
Using models to model-check recursive schemes

S. Salvati and I. Walukiewicz?

Université de Bordeaux, INRIA, CNRS, LaBRI UMR5800

Abstract. We propose a model-based approach to the model checking
problem for recursive schemes. Since simply typed lambda calculus with
the fixpoint operator, λY -calculus, is equivalent to schemes, we propose
the use a model of λY to discriminate the terms that satisfy a given prop-
erty. If a model is finite in every type, this gives a decision procedure.
We provide a construction of such a model for every property expressed
by automata with trivial acceptance conditions and divergence testing.
Such properties pose already interesting challenges for model construc-
tion. Moreover, we argue that having models capturing some class of
properties has several other virtues in addition to providing decidability
of the model-checking problem. As an illustration, we show a very sim-
ple construction transforming a scheme to a scheme reflecting a property
captured by a given model.

1 Introduction

In this paper we are interested in the relation between the effective denotational
semantics of the simply typed λY -calculus and the logical properties of Böhm
trees. By effective denotational semantics we mean semantic spaces in which the
denotation of a term can be computed; in this paper, these effective denotational
semantics will simply be finite models of the λY -calculus, but Y will often be
interpreted neither as the least nor as the greatest fixpoint.

Understanding properties of Böhm trees from a logical point of view is a prob-
lem that arises naturally in the model checking of higher-order programs. Often
this problem is presented in the context of higher-order recursive schemes that
generate a possibly infinite tree. Nevertheless, higher-order recursive schemes
can be represented faithfully by λY -terms, in the sense that the infinite trees
they generate are precisely Böhm trees of the λY -terms.

The technical question we address is whether the Böhm tree of a given term
is accepted by a given tree automaton. We consider only automata with trivial
acceptance conditions which we call TAC automata. The principal technical chal-
lenge we address here is that we allow automata to detect if a term has a head
normal form. We call such automata insightful as opposed to Ω-blind automata
that are insensitive to divergence. For example, the models studied by Aehlig
or Kobayashi [1,10] are Ω-blind. Considering safety properties and divergence
at the same time poses serious challenges to representing with denotational se-
mantics what it means for an automaton to accept a Böhm tree. Indeed, this

? This work has been supported by ANR 2010 BLAN 0202 01 FREC

2

requires one to give to non-convergence a non-standard interpretation that can
influence the meaning of a term in a stronger way than the usual semantics does.
As we show here, Y combinator cannot be interpreted as an extremal fixpoint in
this case, so known algorithms for verification of safety properties cannot take
non-convergence into account in a non-trivial way.

Let us explain the difference between insightful and Ω-blind conditions. The
definition of a Böhm tree says that if the head reduction of a term does not
terminate then in the resulting tree we get a special symbol Ω. Yet this is not
how this issue is treated in all known solutions to the model-checking problem.
There, instead of reading Ω the automaton is let to run on the infinite sequence
of unproductive reductions. In the case of automata with trivial conditions, this
has as an immediate consequence that such an infinite computation is accepted
by the automaton. From a denotational semantics perspective, this amounts
to interpreting the fixpoint combinator Y as a greatest fixpoint on some finite
monotonous model. So, for example, with this approach to semantics, the lan-
guage of schemes that produce at least one head symbol is not definable by
automata with trivial conditions. Let us note that this problem disappears once
we consider Büchi conditions as they permit one to detect an infinite unproduc-
tive execution. So here we look at a particular class of properties expressible
by Büchi conditions. Thus, the problem we address is a non-trivial extension of
what is usually understood as the safety property for recursive schemes.

Our starting point is the proof that the usual methods for treating the safety
properties of higher-order schemes cannot capture the properties described with
insightful automata. The first result of the paper shows that extremal fixpoint
models can only capture boolean combinations of Ω-blind TAC automata. Our
main result is the construction of a model capturing insightful automata. This
construction is based on an interpretation of the fixpoint operator which is nei-
ther the greatest nor the least one. The main difficulty is to obtain a definition
that guaranties the existence and uniqueness of the fixpoint at every type.

In our opinion providing models capturing certain classes of properties is an
important problem both from foundational and practical points of view. On the
theoretical side, models need to handle all the constructions of the λ-calculus
while, for example, the type systems proposed so far by Kobayashi [10], and
by Kobayashi and Ong [13] do not cater for λ-abstraction. In consequence the
model-based approach gives more insight into the solution. On the practical side,
models capturing classes of properties set the stage to define algorithms to de-
cide these properties in terms of evaluating λ-terms in them. One can remark
that models offer most of the algorithmic advantages as other approaches, as il-
lustrated by [16] which shows that the typing discipline of [10] can be completely
rephrased in terms of simple models. This practical interest of models has been
made into a slogan by Terui [20]: better semantics, faster computation. To sub-
stantiate further the interest of models we also present a straightforward trans-
formation of a scheme to a scheme reflecting a given property [4]. From a larger
perspective, the model based approach opens a new bridge between λ-calculus
and model-checking communities. In particular the model we construct for in-

3

sightful automata brings into the front stage particular non-extremal fixpoints.
To our knowledge these were not much studied in the λ-calculus literature.

