to the constructive satisfiability problem:
construct a model for a formula whenever a model exists. The latter is
decidable and a witnessing model, which is a controller, can be constructed.

Ramadge and Wonham have considered also the problem of synthesis of
decentralized controllers: a plant can be supervised by several independent
controllers (instead of only one). But each controller has its own set of
controllable and observable events. Hence the decentralized control problem
is to find R1, . . . , Rn such that the supervised system P × R1 × · · · × Rn

satisfies the specification S and for each i, Ri satisfies (Ci) and (Oi). More
generally, in our setting, a decentralized control problem is:

(DC) Given a plant P and modal-loop mu-calculus formulas α, β1,
. . . ,βn, do there exist controllers Ri satisfying βi (for i = 1, . . . , n)
such that P ×R1 × · · · ×Rn satisfies α?

In [1] it is shown how to solve a decentralized control problem when at
most one of the formulas αi restrains visibility of a controller. If one allows
to put visibility restrictions on at least two controllers then the existence of
a solution to the problem is undecidable.

Till now, all the constructions assumed that processes are deterministic
automata. This may be a limiting assumption if, for example, a plant is a
model of a continuous system. In this case a continuous domain of values
must be sampled to a discrete one. Hence, the same measurement can
correspond to different values that may have different effect on the behaviour
of the plant. For similar reasons, the result of actions of controllers may be
also not completely determined.

In this paper, we show that in the case of centralized synthesis the
approach via division operation still works. We do this by generalizing
the division operation described above to a division by a nondeterministic
process. This shows that nondeterminism in a plant can be handled at no
cost. Next, we study decidability of (DC) problem. Thanks to the division,
allowing nondeterministic plant does not make the problem more complex.
By contrast, if we allow at least two controllers to be nondeterministic,
then the problem becomes undecidable even for formulas in the standard
mu-calculus. We study also the case when at most one of the controllers
can be nondeterministic, obtaining a full characterisation of decidability of
(DC) problem.

The paper is organized as follows. In the next section we introduce
processes and automata on processes. This will be a rather rich version
of alternating automata that has not only loop testing, 	a, but also indis-
tinguishability testing ↓↓a,b. Intuitively, the first constraint will be used to
say that a controller cannot observe a, and the second that it cannot make
a difference between a and b. These kinds of automata were introduced
in [1], and ↓↓a,b test was added in [2]. In Section 3 we give basic properties

4 A. Arnold and I. Walukiewicz

of these automata, like closure under boolean operations and decidability
of emptiness. Section 4 presents an operation of division of an automaton
by a process. This operation is used in the following section to solve cen-
tralized synthesis problem and to eliminate the plant from formalization of
decentralized synthesis problem. Main results of the paper are given in this
section. The proofs of decidability and undecidability results announced
here are given in Sections 6 and 7 respectively.

2 Processes and automata

2.1 Processes
Let A be a finite alphabet of actions. A process is a finite graph with a
distinguished node and with edges labelled by actions:

P = 〈S,A, s0 ∈ S, e ⊆ S ×A× S〉

We will usually refer to nodes as states. We will write s
a→ s′ instead

of (s, a, s′) ∈ e, and will say that there is a transition labelled a form a
state s to a state s′. A process is deterministic if e is a partial function
e : S ×A→ S. We will write outP (s, a) for the set of states reachable from
s by a transition labelled a: outP (s, a) = {s′ : s a→ s′}.

A product of two processes over the same alphabet is standard

P ×R = 〈SP × SR, A, (s0P , s
0
R), eP×R〉

where ((sP , sR), a, (s′P , s
′
R)) ∈ eP×R if (sP , a, s

′
P) ∈ eP and (sR, a, s

′
R) ∈ eR.

2.2 Games
As our specification language we will use a rich variant of alternating au-
tomata that we will introduce in the next subsection. It will be very con-
venient to describe its semantics in terms of games, so we recall necessary
definitions here.

A game G is a tuple 〈VE , VA, T ⊆ (VE ∪ VA)2,Acc ⊆ V ω〉 where Acc is
a set defining the winning condition, and 〈VE ∪ VA, T 〉 is a graph with the
vertices partitioned into those of Eve and those of Adam. We say that a
vertex v′ is a successor of a vertex v if T (v, v′) holds.

A play between Eve and Adam from some vertex v ∈ V = VE ∪ VA

proceeds as follows: if v ∈ VE then Eve makes a choice of a successor, oth-
erwise Adam chooses a successor; from this successor the same rule applies
and the play goes on forever unless one of the parties cannot make a move.
The player who cannot make a move looses. The result of an infinite play
is an infinite path v0v1v2 . . . This path is winning for Eve if it belongs to
Acc. Otherwise Adam is the winner.

A strategy σ for Eve is a function assigning to every sequence of vertices
~v ending in a vertex v from VE a vertex σ(~v) which is a successor of v.

Nondeterministic controllers of nondeterministic processes 5

A play respecting σ is a sequence v0v1 . . . such that vi+1 = σ(vi) for all i
with vi ∈ VE . The strategy σ is winning for Eve from a vertex v iff all the
plays starting in v and respecting σ are winning. A vertex is winning if
there exists a strategy winning from it. The strategies for Adam are defined
similarly. A strategy is positional if it does not depend on the sequence of
vertices that were played till now, but only on the present vertex. So such
a strategy can be represented as a function σ : VE → V and identified with
a choice of edges in the graph of the game.

In this paper the winning conditions Acc ⊆ V ω will be regular conditions.
That is conditions defined in monadic second-order logic on sequences. An
important special case is a parity condition. It is a condition determined by
a function Ω : V → {0, . . . , d} in the following way:

Acc = {v0v1 . . . ∈ V ω : lim sup
i→∞

Ω(vi) is even}

Hence, in this case, each position is assigned a natural number and we
require that the largest among those appearing infinitely often is even. This
condition was discovered by Mostowski [9] and is the most useful form of
regular conditions. It guarantees existence of positional strategies [4, 10,
8]. It is closed by negation (the negation of a parity condition is a parity
condition). It is universal in the sense that every game with a regular
condition can be reduced to a game with a parity condition [9].