Related work The model checking problem has been solved by Ong [14] and
subsequently revisited in a number of ways [8,13,17]. A much simpler proof for
the same problem in the case of Ω-blind TAC automata has been given by
Aehlig [1]. In his influential work, Kobayashi [10,9,11] has shown that many
interesting properties of higher-order recursive programs can be analyzed with
recursive schemes and Ω-blind TAC automata. He has also proposed an intersec-
tion type system for the model-checking problem. The method has been applied
to the verification of higher-order programs [12,5]. Let us note that at present all
algorithmic effort concentrates on Ω-blind TAC automata. In a recent work Ong
and Tsukada [15] provide a game semantics model corresponding to Kobayashi’s
style type system. Their model can handle only Ω-blind automata, but then it
is fully complete. We cannot hope to have full completeness in our approach
using simple models. In turn, as we mention in [21] and show here, handling
Ω-blind automata with simple models is straightforward. The reflection prop-
erty for schemes has been proved by Broadbent et. al. [4]. Haddad gives a direct
transformation of a scheme to an equivalent scheme without divergent compu-
tations [7].
Organization of the paper The next section introduces the objects of our
study: λY -calculus and automata with trivial acceptance conditions (TAC au-
tomata). In the following section we briefly present the correspondence between
models of λY with greatest fixpoints and boolean combinations of Ω-blind TAC
automata. In Section 4 we give the construction of the model for insightful TAC
automata. The last section presents a transformation of a term into a term re-
flecting a given property. All the missing proofs can be found in the long version
of the paper [19].

2 Preliminaries

We introduce two basic objects of our study: λY -calculus and TAC automata. We
will look at λY -terms as mechanisms for generating infinite trees that then are
accepted or rejected by a TAC automaton. The definitions we adopt are standard
ones in the λ-calculus and automata theory. The only exceptions are the notions
of a tree signature used to simplify the presentation, and of Ω-blind/insightful
automata that are specific to this paper.

2.1 λY -calculus and models

The set of types T is constructed from a unique basic type 0 using a binary oper-
ation→. Thus 0 is a type and if α, β are types, so is (α→ β). The order of a type
is defined by: order(0) = 1, and order(α→ β) = max(1 + order(α), order(β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T there are
constants ωα, Ωα and Y (α→α)→α. A constant Y (α→α)→α will stand for a fixpoint

4

operator. Both ωα and Ωα will stand for undefined, but we will need two such
constants in Section 4. Of special interest to us will be tree signatures where all
constants other than Y , ω and Ω have order at most 2. Observe that types of
order 2 have the form 0→ 0→ · · · → 0→ 0.

Proviso: To simplify the notation we will suppose that all the constants in
a tree signature are either of type 0 or of type 0 → 0 → 0. So they are either
a constant of the base type or a function of two arguments over the base type.
This assumption does not influence the results of the paper.

The set of simply typed λ-terms is defined inductively as follows. A constant
of type α is a term of type α. For each type α there is a countable set of
variables xα, yα, . . . that are also terms of type α. If M is a term of type β and
xα a variable of type α then λxα.M is a term of type α → β. Finally, if M is
of type α → β and N is a term of type α then (MN) is a term of type β. We
shall use the usual convention about dropping parentheses in writing λ-terms
and we shall write sequences of λ-abstractions λx1. . . . λxn.M with only one λ:
λx1 . . . xn.M ; moreover when the sequence of abstracted variables is irrelevant
we shall write λx.M for a sequence of variables x.

The usual operational semantics of the λ-calculus is given by β-contraction.
To give the meaning to fixpoint constants we use δ-contraction (→δ).

(λx.M)N →β M [N/x] YM →δ M(YM).

We write →∗βδ for the βδ-reduction, the reflexive and transitive closure of the
sum of the two relations. Given a term M = λx1 . . . xn.N0N1 . . . Np where N0

is of the form (λx.P)Q or Y P , then N0 is called the head redex of M . We
write M →βδh M

′ when M ′ is obtained by βδ-contracting the head redex of M
(when it has one). We write →∗βδh and →+

βδh respectively for the reflexive and
transitive closure and the transitive closure of→βδh. The relation→∗βδh is called
head reduction. A term with no head redex is said to be in head normal form.

It is well known that every term has at most one normal form, but due to
δ-reduction there are terms without a normal form. A term is unsolvable if it
does not have a head normal form; otherwise the term is solvable. Observe that
even if all the subterms of a term are solvable the reduction may generate an
infinitely growing term. It is thus classical in the λ-calculus to consider a kind
of infinite normal form that by itself is an infinite tree, and in consequence it is
not a term of λY [3,2].

A Böhm tree is an unranked, ordered, and potentially infinite tree with nodes
labelled by terms of the form λx1. . . . xn.N ; where N is a variable or a constant,
and the sequence of λ-abstractions is optional. So for example x0, Ω0, λx0.ω0

are labels, but λy0. x0→0y0 is not.

Definition 1. A Böhm tree of a term M is obtained in the following way.

– If M →∗βδ λx.N0N1 . . . Nk with N0 a variable or a constant then BT (M) is
a tree having the root labelled λx.N0 and having BT (N1), . . . , BT (Nk) as
its subtrees.

5

– Otherwise BT (M) = Ωα, where α is the type of M .

Observe that a term M without the constants Ω and ω has a βδ-normal form if
and only if BT (M) is a finite tree without the constants Ω and ω. In this case
the Böhm tree is just another representation of the normal form.

Recall that in a tree signature all constants except of Y , Ω, and ω are of
type 0 or 0 → 0 → 0. A closed term without λ-abstraction and Y over such a
signature is just a finite binary tree: constants of type 0 occur at leaves and those
of type 0→ 0→ 0 occur at internal nodes. The same holds for Böhm trees:

Lemma 1. If M is a closed term of type 0 over a tree signature then BT (M)
is a potentially infinite binary tree.

We will consider finitary models of λY -calculus. In the first part of the paper
we will concentrate on those where Y is interpreted as the greatest fixpoint.

Definition 2. A GFP-model of a signature Σ is a tuple S = 〈{Sα}α∈T , ρ〉
where S0 is a finite lattice, and for every type α → β ∈ T , Sα→β is the lattice
mon[Sα → Sβ] of monotone functions from Sα to Sβ ordered coordinatewise.
The valuation function ρ is required to satisfy certain conditions:

– If c ∈ Σ is a constant of type α then ρ(c) is an element of Sα.
– For every α ∈ T , both ρ(ωα) and ρ(Ωα) are the greatest elements of Sα.
– Moreover, ρ(Y (α→α)→α) is the function assigning to every function f ∈
Sα→α its greatest fixpoint.

Observe that every Sα is finite, hence all the greatest fixpoints exist without any
additional assumptions on the lattice.

A variable assignment is a function υ associating to a variable of type α an
element of Sα. If s is an element of Sα and xα is a variable of type α then υ[s/xα]
denotes the valuation that assigns s to xα and that is identical to υ otherwise.

The interpretation of a term M of type α in the model S under the valuation
υ is an element of Sα denoted [[M]]

υ
S . The meaning is defined in the standard way:

for constants it is given by ρ; for variables by υ; the application is interpreted as
function application, and finally for abstraction [[λxα.M]]

υ
S is a function mapping

an element s ∈ Sα to [[M]]
υ[s/xα]
S . As usual, we will omit subscripts or superscripts

in the notation of the semantic function if they are clear from the context.
It is known that Böhm trees are a kind of initial semantics for λ-terms. In

particular if two terms have the same Böhm trees then they have the same
semantics in every GFP model. To look at it more closely we need to formally
define the semantics of a Böhm tree.

The semantics of a Böhm tree is defined in terms of its truncations. For every
n ∈ N, we denote by BT (M)↓n the finite term that is the result of replacing in
the tree BT (M) every subtree at depth n by the constant ωα of the appropriate
type. Observe that if M is closed and of type 0 then α will always be the base
type 0. This is because we work with a tree signature. We define:

[[BT (M)]]
υ
S =

∧
{[[BT (M)↓n]]

υ
S | n ∈ N}.

6

The above definitions are standard for λY -calculus, or more generally for
PCF [2]. In particular the following proposition, in a more general form, can be
found as Exercise 6.1.8 in op. cit.1

Proposition 1. If S is a finite GFP-model and M is a closed term then: [[M]]S =
[[BT (M)]]S .

2.2 TAC Automata

Let us fix a tree signature Σ. This means that apart from ω, Ω and Y all
constants have order at most 2. Let Σ0 be the set of constants of type 0, and Σ2

the set of constants of type 0 → 0 → 0. By Lemma 1, in this case Böhm trees
are potentially infinite binary trees.

Definition 3. A finite tree automaton with trivial acceptance condition (TAC
automaton) over the signature Σ = Σ0 ∪Σ2 is

A = 〈Q,Σ, q0 ∈ Q, δ0 : Q× (Σ0 ∪ {Ω})→ {ff , tt}, δ2 : Q×Σ2 → P(Q2)〉

where Q is a finite set of states and q0 ∈ Q is the initial state. The transition
function of TAC automaton may be the subject to the additional restriction:

Ω-blind: δ0(q,Ω) = tt for all q ∈ Q.

Automata satisfying this restriction are called Ω-blind. For clarity, we use the
term insightful to refer to automata without this restriction.

Automata will run on Σ-labelled binary trees that are partial functions t :
{1, 2}∗ → Σ ∪{Ω} such that their domain is a binary tree, and t(u) ∈ Σ0 ∪{Ω}
if u is a leaf, and t(u) ∈ Σ2 otherwise.

A run of A on t is a labelling r : {1, 2}∗ → Q of t such that the root is
labeled by q0 and the labelling of the successors of a node respects the transition
function δ. A run is accepting if δ0(r(u), t(u)) = tt for every leaf u of t . A tree
is accepted by A if there is an accepting run on the tree. The language of A,
denoted L(A), is the set of trees accepted by A.