The main results about games that we need are summarized in the fol-
lowing theorem.

Theorem 2.1 ([7, 4, 10]). Every game with regular winning conditions
is determined, i.e., every vertex is winning for one of the players. It is
algorithmically decidable who is a winner from a given vertex in a finite
game. In a parity game a player has a positional strategy winning from
each of his winning vertices.

2.3 Automata
We will need automata that work on graphs. These automata should cope
with multiple outgoing edges with the same label. Moreover, we would like
to equip them with tests of some simple structural graph properties. They
will be able to check that an edge on a given letter is a self-loop or that the
edges on two different letters lead to the same states. To incorporate all
these tests it will be simpler to define automata which use a kind of modal
formulas over the set of states in a process. Thus we start with defining
these formulas.

Let A be an alphabet and let Q be a finite set. The set of modal formulas
over A andQ, denoted F(A,Q), is the smallest set closed under the following
rules:

6 A. Arnold and I. Walukiewicz

• tt , ff , q, 	a, 	a, ↓↓a.b ↓↓a,b are formulas, for any q ∈ Q and a, b ∈ A.

• α ∨ β and α ∧ β are formulas for all α, β ∈ F(A,Q).

• 〈a〉α and [a]α are formulas for all α ∈ F(A,Q) and a ∈ A.

An automaton over a set of actions A is a tuple:

A = 〈Q,A, q0 ∈ Q, δ : Q→ F(A,Q),Acc ⊆ Qω〉

where Q is a finite set of states, A is a finite alphabet, and Acc is an
accepting condition that is a regular set of infinite sequences of states.

The acceptance of a process P by an automaton A is defined in terms of
strategies in a game G(P,A) that we describe now. Let FA be the smallest
set of formulas closed under taking subformulas, and containing all formulas
in the range of δ together with tt and ff . We have

G(P,A) = 〈VE , VA, T,AccG〉

where

• VE = S × FAE , and FAE is the set of formulas form FA of one of the
forms: ff ,	a, ↓↓a,b, q, 〈a〉α, α ∨ β.

• VA = S ×FA − VE .

• From (s, tt) and (s,ff) no move is possible.

• From (s,	a) there is a move to (s, tt) if outP (s, a) = {s} and to (s,ff)
otherwise.

• From (s, ↓↓a,b) there is a move to (s, tt) if outP (s, a) = outP (s, b) and
to (s,ff) otherwise.

• Similarly for (s,	a) and (s, ↓↓a,b) but with roles of (s, tt) and (s,ff)
interchanged.

• From (s, α∧β) as well as from (s, α∨β) there are moves to (s, α) and
to (s, β).

• From (s, 〈a〉α) and from (s, [a]α) there are moves to (t, α) for every
t ∈ out(s, a).

• Finally, from (s, q) there is a move to (s, δ(q)).

• The winning condition AccG contains sequences such that when look-
ing only at the elements of Q appearing in the sequence we obtain an
element of Acc.

Nondeterministic controllers of nondeterministic processes 7

We say that P satisfies A, in symbols P � A, if Eve has a winning
strategy in G(P,A) from (s0, q0), which is the pair consisting from the initial
states of P and A, respectively. As our automata are very close to formulas
we prefer to talk about satisfiability instead of acceptance. We will still use
some automata terminology though. For example, the language recognized
by an automaton A will be the class of processes that satisfy A.

Our automata are a variant of alternating automata. In particular the
formulas used in the transition function are “closed” under disjunction and
conjunction. Using standard constructions on alternating automata we get.

Proposition 2.2. The class of languages recognized by automata is closed
under sum, intersection and complement.

This proposition allows to write A ∧ C to denote an automaton which
recognizes L(A) ∩ L(C).

Definition 2.3. An automaton is called simple if formulas in its transition
function use none of 	a,	a, ↓↓a,b, ↓↓a,b.

A simple automaton is nothing else but a µ-calculus formula in a different
presentation. Using the results on the µ-calculus we have.

Theorem 2.4 ([4, 14]). It is decidable if for a given simple automaton A
there is a process P such that P � A. Similarly, if we require P to be
deterministic. In both cases a process P can be constructed if the answer
is positive.

Theorem 2.5 ([11, 5]). Over deterministic systems which are trees, the ex-
pressive power of simple automata is equivalent to that of monadic second-
order logic. Over all processes: a property is expressible by a simple au-
tomaton iff it is expressible in monadic second-order logic and bisimulation
invariant.

3 Satisfiability

The basic question one can ask about our automata model is whether for
a given automaton A there is a process that satisfies it. From the previous
section we know that there is an algorithm answering this question in the
case of simple automata. We will now reduce the general case to that of
simple automata. For this, we will encode information about loops and par-
allel tests in additional transitions. This way for a process P we will define a
process Code(P). It will then turn out that behaviour of an automaton over
P can be simulated by a behaviour of a simple automaton over Code(P).

A type of a state s of a process P is:

type(s) = {	a: out(s, a) = {s}} ∪ {↓↓a,b: out(s, a) = out(s, b)}

8 A. Arnold and I. Walukiewicz

Let Types(A) be the set of all possible types over an alphabet A.
Note that if τ ∈ Types(A) and ↓↓a,b∈ τ then 	a∈ τ implies 	b∈ τ , and

also ↓↓a,c∈ τ implies ↓↓b,c∈ τ .
Fix an alphabet A and some arbitrary ordering <A on it. For a process

P over an alphabet A we define its code Code(P) over an alphabet A ∪
Types(A). For each state s of P we do the following:

• Add a transition on action τ = type(s), the target of this transition is
some arbitrary fixed state (say, the initial state).

• Remove transitions on a if 	a∈ type(s) or ↓↓a,b∈ type(s) for some
b <A a.

Let C be a simple automaton expressing the conditions:

• For every state there is transition on exactly one letter from Types(A).

• For every a ∈ A, there is no transition on a if 	a∈ τ or ↓↓a,b∈ τ for
some b <A a.

Lemma 3.1. The process Code(P) satisfies C and has no loops s a→ s
Moreover, Code(P) is deterministic if P is. If R is a process satisfying C
without loops s a→ s then there is a unique process P such that Code(P) is
isomorphic to R.

The next step is to transform an automaton over an alphabet A into an
“equivalent” automaton over an alphabet A∪Types(A). Take an automaton

A = 〈Q,A, q0, δ : Q→ F(A,Q),Acc ⊆ Qω〉

We first define transformation, Code(α), on formulas from F(A,Q):

• Code(q) = q.

• Code(a) =
∨
{〈τ〉tt : τ ∈ Types(A),	a∈ τ}. Similarly for ↓↓a,b.

• Code(a) =
∨
{〈τ〉tt : τ ∈ Types(A),	a 6∈ τ}. Similarly for ↓↓a,b.

• Code(α ∨ β) = Code(α) ∨Code(β), and similarly for the conjunction.

• Code(〈a〉α) =
∨
{〈τ〉tt ∧ Code(〈a〉α, τ) : τ ∈ Types(A)} where

Code(〈a〉α, τ) =
{

Code(α) if 	a∈ τ
〈a〉Code(α) ∨

∨
{〈b〉Code(α) :↓↓a,b∈ τ} otherwise

• Code([a]α) =
∨
{〈τ〉tt ∧ Code([a]α, τ) : τ ∈ Types(A)}; where the

definition of Code([a]α, τ) is as above but replacing 〈a〉 by [a], 〈b〉 by
[b], and disjunctions by conjunctions.

Nondeterministic controllers of nondeterministic processes 9

Then automaton Code(A) is the same asA except for the transition function
δCode . We put δCode(q) = Code(δ(q)). The following lemma follows directly
from definitions.

Lemma 3.2. For every process P and automaton A over an alphabet A:

P � A iff Code(P) � Code(A)

Observe that Code(A) is simple, i.e., does not use neither 	 nor ↓↓
constraints. Using Code(A) we can transfer results from simple automata
to the general case.

Theorem 3.3. It is decidable if for a given automaton A there exist a
process P such that P � A. Similarly, if we ask for P being deterministic.
In both cases, if the answer is positive then a process satisfying A can be
constructed.

Proof. Consider Code(A). As Code(A)∧ C is a simple automaton, by The-
orem 2.4 we can test if there exists a process R � Code(A) ∧ C. Unfold-
ing the loops of R we can construct a process R′ without loops such that
R′ � Code(A)∧C. Lemma 3.1 gives us a process P such that Code(P) is iso-
morphic to R′, hence Code(P) � Code(A). By Lemma 3.2 we have P � A.
This construction works also when we require P to be deterministic.

Conversely, if P is a (deterministic) process that satisfies A then the
(deterministic) process Code(P) satisfies Code(A), by Lemma 3.2, and C,
by Lemma 3.1. q.e.d.

4 Quotient for extended automata

In this section we present an operation that will permit us to reduce synthe-
sis problems to the satisfiability problems. Consider an extended automaton
A = 〈Q,A, q0, δ,Acc〉 and a process P = 〈S,A, s0, e〉 over a common alpha-
bet A. Our goal is to construct an automaton A/P such that for every
process R:

R � A/P if and only if P ×R � A
We first define a division α/s for α a formula from F(A,Q), and s a

state of P . The result is a formula from F(A,Q× S):

q/s = (q, s)
(α ∨ β)/s = α/s ∨ β/s (α ∧ β)/s = α/s ∧ β/s

(〈a〉α)/s = 〈a〉
∨
{α/s′ : s a→ s′} ([a]α)/s = [a]

∧
{α/s′ : s a→ s′}

Now

A/P = 〈Q× S,A, (q0, s0), δ/ : Q× S → F(Q× S),Ω〉
where δ/(q, s) = δ(q)/s; recall that δ(q) ∈ F(Q), so δ(q)/s ∈ F (Q× S).

10 A. Arnold and I. Walukiewicz

Theorem 4.1. Let A be an alphabet. For every extended automaton A
and every process P , both over A, there is an automaton A/P such that
for every process R over A:

R � A/P if and only if P ×R � A

Proof. Fix a process R. We examine the games G× = G(P × R,A) and
G/ = G(R,A/P). We want to show how a move of one of the players in G×
from a position of the form ((s, r), α) can be mimicked by, possibly several,
moves of the same player in G/ from (r, α/s). For example, suppose that a
position has the form ((s, r), α ∨ β) and that Eve chooses ((s, r), α). From
a position (r, (α ∨ β)/s)) this move can be mimicked by going to (r, α/s).
Slightly more complicated is the case of ((s, r), 〈a〉α). In this case Eve can
choose ((s′, r′), α) for s a→ s′ and r

a→ r′. From (r, (〈a〉α)/s) this move can
be mimicked by first choosing (r′,

∨
{α/s′′ : s a→ s′′}) and then (r′, α/s′);

this is possible as (〈a〉α)/s = 〈a〉
∨
{α/s′′ : s a→ s′′}. The cases of α∧ β and

[a]α are dual.
These observations show that any play in G× can be mimicked in G/, so

the same player has a winning strategy from ((s0, r0), q0) in G× and from
(r0, (q0, s0)) in G/.

q.e.d.

5 Solving controller synthesis problems

Equipped with the operation of division we can reduce the control problem
to the satisfiability problem.

5.1 Centralized control
As we have argued in the introduction, the centralized controller synthesis
problem can be formulated as:

For a given process P and two automata A, B over an alphabet A,
find R such that:

P ×R � A and R � B

We denote by Sol(P,A,B) the set of solutions to the problem. The following
is a direct corollary of Theorem 4.1

Corollary 5.1. For every process R:

R ∈ Sol(P,A,B) if and only if R � (A/P) ∧ B.