Observe that TAC automata have acceptance conditions on leaves, expressed
with δ0, but do not have acceptance conditions on infinite paths.

As underlined in the introduction all the work on automata with trivial con-
ditions relies on the Ω-blind restriction. Let us give some examples of properties
that can be expressed with insightful automata but not with Ω-blind automata.

– The set of terms not having Ω in their Böhm tree. To recognize this set we
take the automaton with a unique state q. This state has transitions on all
the letters from Σ2. It also can end a run in every constant of type 0 except
for Ω: this means δ0(q,Ω) = ff and δ0(q, c) = tt for all other c.

1 In this paper we work with finite monotone models which are a particular case of
the directed complete partial orders used in [2].

7

– The set of terms having a head normal form. We take an automaton with
two states q and q>. From q> automaton accepts every tree. From q it has
transitions to q> on all the letters from Σ2, on letters from Σ0 it behaves as
the automaton above.

– Building on these two examples one can easily construct an automaton for
a property like “every occurrence of Ω is preceded by a constant err”.

It is immediate to see that none of these languages can be recognized by a Ω-
blind automaton since if such an automaton accepts a tree t then it accepts also
every tree obtained by replacing a subtree of t by Ω.

3 GFP models and Ω-blind TAC automata

In this short section we summarize the relation between GFP models and Ω-
blind TAC automata. We start with the expected formal definition of the set of
λY -terms recognized by a model.

Definition 4. For a GFP model S over the base set S0. The language recog-
nized by a subset F ⊆ S0 is the set of closed λY -terms {M | [[M]]S ∈ F}.

Proposition 2. For every Ω-blind TAC automaton A, the language of A is
recognized by a GFP model.

Let A be an automaton as in Definition 3. For the model S in question we take
a GFP model with S0 = P(Q). This defines Sα for every type α. It remains to
define the interpretation of constants other than ω, Ω, or Y . The meaning of a
constant c of type 0 is {q | δ0(q, c) = tt}; and the meaning of a of type 0→ 0→ 0
is a function whose value on (S0, S1) ∈ P(Q)2 is {q | δ2(q, a) ∩ S0 × S1 6= ∅}.
Finally, for the set FA used to recognize L(A) we will take {S | q0 ∈ S}; recall
that q0 is the initial state of A. With these definitions it is possible to show that
for every closed term M of type 0: BT (M) ∈ L(A) iff [[M]] ∈ FA.

Next theorem shows that the recognizing power of GFP models is actually
characterized by Ω-blind TAC automata. The right-to-left implication of this
theorem has been stated in [21].

Theorem 1. A language L of λ-terms is recognized by a GFP-model iff it is a
boolean combination of languages of Ω-blind TAC automata.

Using the results in [16], it can be shown that typings in Kobayashi’s type
systems [10] give precisely values in GFP models.

4 A model for insightful TAC automata

The goal of this section is to present a model capable of recognizing languages of
insightful TAC automata. Theorem 1 implies that the fixpoint operator in such
a model can be neither the greatest nor the least fixpoint. In the first subsection

8

we will construct a model containing at the same time a model with the least
fixpoint and a model with the greatest fixpoint. We cannot just take the model
generated by the product of the base sets of the two models as we will need that
the value of a term in the least fixpoint component influences the value in the
greatest fixpoint component. In the second part of this section we will show how
to interpret insightful TAC automata in such a model.

4.1 Model construction and basic properties

We are going to construct a model K intended to recognize the language of a
given insightful TAC automaton. This model is built on top of the standard
model D for detecting if a term has a head-normal form.

Consider a family of sets {Dα}α∈T ; where D0 = {⊥,>} is the two element
lattice, and Dα→β is mon[Dα → Dβ]. So for every α, Dα is a finite lattice. We
shall refer to the minimal and maximal element of Dα respectively with the
notations ⊥α and >α.

Consider the model D = 〈{Dα}α∈T , ρ〉 where ω and Ω are interpreted as
the least elements, and Y is interpreted as the least fixpoint operator. So D is
a dual of a GFP model as presented in Definition 2. The reason for not taking
a GFP model here is that we would prefer to use the greatest fixpoint later in
the construction. To all constants other than Y , ω, and Ω the interpretation ρ
assigns the greatest element of the appropriate type. The following theorem is
well-known (cf [2] page 130).

Theorem 2. For every closed term M of type 0 without ω we have:

BT (M) = Ω iff [[M]]D = ⊥.

We fix a finite set Q and QΩ ⊆ Q. Later these will be the set of states of
a TAC automaton, and the set of states from which the automaton accepts Ω,
respectively. To capture the power of such an automaton, we are going to define
a model K(Q,QΩ , ρ) of the λY -calculus with a non-standard interpretation of
the fixpoint. Roughly, this model will live inside the product of D and the GFP
model S for an Ω-blind automaton. The idea is that every set Kα will have a
projection on D but not necessarily on S. This allows to observe whether a term
converges or not, and at the same time to use this information in computing in
the second component.

Definition 5. For a given finite set Q and QΩ ⊆ Q we define a family of
sets KQ,QΩ = (Kα)α∈T by mutual recursion together with a family of relations
L = (Lα)α∈T such that Lα ⊆ Kα ×Dα:

1. We let K0 = {(>, P) | P ⊆ Q}∪{(⊥, QΩ)} with the order: (d1, P1) ≤ (d2, P2)
iff d1 ≤ d2 in D0 and P1 ⊆ P2. (cf. Figure 1)

2. L0 = {((d, P), d) | (d, P) ∈ K0},
3. Kα→β = {f ∈ mon[Kα → Kβ] | ∃d ∈ Dα→β .∀(g, e) ∈ Lα.(f(g), d(e)) ∈ Lβ},
4. Lα→β = {(f, d) ∈ Kα→β ×Dα→β | ∀(g, e) ∈ Lα.(f(g), d(e)) ∈ Lβ}.

9

(>, {1; 2})

(>, {1}) (>, {2})

(>, ∅)(⊥, {1})

Fig. 1. The order K0 for Q = {1, 2} and QΩ = {1}

Note that every Kα is finite since it lives inside the standard model con-
structed from D0 × P(Q) as the base set. Moreover for every α, Kα is a join
semilattice and thus has a greatest element. Recall that a TAC automaton is
supposed to accept unsolvable terms from states QΩ . So the unsolvable terms
of type 0 should have QΩ as a part of their meaning. This is why ⊥ of D0

is associated to (⊥, QΩ) in K0 via the relation L0. This also explains why we
needed to take the least fixpoint in D. If we had taken the greatest fixpoint then
the unsolvable terms would have evaluated to > and the solvable ones to ⊥. In
consequence we would have needed to relate > with (>, QΩ), and we would have
been forced to relate ⊥ with (⊥, Q). But since (>, QΩ) and (⊥, Q) are incompa-
rable in K0 we would not have been able to obtain the order preserving injection
(·)↑ from D0 to K0 that is defined below at every type:

Definition 6. For every h ∈ Dα we define the element h↑ of Kα:

h↑ =
∨
{f | (f, h) ∈ Lα} .

It can be shown that this element always exists, and that (·)↑ is a monotone
embedding of D into K. Moreover (d↑, d) is in Lα for very d ∈ Dα. One can also
verify that the relation Lα is functional, so we get the projection operation.

Definition 7. For every type α and f ∈ Kα we let f to be the unique element
of Dα such that (f, f) ∈ Lα.

We are now going to give the definition of the interpretation of the fixpoint
combinator in K. This definition is based on the fixpoint operator in D. As a
shorthand, we write fixα for the operation in D(α→α)→α mapping a function of
Dα→α to its least fixpoint. It can be shown that for every f ∈ Kα→α the sequence
fn(fixα(f)↑) is decreasing in Kα.

Definition 8. For every type α and f ∈ Kα define

Fixα(f) =
∧
n∈N

(fn(fixα(f)↑))

We are ready to define the model we were looking for.

Definition 9. For a finite set Q and QΩ ⊆ Q consider a tuple K(Q,QΩ , ρ) =
(KQ,QΩ , ρ) where KQ,QΩ is as in Definition 5 and ρ is a valuation such that
for every type α: ωα is interpreted as the greatest element of Kα, Y (α→α)→α is
interpreted as Fixα, and Ω0 is interpreted as (⊥, QΩ).

10

Theorem 3. The model K(Q,QΩ , ρ) is a model of the λY -calculus.

Let us mention the following useful fact showing a correspondence between
the meanings of a term in K and inD. The proof is immediate since, by definition,
{Lα}α∈T is a logical relation (cf [2]).

Lemma 2. For every type α and closed term M of type α:

([[M]]K, [[M]]D) ∈ Lα .

4.2 Correctness and completeness of the model

It remains to show that the model we have constructed can recognize languages
of TAC automata. We fix a tree signature Σ and a TAC automaton A as in
Definition 3. So Q is the set of states of A and QΩ is the set of states q such
that δ(q,Ω) = tt . Consider a model K based on K(Q,QΩ , ρ) as in Definition 9.
We need to specify the meaning of constants like c : 0 or a : 02 → 0 in Σ:

ρ(c) =(>, {q : δ(q, c) = tt})
ρ(a)(d1, R1)(d2, R2) =(>, R) where d1, d2 ∈ {⊥,>} and

R = {q ∈ Q | δ(q, a) ∩R1 ×R2 6= ∅}

It is easy to verify that the meanings of constants are indeed in the model.

Proposition 3. Given a closed term M of type 0: BT (M) = Ω0 iff [[M]]K =
(⊥, QΩ).

As in the case of GFP-models the semantics of a Böhm tree is defined in
terms of its truncations: [[BT (M)]]K =

∧
{[[BT (M)↓n]]K : n ∈ N}. The subtle,

but crucial, difference is that now Ω0 and ω0 do not have the same meaning.
Nevertheless the analog of Proposition 1 still holds in K.

Theorem 4. For very closed term M of type 0: [[M]]K = [[BT (M)]]K.