This means that solving a synthesis problem amounts to checking empti-
ness of the automaton (A/P)∧B. Theorem 2.1 then states that this problem
is decidable both for the general, nondeterministic, case as well as for the
case of deterministic processes.

Nondeterministic controllers of nondeterministic processes 11

5.2 Decentralized control
The decentralized controller synthesis problem is:

For a given process P and automata A, B1, . . . ,Bn over an alphabet
A, find R1, . . . , Rn such that:

P ×R1 × · · · ×Rn � A and Ri � Bi for all i = 1, . . . , n

Thanks to Theorem 4.1 we can take A/P and remove P from the left hand
side. This shows that we can as well consider the following simpler formu-
lation of the problem where P is not mentioned.

For a given automataA, B1, . . . ,Bn over an alphabetA, findR1, . . . , Rn

such that:

R1 × · · · ×Rn � A and Ri � Bi for all i = 1, . . . , n

This last problem was studied in [1, 2] in the case when R1, . . . , Rn are re-
quired to be deterministic. In particular the problem was shown decidable
when all but one Bi are simple. We will see later that the same problem
is undecidable in the nondeterministic case. To better understand the de-
cidable/undecidable borderline we propose a classification of decentralized
synthesis problems with respect to restrictions on R1,. . . , Rn.

A pair (pt, st) ⊆ {det, nondet} × {simple, full} describes requirements
on processes and specifications. A choice of a number of components and a
type for each component determines a distributed control problem:

DS(n, (pt1, st1), . . . , (ptn, stn)):
Given automata A, B1,. . . ,Bn such that Bi is simple if sti = simple,
find R1, . . . , Rn such that Ri is deterministic if pti = det, satisfying
P ×R1 × · · · ×Rn � A and Ri � Bi for all i = 1, . . . , n.

The following theorem gives a complete classification of these problems
with respect to decidability.

Theorem 5.2. The problem DS(A, (pt1, st1), . . . , (ptn, stn)) is decidable
iff

• There is at most one i such that sti = full.

• There is at most one j such that ptj = nondet and moreover j 6= i.

The proof of this theorem will be given in the two following sections. In
terms of the decentralized control problem formulated at the beginning of
the section, we get that the problem is decidable if at most one of Bi is not
simple and at most one Rj is allowed to be nondeterministic (moreover j 6=
i). Probably the most important difference with respect to the deterministic
case considered in [1] is that now P can be nondeterministic.

12 A. Arnold and I. Walukiewicz

6 The decidable sub-case of decentralized control

We would like to show the right to left implication of Theorem 5.2.
The solution in the case when all R1, . . . , Rn are required to be deter-

ministic uses the following extension of the quotient operation :

Theorem 6.1 ([1]). For every automaton A and every simple automaton
B there is an automaton A/B such that for every deterministic process P :

P � A/B iff ∃R. R deterministic, R � B, and P ×R � A

Here we show existence of a variant of this division operation. The differ-
ence is that the existentially quantified process R need not be deterministic.

Theorem 6.2. For every automaton A and every simple automaton B,
there is an automaton A/ndetB such that for every deterministic process P :

P � A/ndetB iff ∃R. R � B and P ×R � A

Before giving the proof of this theorem let us show how it can be used
to prove right to left direction of Theorem 5.2.

Let us assume that stn = full and pt1 = nondet. First, we find a
deterministic process Rn � (A/ndetB1/B2 . . . /Bn−1) ∧ Bn. If none ex-
ists then the problem has no solutions. Otherwise, by Theorem 3.3, we
can construct required Rn. Equipped with it we can find a determinis-
tic process Rn−1 � (A/Rn/ndetB1/B2 . . . /Bn−2) ∧ Bn−1. This construction
can be repeated, giving Rn−1. . . , until we construct a deterministic R2 �
(A/Rn/Rn−1/ . . . /R3/ndetB1)∧B2. Once R2, . . . , Rn are fixed, we can look
for, this time nondeterministic, process R1 � (A/Rn/Rn−1/ . . . /R2) ∧ B1.
By the above two theorems on division operations, R1, . . . , Rn is a solu-
tion to the problem. The theorems also guarantee that all solutions to the
problem can be obtained this way.

The rest of this section presents the proof of Theorem 6.2. We want to
transform the property of a deterministic process P :

∃R. R � B and P ×R � A (1.1)

to an equivalent formulation that is expressible by an automaton. This will
be our automaton A/B.

The first step is to introduce well-typed processes and restrict our prob-
lem only to this kind of processes. Given a process P over an alphabet
A, a well-typed process, wt(P), is a process over the alphabet A ∪ P(A)
that is obtained form P by adding a new state >, and precisely one ac-
tion from each state as follows: to a state s of P we add a transition to
> on outP (s) ∈ P(A), where outP (s) is the set of actions possible form s,

Nondeterministic controllers of nondeterministic processes 13

outP (s) = {b : outP (s, b) 6= ∅}. It should be clear that there is an automa-
ton checking if a processes is of the form wt(P). It is also easy, given an
automaton C, to construct an automaton C′ such that for all processes P
over an alphabet A

wt(P) � C iff P � C′

This means that in the following we can consider only processes of the form
wt(P). We call these processes well-typed.