Proof (Sketch). First we show that [[M]]K ≤ [[BT (M)]]K. For this we define a
finite approximation of the Böhm tree. The Abstract Böhm tree up to depth l
of a term M , denoted ABTl(M), will be a term obtained by reducing M till it
resembles BT (M) up to depth l as much as possible. We define ABT0(M) = M ,
and also ABTl+1(M) = M if M is unsolvable, or otherwise ABTl+1(M) =
λx.N0ABTl(N1) . . . ABTl(Nk), where λx.N0N1 . . . Nk is the head normal form
of M .

Since ABTl(M) is obtained from M by a sequence of βδ-reductions, [[M]]K =
[[ABTl(M)]]K for every l. It remains to show that for every term M and every l:

[[M]]K = [[ABTl(M)]]K ≤ [[BT (M)↓l]]K.

Up to depth l, the two terms have the same tree structure. We check that
the meaning of every leaf in ABTl(M) is not bigger than the meaning of the

11

corresponding leaf of BT (M)↓l. For leaves of depth l this is trivial since on the
one hand we have a term and on the other the constant ω. For other leaves, the
terms are either identical or on one side we have an unsolvable term, and on the
other Ω0. By Proposition 3 the two have the same meaning in S.

For the inequality in the other direction observe that if a term M does not
have Y combinators, then it is strongly normalizing and the theorem is trivial. So
we need be able to deal with Y combinators in M . We introduce new constants
cN for every subterm Y N of M . The type of cN is α → β if β is the type of
Y N and α = α1 . . . αk is the sequence of types of the sequence of free variables
x = x1 . . . xk occurring in Y N . We let the semantics of a constant cN be

[[cN]]K = λp.
(

fixβ([[N]]
[p/x]
D)

)↑
.

In the full version of the paper we show that [[cN]] is in K. Moreover for every
p1, . . . , pk,q1, . . . , ql:

[[cN]]K(p1, . . . , pk)(q1, . . . , ql) =

{
(⊥, QΩ) if [[cN]]D(p1, . . . , pk)(q1, . . . , ql) = ⊥
(>, Q) if [[cN]]D(p1, . . . , pk)(q1, . . . , ql) = >

(1)
We now define term iteraten(N) for very n ∈ N.

iterate0(N) = cN iteraten+1(N) = λx.N(iteraten(N)x) .

From the definition of the fixpoint operator in K and the fact that Kβ is finite it
follows that [[iteraten(N)]] = [[λx.Y N]] for some n. Now we can apply this identity
to all fixpoint subterms in M starting from the innermost subterms. So the term
expand i(M) is obtained by repeatedly replacing occurrences of subterms of the
form Y N in M by iteratei(N)x starting from the innermost occurrences. We get
that for n chosen as above [[M]]K = [[expandn(M)]]K.

We come back to the proof. The missing inequality will be obtained from

[[M]]K = [[expandn(M)]]K = [[BT (expandn(M))]]K ≥ [[BT (M)]]K .

The first equality we have discussed above. The second is trivial since expandn(M)
does not have fixpoints. It remains to show [[BT (expandn(M))]]K ≥ [[BT (M)]]K.

Let us denote BT (expandn(M)) by P . So P is a term of type 0 in a normal
form without occurrences of Y . For a term K let K̃ be a term obtained from K
by simultaneously replacing cN by λx.Y N . By definition of the fixpoint we have
[[cN]]K ≥ [[λx.Y N]]K which also implies that [[K]]K ≥ [[K̃]]K. Moreover, as P̃ =βδ

M , we have that BT (P̃) = BT (M). We need to show that [[P]]K ≥ [[BT (P̃)]]K.

Let us compare the trees BT (P) and BT (P̃) by looking on every path
starting from the root. The first difference appears when a node v of BT (P)
is labelled with cN for some N . Say that the subterm of P rooted in v is
cNK1 . . .Ki. Then at the same position in BT (P ′) we have the Böhm tree of
the term (λx.Y N)K̃1 . . . K̃i. We will be done if we show that [[cNK1 . . .Ki]]K ≥
[[BT ((λx.Y N)K̃1 . . . K̃i)]]K.

12

We reason by cases. If [[cNK1 . . .Ki]]D = > then equation (1) gives us
[[cNK1 . . .Ki]]K = (>, Q). So the desired inequality holds since (>, Q) is the
greatest element of K0.

If [[cNK1 . . .Ki]]D = ⊥ then [[cNK̃1 . . . K̃i]]D = ⊥ since [[Ki]]K ≥ [[K̃i]]K.

By equation (1) we get [[cNK̃1 . . . K̃i]]D = (⊥, QΩ). Since, by the definition of

the fixpoint operator, [[cN]]K ≥ [[λx. Y N]]K we get [[Y NK̃1 . . . K̃i]]K = (⊥, QΩ).
But then Proposition 3 implies that Y NK1 . . .Ki is unsolvable. Thus we get
[[BT ((λx.Y N)K̃1 . . . K̃i)]]K = [[Ω]]K = (⊥, QΩ). ut

Once we know that the semantics of the Böhm tree of a term in the model
is the same as the semantics of a term, the proof of the correctness of the model
is quite straightforward and very similar to the case of GFP models.