The restriction to well-typed processes is important for the first simpli-
fication step. We want to find an automaton D such that (1.1) is equivalent
to

∃R. P ×R � D (1.2)

For this we construct an automaton B′ and show that (1.1) is equivalent to
∃R′. P × R′ � B′ ∧ P × R′ � A. Having this, we can just take B′ ∧ A for
D. We call a process over A ∪ P(A) typed if every state has precisely one
transition on a letter from P(A). Compared with well-typed processes, we
do not put any restriction what a γ is. We also define a safe extension of a
typed process R to be a process obtained form R by adding some states and
transitions provided that if (s, b, t) is an added transition and s is a state
from R then t must be an added state and b must not appear in the label of
the unique action from P(A) possible from s. With these definitions we can
say what the automation B′ is. We want B′ to accept a process if it is typed,
and moreover it has a safe extension that is accepted by B. It remains to
argue that B′ has the desired property. For one direction suppose that we
have R′ with P × R′ � B′ and P × R′ � A′. If P × R′ � B′ then, by the
definition of B′, there is a safe extension R of P × R′ that satisfies B. By
the definition of the safe extension, and the fact that P is well-typed we
have that P × R′ = P × R. So P × R � A. Now consider the opposite
direction. Take R which is assumed to exists and add to R a state > as
well as transitions to > from each state of R on every letter from P(A).
As B does not talk about the actions from P(A) then R′ � B. We have
P × R′ � B′ because P × R′ is typed and R′ is a safe extension of P × R′.
We also have P ×R′ � A as A does not talk about actions from P(A).

The above argument reduces our task to the problem of expressing by
an automaton the property (1.2) of well-typed P . First, we will consider a
simpler property where the branching of the process R we quantify over is
bounded by k, i.e. for every s ∈ R and a, |out(s, a)| ≤ k.

∃R. branching(R) ≤ k and P ×R � D (1.3)

This formulation will allow us to use the division operation for the de-
terministic case, i.e, Theorem 6.1. Consider processes over an alphabet
A[k] = A×{1, . . . , k}. A deterministic process P ′ over an alphabet A[k] rep-
resents a nondeterministic process red(P ′) over an alphabet A where each

14 A. Arnold and I. Walukiewicz

action (a, i), for i = 1, . . . , k, is mapped to a. Every nondeterministic pro-
cess of branching bounded by k can be represented in such a way (in general
not uniquely). From automaton D it is easy to construct an automaton D[k]

which accepts a process P ′ over A[k] iff red(P ′) is accepted by D. Consider
D[k]/tt where tt is an automaton accepting all the processes over A[k]. By
Theorem 6.1 we have

P ′ � D[k]/tt iff ∃R′. P ′ ×R′ � D[k];

Here, all the processes are over A[k]. For a deterministic process P over
A we can define P[k] to be a deterministic process over A[k] where there is
an edge (b, i), for i = 1, . . . , k, between two nodes iff in P there is an edge
b between them. For an automaton D′ over A[k] is easy to construct an
automaton red(D′) such that for all deterministic processes P over A

P � red(D′) iff P[k] � D′

With this we get

P � red(D[k]/tt) iff P[k] � D[k]/tt iff ∃R′. P[k] ×R′ � D[k]

where R′ and P[k] are over the alphabet A[k]. By definition, the last formula
is equivalent to ∃R′.red(P[k] × R′) � D. As P is deterministic red(P[k] ×
R′) = P × red(R′). It is easy to see that (1.3) is equivalent to ∃R′. P ×
red(R′) � D and in consequence to P � red(D[k]/tt). So, for A/ndetB we
could take red(D[k]/tt) if only we could find a bound on k.

We are left to show that we can bound the branching in our prob-
lem (1.2), so that we can fix k. The following proposition gives the desired
bound.

Lemma 6.3. Let P be a deterministic process and let A be an automaton
with parity acceptance conditions. If there is (possibly nondeterministic)
process R such that:

P ×R � A

then there is R′ with the same property which has the branching degree
|A||A|

Proof. Take R such that P × R � A. Then Eve has a positional winning
strategy (cf. Theorem 2.1) in the game G(P × R,A). This strategy is a
function σ : (P×R)×FAE → (P×R)×FA which to pairs of the form (s, α∨β)
assigns either (s, α) or (s, β); and to pairs of the form (s, 〈b〉α) assigns a pair
(s′, α) for some s′ ∈ outP×R(s, b). This function has the property that all
the plays respecting suggestions of this function are winning for Eve.

Take some state s of P ×R. Let us(s, b), the set of useful successors, be
the set of all successors t of s such that (t, α) = σ(s, 〈b〉α) for some formula

Nondeterministic controllers of nondeterministic processes 15

〈b〉α. Because the number of formulas of this kind is bounded by the size
of A, so is the size of us(s, b).

The intention is that we would like to prune P × R so that on ac-
tion b from s only edges to us(s, b) remain. This may not be correct
as the following example shows. Suppose that us(s, b) = us(s, c), while
outP×R(s, b) 6= outP×R(s, c). Now, the result of ↓↓b,c test will be different
in P × R and in the pruned structure. Hence, it may happen that A does
not accept the pruned structure.

In order to avoid the problem mentioned in the above paragraph we
extend us(s, b) to us ′(s, b). For every state s and action b, let us ′(s, b) be a
set satisfying the following.

• us(s, b) ⊆ us ′(s, b).

• if s �	b then s ∈ us ′(s, b).

• if s � 	b then either us ′(s, b′) = ∅, or s′ ∈ us ′(s, b′) for some s′ 6= s
and s′ ∈ outP×R(s, b).

• if s �↓↓b,c then us ′(s, b) = us ′(s, c).

• if s � ↓↓b,c and outP×R(s, b) 6⊆ outP×R(s, c) then s′ ∈ us ′(s, b) for
some arbitrary chosen s′ ∈ outP×R(s, b)− outP×R(s, c).

It is easy to see that us ′(s, b) can be chosen in such a way that it is at most
|A|-times bigger than us(s, b).

Now take P × R and delete all edges (s, b, t) such that t 6∈ us ′(s, b).
Let us call the resulting process R′. In R′, strategy σ is still a winning
strategy because we have only limited choices for Adam. Hence, Eve wins
in G(R′,A), and in consequence R′ � A. We have that P × R′ � A, as
P ×R′ = R′, since P is deterministic. By construction, the branching of R′

is bounded by the maximal possible size of us ′(s, b) which is |A||A|.
q.e.d.