Theorem 5. Let A be an insightful TAC automaton and K a model as at the
beginning of the subsection. For every closed term M of type 0:

BT (M) ∈ L(A) iff q0 is in the second component of [[M]]K.

5 Reflection

The idea behind the notion of a reflecting term is that at every moment of
its evaluation every subterm should know its meaning. Knowing the meaning
amounts to extra labelling of constants. Formally, we express this by the notion
of a reflective Böhm tree defined below. The definition can be made more general
but we will be interested only in the case of terms of type 0. In this section we
will show that reflective Böhm trees can be generated by λY -terms.

As usual we suppose that we are working with a tree signature Σ. We will
also need a signature where constants are annotated with elements of the model.
If S = 〈{Sα}α∈T , ρ〉 is a finitary model then the extended signature ΣS contains
constants as where a is a constant in S and s ∈ S0; so superscripts are possible
interpretations of terms of type 0 in S.

Definition 10. Let S be a finitary model and M a closed term of type 0. A
reflective Böhm tree with respect to S is obtained in the following way:

– If M →∗βδ bN1N2 for some constant b : 0→ 0→ 0 then rBTS(M) is a tree

having the root labelled by b[[bN1N2]]S and having rBTS(N1) and rBTS(N2)
as subtrees.

– If M →∗βδ c for some constant c : 0 then rBTS(M) = c[[c]]S .

– Otherwise, M is unsolvable and BT (M) = Ω0.

Observe that when S satisfies [[N]]S = [[BT (N)]]S for every term N then the
superscripts in rBT (M) are the meanings of respective subtrees in the Böhm
tree. When, moreover, S recognizes a given property then these superscripts
determine if the tree satisfies the property. These two conditions are fulfilled by
the models we have considered in this paper.

We will use terms to construct reflective Böhm trees.

13

Definition 11. Let Σ be a tree signature, and S a finitary model. Let M be a
closed term of type 0 over the signature Σ. We say that a term M ′ over the
signature ΣS is a reflection of M in S if BT (M ′) = rBT (M).

The objective of this section is to construct reflections of terms. Since λY -terms
can be translated to schemes and vice versa, the construction would work for
schemes too. (Translations between schemes and λY -terms that do not increase
the type order are presented in [18]).

Let us fix a tree signature Σ and a finitary model S. For the construction
of reflective terms we enrich λY -calculus with some syntactic sugar. Consider
a type α. The set Sα is finite for every type α; say Sα = {d1, . . . , dk}. We will
introduce a new atomic type [α] and constants d1 . . . , dk of this type; there will
be no harm in using the same names for constants and elements of the model. We
do this for every type α and consider terms over this extended type discipline.
Notice that in the result there are no other closed normal terms than d1, . . . , dk
of type [α].

Given a term M of type [α] and M1, . . .Mn that are all terms of type β, we
introduce the construct

case M{di →Mi}di∈Sα
which is a term of type β and which reduces to Mi when M = di. This construct
is a simple syntactic sugar. We could as well represent [α] as the type βk → β,
and a constant di by the ith projection λx1 . . . xn.xi. We would then get that the
term MM1 . . .Mk reduces to Mi and thus behaves exactly as the case construct.

We define a transformation on types α• by induction on their structure:

(α→ β)• = α• → [α]→ β• and α• = α when α is atomic.

The translation we are looking for will be an instance of a more general transla-
tion [M,υ] of a term M of type α into a term of type α• where υ is a valuation
over S.

[λxα.M, υ] =λxα
•
λy[α]. case y[α]{d→ [M,υ[d/xα]]}d∈Sα

[MN,υ] = [M,υ] [N, υ] [[N]]
υ

[a, υ] =λx01λy
[0]
1 λx02λy

[0]
2 .

case y
[0]
1 {d1 → case y

[0]
2 {d2 → aρ(a)d1 d2x1x2}d2∈S0}d1∈S0

[xα, υ] =xα
•[

Y (α→α)→αM,υ
]

=Y (α•→α•)→α•(λxα
•
. [M,υ]xα

•
[[YM]]

υ
)

To prove correctness of this translation, we show that a head reduction of the
original term can be simulated by a sequence of head reductions.

Lemma 3. If M →βδh M
′, then [M,υ]→+

βδh [M ′, υ].

Theorem 6. For every finitary model S and a closed term M of type 0:

BT ([M, ∅]) = rBTS(M) .

14

Remark: If in a model S the divergence can be observed (as it is the case for GFP
models and for the model K, cf. Proposition 3) then in the translation above we
could add the rule [M,υ] = Ω whenever [[M]]

υ
S denotes a diverging term. We

would obtain a term which would always converge. A different construction for
achieving the same goal is proposed in [7].

Remark: Even though the presented translation preserves the structure of a
term, it makes the term much bigger due to case construction in the clause for
λ-abstraction. The blow-up is unavoidable due to complexity lower-bounds on
the model-checking problem. Nevertheless, one can try to limit the use of case
construct. We present a slightly more efficient translation that takes the value of
the known arguments into account. For this, the translation also depends on a
stack of values from S in order to recall the values taken by the arguments. For
the sake of simplicity, we also assume that the constants always have all their
arguments (this can be achieved by using terms in η-long form).

[λxα.M, υ, d :: S] = λxα
•
y[α]. [M,υ[d/xα], S]

[λxα.M, υ, ε] = λxα
•
y[α].case y[α]{d→ [M,υ[d/xα], ε]}d∈Sα

[MN,υ, S] = [M,υ, [[N]]
υ

:: S] [N, υ, ε] [[N]]
υ

[a, υ, d1 :: d2 :: ε] = λx01λy
[0]
1 λx02λy

[0]
2 . a[[a]]d1d2x1x2

[xα, υ, S] = xα
•

[YM, υ, S] = Y [M,υ, [[YM]]
υ

:: S]

6 Conclusions

We have extended the scope of the model-based approach to a larger class of
properties. While a priori it is more difficult to construct a finitary model than
to come up with a decision procedure, in our opinion this additional effort is
justified. It allows, as we show here, to use the techniques of the theory of the λ-
calculus. It opens new ways of looking at the algorithmics of the model-checking
problem. Since typing in intersection type systems [10] and step functions in
models are in direct correspondence [16], model-based approach can also benefit
from all the developments in algorithms based on typing. Finally, this approach
allows to get new constructions as demonstrated by our transformation of a
scheme to a scheme reflecting a given property. Observe that this transformation
is general and does not depend on our particular model.

Let us note that the model-based approach is particularly straightforward
for Ω-blind TAC automata. It uses standard observations on models of the λY -
calculus and Proposition 2 with a simple inductive proof. The model we propose
for insightful automata may seem involved; nevertheless, the construction is
based on simple and standard techniques. Moreover, this model implements an

15

interesting interaction between components. It succeeds in mixing a GFP model
for Ω-blind automaton with the model D for detecting solvability.

The approach using models opens several new perspectives. One can try
to characterize what kinds of fixpoints correspond to what class of automata
conditions. More generally, models hint a possibility to have an Eilenberg like
variety theory for lambda-terms [6]. This theory would cover infinite regular
words and trees too as they can be represented by λY -terms. Finally, considering
model-checking algorithms, the model-based approach puts a focus on computing
fixpoints in finite partial orders. This means that a number of techniques, ranging
from under/over-approximations, to program optimization can be applied.

References

1. K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science, 3(3), 2007.

2. R. M. Amadio and P-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

3. H. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

4. C. Broadbent, A. Carayol, L. Ong, and O. Serre. Recursion schemes and logical
reflection. In LICS, pages 120–129, 2010.

5. Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre. A
saturation method for collapsible pushdown systems. In ICALP (2), volume 7392
of LNCS, pages 165–176, 2012.

6. S. Eilenberg. Automata, Languages and Machines. Academic Press, New York,
1974.

7. A. Haddad. IO vs OI in higher-order recursion schemes. In FICS, volume 77 of
EPTCS, pages 23–30, 2012.

8. M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown
automata and recursion schemes. In LICS, pages 452–461, 2008.

9. N. Kobayashi. Higher-order program verification and language-based security. In
ASIAN, volume 5913 of LNCS, pages 17–23. Springer, 2009.

10. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-
order programs. In POPL, pages 416–428. ACM, 2009.

11. N. Kobayashi. Types and recursion schemes for higher-order program verification.
In APLAS, volume 5904 of LNCS, pages 2–3, 2009.

12. N. Kobayashi. A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In FOSSACS, pages 260–274, 2011.

13. N. Kobayashi and L. Ong. A type system equivalent to modal mu-calculus model
checking of recursion schemes. In LICS, pages 179–188, 2009.

14. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In LICS, pages 81–90, 2006.

15. C.-H. L. Ong and T. Tsukada. Two-level game semantics, intersection types, and
recursion schemes. In ICALP (2), volume 7392 of LNCS, pages 325–336, 2012.

16. S. Salvati, G. Manzonetto, M. Gehrke, and H. Barendregt. Loader and Urzyczyn
are logically related. In ICALP (2), LNCS, pages 364–376, 2012.

17. S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In
ICALP (2), volume 6756 of LNCS, pages 162–173, 2011.

16

18. S. Salvati and I. Walukiewicz. Recursive schemes, Krivine machines, and collapsible
pushdown automata. In RP, volume 7550 of LNCS, pages 6–20, 2012.

19. Sylvain Salvati and Igor Walukiewicz. Using models to model-check recursive
schemes. Technical report, LaBRI, 2012. http://hal.inria.fr/hal-00741077.

20. Kazuchige Terui. Semantic evaluation, intersection types and complexity of simply
typed lambda calculus. In RTA, volume 15 of LIPIcs, pages 323–338. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

21. I. Walukiewicz. Simple models for recursive schemes. In MFCS, volume 7464 of
LNCS, pages 49–60, 2012.

	Using models to model-check recursive schemes
	S. Salvati and I. Walukiewicz