Remark 6.4. If the restriction of determinism of P is dropped than the
divisionA/ndetB does not exist even whenA and B are simple. For example,
take A which says that all maximal paths are of the form a∗b, and if a
state has an successor on action a then it does not have one on action b.
Consider A/ndetA. Condition P � A/ndetA means that there is R such
that P × R � A and R � A. If P had two paths aib and ajb of different
length then in P × R we would have a path that does not finish with b.
This implies that P � A/ndetA iff there is k such that all the paths in P
have the form akb. So the set of processes satisfying A/ndetA is not regular.
Observe that in this argument it did not matter whether we restrict to R
being deterministic or not.

16 A. Arnold and I. Walukiewicz

Remark 6.5. Even when restricting to deterministic processes, automaton
A/B may not exist if B is not simple. In [1] it is shown that decentralized
control problem is undecidable for n = 2 if both B1 and B2 are automata
with 	a constraints. In [2] undecidability is shown when both automata
used ↓↓a,b constraints, or when one uses 	a constrains and the other ↓↓a,b

constraints.

7 Undecidable cases of decentralized control

In this subsection we show left to right direction of Theorem 5.2. It will be
enough to study the version of the control problem for two processes:

(ABC)Given automata A, B and C over the same action alphabet
A, do there exist, possibly nondeterministic, processes P , R such that

P � A, R � B and P ×R � C.

First, we will show that the problem is undecidable even when A, B
and C are simple automata. This will give the proof of Theorem 5.2 for the
case when there are at least two processes that can be nondeterministic.
Next, we will consider the case when at most one of the processes can be
nondeterministic. We will show that the above problem is undecidable when
only R can be nondeterministic, and when B can use either 	 constraints or
↓↓ constrains. This not only will imply the remaining part of Theorem 5.2,
but will also show that restricting our automata uniquely to 	 constraints
or to ↓↓ constraints does not change the decidability classification.

Before showing these results we would like to introduce a syntactic ex-
tension of our setting which will make the presentation easier. We will
suppose that we have propositional letters labelling states of processes. So
each process comes not only with an alphabet of actions but also with an
alphabet Λ of propositions:

P = 〈A,Λ, S, s0, e ⊆ S ×A× S, λ : S → Λ〉

Automata are also extended to reflect this, so the transition function can
test what is a label of the current state:

A = 〈Q,A,Λ, q0, δ : Q× Λ→ F (A,Q), Acc ⊆ Qω〉

There are many possible definitions of a product of two processes with
state labels. Here we choose the one that will suit our needs. Given two
processes over the same action alphabet, but possibly different proposition
alphabets:

P = 〈A,ΛP , SP , s
0
P , ep, λP 〉 R = 〈A,ΛR, SR, s

0
R, eR, λR〉

Nondeterministic controllers of nondeterministic processes 17

we define their product as:

P ⊗R = 〈A,ΛP × ΛR, SP × SR, (s0P , s
0
R), e⊗, λ⊗〉

where λ⊗(sP , sR) = (λP (sP), λR(sR)) and, as before, ((sp, sR), a, (s′P , s
′
R)) ∈

e⊗ iff (sP , a, s
′
P) ∈ eP and (sR, a, s

′
R) ∈ eR.

It is quite straightforward to see how to simulate propositional letters
by actions. One can add propositional letters to the action alphabet and
require that from each state there is a transition on exactly one propositional
letter; the target of this transitions is of no importance.

The problem with this coding is that the standard product does not
reflect our ⊗-product. In order to recover the ⊗-product, we first make
the alphabets ΛP and ΛR disjoint. Let P̂ , R̂ denote respective plants with
encoding of propositions as described above. We add to every state of P̂ an
action on every letter from ΛR and to every state of R̂ an action on every
letter of ΛP . This way we have that P̂ × R̂ is the encoding of P ⊗R: from
every state of P̂ × R̂ we have a successor on exactly one letter from ΛP and
on one letter from ΛR.

After these remarks it should be clear that instead of the problem (ABC)
we can consider the problem (ABC⊗) where the processes are allowed to
have propositions and ⊗ is used in place of ordinary product.

(ABC⊗)Given automata A, B and C over the same action alphabet
A, and over proposition alphabets Λa, Λb and Λa × Λb respectively,
do there exist processes P , R such that

P � A, R � B and P ⊗R � C.

Thus, the following proposition implies undecidability of the problem (ABC).

Proposition 7.1. The problem (ABC⊗) is undecidable.

Proof. We will present a reduction of the halting problem. Let us fix a
deterministic Turing machine together with an alphabet Γ needed to en-
code its configurations. We write c ` c′ to say that a configuration c′ is
a successor of a configuration c. Without a loss of generality we assume
that the machine loops from the accepting configuration. We will use just
one action letter, so we will not mention it in the description below. The
alphabet of propositions will contain Γ and special symbols: l and #. The
nodes labelled by l will be called l-nodes; similarly for #-nodes, and γ-nodes
for γ ∈ Γ. We will say that a node is a Γ-node, if it is a γ-node for some
γ. We will also talk about an l-successor of a node, this a successor that is
an l-node. Finally, when we will say that there is a path γ1 . . . γn in a pro-
cess, this would mean that there is a sequence of nodes, that is a path, and
such that the propositional letters associated to nodes form the sequence
γ1 . . . γn.

18 A. Arnold and I. Walukiewicz

l

γ1
1

γ1
2

γ1
n1

#ω

l

γ2
1

γ2
2

γ2
n3

#ω

l

γ3
1

γ3
2

γ3
n3

#ω

Figure 1. Intended shape of a process satisfying AB1, AB2, AB3.

We want to construct A, B and C so that the problem (ABC⊗) has a
solution iff the machine accepts when started from the empty tape. Consider
the following three conditions that will be used for specifications A and B:

AB1 Every l-node has an l-successor and a Γ-successor. Every Γ-node has
either only Γ-nodes or only #-nodes as successors.

AB2 From every Γ-node, every path reaches a #-node.

AB3 Every #-node has only #-nodes as successors.

The intended shape of a process satisfying these conditions is presented
in Figure 1. These conditions do not imply that the shape is exactly as
presented in the figure. For example, they do not guarantee that there is
only one infinite path labelled with l.

The constraints on the product of two processes are listed below. They
are formulated in terms of the product alphabet.

C1 Every (l, l)-node has an (l, l)-successor and an (γ, γ)-successor for some
γ ∈ Γ. Moreover all its successors are labelled either by (l, l), (l, γ),
(γ, l) or (γ, γ).

C2 Every maximal path starting with (l, l)i(γ, γ) has a form (l, l)i∆+(#,#)ω

where ∆ = {(γ, γ) : γ ∈ Γ}.

C3 Every maximal path that starts with (l, l)i(γ1, l)(γ2, γ
′
1) for some γ1, γ2,

γ′1 ∈ Γ has the form: (l, l)i(γ1, l)(γ2, γ
′
1) . . . (γk, γ

′
k−1)(#, γk)(#,#)ω.

Moreover γ1 . . . γk ` γ′1 . . . γ′k, or the two are identical if γ1 . . . γk is an
accepting configuration.

Nondeterministic controllers of nondeterministic processes 19

C4 For every path labelled (l, l)(γ1, γ2) . . . (γk, γk)(#,#)ω, the sequence
γ1 . . . γk represents the initial configuration for the Turing machine.
An accepting state of the machine appears in the tree.

Let C be the automaton expressing the conjunction of the conditions
C1-C4. We claim that with this choice of automata the problem (ABC⊗)
has a solution iff the Turing machine halts on the initial configuration.

We first consider an easy direction. Suppose that the Turing machine
halts on the initial configuration. Then we construct P and R as in the
Figure 1, where for every i the sequence of Γ letters after li is the i-th con-
figuration of the machine (we assume that all configurations are represented
by words of the same length). This way P and R satisfy conditions AB1-3.
It is straightforward to verify that P ⊗R satisfies the conditions C1-C4.

For the other direction, suppose that P and R are as required. We
will show that the machine has an accepting computation from the initial
configuration.

First, we show that the conditions we have imposed limit very much
possible nondeterminism in P and R. Take any n and a path labelled
lnγ1 . . . γkn

#ω in P as well as a path labelled lnγ′1 . . . γ
′
mn

#ω in R. These
paths exist by conditions AB1-AB3. In P ×R these two paths give a path
that starts with (l, l)n(γ1, γ

′
1). The condition AB1 implies that γ1 = γ′1.

Consequently, the condition AB2 implies that kn = mn and γi = γ′i for all
i = 1, . . . , kn. This allows us to define un = γ1 . . . γkn

. To summarize, in P
all paths of the form lnΓ+#ω have the same labels: lnun#ω. Similarly for
paths in R.

It remains to show that un is the n-th configuration of the computation
of the Turing machine. By condition A3, we know that u1 is the initial
configuration. Consider now a path in P ⊗R labelled with

(l, l)n(γ1, l)(γ2, γ
′
1) . . . (γk, γ

′
k−1)(#, γ′k)(#,#)ω

This path exists as it is a product of a path in P starting with lnγ1 and a
path in R starting with ln+1γ′1. We have that un = γ1 . . . γk and un+1 =
γ′1 . . . γ

′
k. By the condition A2 we get un ` un+1. q.e.d.

This finishes the case of Theorem 5.2 when at least two processes can
be nondeterministic. It remains to consider the case when only one of the
processes, say R can be nondeterministic, and when specification B of R is
not simple. We will show that in this case the problem is undecidable even
if B uses uniquely ↓↓ constraints, or uniquely 	 constraints. Recall that the
problem is decidable if B is simple, i.e. uses neither ↓↓ nor 	.

Proposition 7.2. The problem (ABC⊗) is undecidable if P is required to
be deterministic but R may be nondeterministic and moreover a specifica-
tion for R may use constraints ↓↓.

20 A. Arnold and I. Walukiewicz

P : l

γ1
1

γ1
2

γ1
n1

#ω

b

l

γ2
1

γ2
2

γ2
n3

#ω

b

l

γ3
1

γ3
2

γ3
n3

#ω

b

a

a

R : l

γ1
1

γ1
2

γ1
n1

#ω

b

a

l

γ2
1

γ2
2

γ2
n3

#ω

b

a

l

γ3
1

γ3
2

γ3
n3

#ω

b

a

a
b

a
b

Figure 2. ↓↓ constraints. Intended shapes of P and R.

The reduction is very similar to the previous one. We just need to replace
nondeterminism with appropriate use of ↓↓. This time our processes will be
over the alphabet of two actions {a, b}. The intended shapes of processes
P and R are shown in the Figure 2.

The shape of P is almost the same as in the previous construction,
but as P needs to be deterministic, some a transitions have to be changed
to b transitions. Process R has almost the same structure as P but it is
nondeterministic, and each a transition has a b transition in parallel.

Looking at P ⊗ R we get almost exactly the same structure as in the
case of nondeterministic processes. The fact that process P is deterministic
and that the two transitions from an l-node of P have different actions is
compensated by the fact that a and b transitions have the same targets in
R.

The formalization of the constraints and the proof of the proposition is
almost the same as in case of Proposition 7.1.

The following proposition treats the remaining case of 	 constraints.

Nondeterministic controllers of nondeterministic processes 21

Proposition 7.3. The problem (ABC⊗) is undecidable when P is required
to be deterministic but R may be nondeterministic and moreover a specifi-
cation for R may use looping constraints 	.

Proof. Consider an instance of the Post correspondence problem:

{(u1, v1), . . . , (uk, vk)};

where all ui, vi are words over an alphabet Σ. Let D = {1, . . . , k} stand for
the alphabet of indices. As an alphabet of actions we take A = Σ ∪ D ∪
{α1, α2, β,#}, with an assumption that the last four actions do not appear
in Σ ∪D.

The specification A for P will require that

A1 Every state, except the root, has only one successor. The root has
successors on α1 and α2.

A2 There is a maximal path of the form α1βi1ui1 . . . imuim
for some

i1, . . . , im ∈ D.

A3 There is a maximal path of the form α2βj1vj1 . . . jmvjm# for some
j1, . . . , jm ∈ D.

Observe that together with requirement that P is deterministic, the first
condition implies that P has exactly two maximal paths. The shape of P
is presented in Figure 3.

The specification B for R will require that:

B1 The root has loops on actions α1 and α2 and some transitions on β.

B2 There is a path from the root of the form βΣ∗#. Every node on this
path except the root has loops on all actions from D and has a suc-
cessor on at most one action from Σ ∪ {#}.

B3 There is a path from the root of the form βD∗#. This time every node
except the root has loops on actions from Σ and a successor on at
most one action from D ∪ {#}.

The intended shape of a process satisfying B is presented in Figure 3. Ob-
serve that we cannot force this process to be deterministic.

The specification C for P × R will require that all the paths are finite
and that the last action on every path is #.

We claim that with this choice of A, B, and C, the problem (ABC) has a
solution iff the instance of the Post correspondence problem has a solution.

For the right-to-left direction, take a solution i1, . . . , im to the correspon-
dence problem. We construct P that has two paths: α1βi1ui1 . . . imuim

#

22 A. Arnold and I. Walukiewicz

P:
α1 α2

β

i1

#

β

j1

#

R:
β β

α1 α2

a1 d1

a2 d2

#

D A

D A

D A

D A

Figure 3. 	-constraints. Intended shapes of P and R.

and α2βi1vi1 . . . imvim#. As R we take a process as depicted in Figure 3
where the path satisfying condition B2 has the form βui1 . . . uim#, and the
path satisfying B3 is βi1 . . . im#. It is easy to see that P ×R satisfies A.

For the direction from left to right suppose that P and R are a solution
to the problem. Consider a path of R labelled βΣ∗# satisfying B2 and
the path α1βi1ui1 . . . imuim

of P as required by the condition A2. Recall
that there are loops on α1 and α2 in the root of R. This means that
the two paths synchronize, at least at the beginning. The only way that
the synchronization can continue until # is that ui1 . . . uim

is exactly the
labelling of the path in R. We can use the same argument for the path
α2βj1vj1 . . . jmvjn

and in consequence we get ui1 . . . uim
= vj1 . . . vjn

. If
we now repeat this argument once again but with a path of R labelled with
βD∗# as required by condition B3 then we will get that i1 . . . im = j1 . . . jn.
This finishes the proof. q.e.d.

We can now summarize how the three propositions of this subsection can
be used to show left to right implication of Theorem 5.2. If two of the pro-
cesses Ri are allowed to be nondeterministic then the undecidability follows
from Proposition 7.1. The case when there are two automata that are not
simple but all processes are deterministic was proven in [1] for 	 constraints
and in [2] for ↓↓ constraints, and a mix of 	 and ↓↓ constraints. If a spec-

Nondeterministic controllers of nondeterministic processes 23

ification can use either 	 or ↓↓ constraints and the corresponding process
can be nondeterministic then undecidability follows from Propositions 7.2
and 7.3, respectively.

8 Conclusions

In this paper we have studied the controller synthesis problem for nondeter-
ministic plants and controllers. We have seen that going from deterministic
to nondeterministic plants does not change the complexity of the problem.
Allowing nondeterministic controllers is more delicate. It can be done in
centralized case, but in the decentralized case at most one controller can be
nondeterministic, moreover it should be able to observe all actions of the
plant.

Let us briefly comment on the complexity of the constructions presented
here. The operation of division by a process gives an exponential blow-up.
It is unavoidable for the same reason as in a translation from alternating
to nondeterministic automaton. The complexity of the construction for
division by automaton is also exponential.

Given the results above one can ask whether they also apply to the
setting of architectures of Pnueli and Rosner [12]. It is quite simple to
encode this latter setting into our setting using unobservable actions. Thus
all decidability results in our setting transfer to architecture setting. As for
undecidability results, one can show by methods very similar as those used
in this paper that even two element pipeline becomes undecidable when
specifications for controllers are allowed to be nondeterministic.

References

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Computer Science,
303(1):7–34, 2003.

[2] Xavier Briand. Contrôle avec événements indiscernables et inobserv-
ables. PhD thesis, Bordeaux University, 2006.

[3] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems. Kluwer Academic Pub., 1999.

[4] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus
and determinacy. In Proc. FOCS’91, pages 368–377, 1991.

[5] David Janin and Igor Walukiewicz. On the expressive completeness
of the propositional mu-calculus with respect to monadic second order

24 A. Arnold and I. Walukiewicz

logic. In CONCUR’96, volume 1119 of Lecture Notes in Computer
Science, pages 263–277, 1996.

[6] R. Kumar and V. K. Garg. Modeling and control of logical discrete
event systems. Kluwer Academic Pub., 1995.

[7] D.A. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

[8] Robert McNaughton. Infinite games played on finite graphs. Ann. Pure
and Applied Logic, 65:149–184, 1993.

[9] Andrzej W. Mostowski. Regular expressions for infinite trees and a
standard form of automata. In Fifth Symposium on Computation The-
ory, volume 208 of LNCS, pages 157–168, 1984.

[10] Andrzej W. Mostowski. Games with forbidden positions. Technical
Report 78, University of Gdansk, 1991.

[11] Damian Niwiński. Fixed points vs. infinite generation. In LICS ’88,
pages 402–409, 1988.

[12] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proc. ACM POPL, pages 179–190, 1989.

[13] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(2):81–98, 1989.

[14] Igor Walukiewicz. Monadic second order logic on tree-like structures.
Theoretical Computer Science, 257(1–2):311–346, 2002.

