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Abstract. In a dynamic parametric process every subprocess may spawn
arbitrarily many, identical child processes, that may communicate either
over global variables, or over local variables that are shared with their
parent. We show that reachability for dynamic parametric processes is
decidable under mild assumptions. These assumptions are e.g. met if
individual processes are realized by pushdown systems, or even higher-
order pushdown systems. We also provide algorithms for subclasses of
pushdown dynamic parametric processes, with complexity ranging be-
tween NP and DEXPTIME.

1 Introduction

Programming languages such as Java, Erlang, Scala offer the possibility to gen-
erate recursively new threads (or processes, actors,. . . ). Threads may exchange
data through globally accessible data structures, e.g. via static attributes of
classes like in Java, Scala. In addition, newly created threads may locally com-
municate with their parent threads, in Java, e.g., via the corresponding thread
objects, or via messages like in Erlang.

Various attempts have been made to analyze systems with recursion and dy-
namic creation of threads that may or may not exchange data. A single thread
executing a possibly recursive program operating on finitely many local data,
can conveniently be modeled by a pushdown system. Intuitively, the pushdown
formalizes the call stack of the program while the finite set of states allows to
formalize the current program state together with the current values of the local
variables. For such systems reachability of a bad state or a regular set of bad con-
figurations is decidable [17,1]. The situation becomes more intricate if multiple
threads are allowed. Already for two pushdown threads reachability is undecid-
able if communication via a 2-bit global is allowed. In absence of global variables,
reachability becomes undecidable already for two pushdown threads if a rendez-
vous primitive is available [16]. A similar result holds if finitely many locks are
allowed [10]. Interestingly, decidability is retained if locking is performed in a
disciplined way. This is, e.g., the case for nested [10] and contextual locking [3].
These decidability results have been extended to dynamic pushdown networks
as introduced by Bouajjani et al. [2]. This model combines pushdown threads
with dynamic thread creation by means of a spawn operation, while it ignores
any exchange of data between threads. Indeed, reachability of dedicated states



or even regular sets of configurations stays decidable in this model, if finitely
many global locks together with nested locking [12,14] or contextual locking [13]
are allowed. Such regular sets allow, e.g., to describe undesirable situations such
as concurrent execution of conflicting operations.

Here, we follow another line of research where models of multi-threading
are sought which allow exchange of data via shared variables while still being
decidable. The general idea goes back to Kahlon, who observed that various
verification problems become decidable for multi-pushdown systems that are
parametric [9], i.e., systems consisting of an arbitrary number of indistinguish-
able pushdown threads. Later, Hague extended this result by showing that an
extra designated leader thread can be added without sacrificing decidability [7].
All threads communicate here over a shared, bounded register without locking.
It is crucial for decidability that only one thread has an identity, and that the
operations on the shared variable do not allow to elect a second leader. Later,
Esparza et al. clarified the complexity of deciding reachability in that model [5].
La Torre et al. generalized these results to hierarchically nested models [11]. Still,
the question whether reachability is decidable for dynamically evolving paramet-
ric pushdown processes, remained open.

We show that reachability is decidable for a very general class of dynamic
processes with parametric spawn. We require some very basic properties from
the class of transitions systems that underlies the model, like e.g. effective non-
emptiness check. In our model every sub-process can maintain e.g. a pushdown
store, or even a higher-order pushdown store, and can communicate over global
variables, as well as via local variables with its sub-processes and with its parent.
As in [7,5,11], all variables have bounded domains and no locks are allowed.

Since the algorithm is rather expensive, we also present meaningful instances
where reachability can be decided by simpler means. As one such instance we
consider the situation where communication between sub-processes is through
global variables only. We show that reachability for this model can effectively
be reduced to reachability in the model of Hague [7,5], giving us a precise char-
acterization of the complexity for pushdown threads as Pspace. As another
instance, we consider a parametric variant of generalized futures where spawned
sub-processes may not only return a single result but create a stream of answers.
For that model, we obtain complexities between NP and DExptime. This opens
the venue to apply e.g. SAT-solving to check safety properties of such programs.

Overview. Section 2 provides basic definitions, and the semantics of our model. In
Section 3 we show a simpler semantics, that is equivalent w.r.t. reachability. Sec-
tion 4 introduces some prerequisites for Section 5, which is the core of the proof.
Section 6 considers some special instances of dynamic parametric pushdown pro-
cesses. The full version of the paper is available at http://arxiv.org/abs/1609.05385.

2 Basic definitions

In this section we introduce our model of dynamic parametric processes. We
refrain from using some particular program syntax; instead we use potentially



infinite state transition systems with actions on transitions. Actions may ma-
nipulate local or global variables, or spawn parametrically some sub-processes:
this means that an unspecified number of sub-processes is created — all with
the same designated initial state. Making the spawn operation parametric is the
main abstraction step that allows us to obtain decidability results.

Before giving formal definitions we present two examples in order to give an
intuitive understanding of the kind of processes we are interested in.

Example 1. A dynamic parametric process can, e.g., be defined by an explicitly
given finite transition system:

q q1 q2 q3 q4 q5
spawn(p) w(x, 1) r(x, 2) r(x, 3) w(g0,#)

p p1 p2
i(x, 1)

o(x, 2)

o(x, 3)τ

In this example, the root starts in state q by spawning a number of sub-processes,
each starting in state p. Then the root writes the value 1 into the local variable
x, and waits for some child to change the value of x first to 2, and subsequently
to 3. Only then, the root will write value # into the global variable g0. Every
child on the other hand, when starting execution at state p, waits for value 1
in the variable x of the parent and then chooses either to write 2 or 3 into
x, then returns to the initial state. The read/write operations of the children
are denoted as input/output operations i(x, v), o(x, v), because they act on the
parent’s local. Note that at least two children are required to write #.

More interesting examples require more program states. Here, it is convenient
to adopt a programming-like notation as in the next example.

Example 2. Consider the program from Figure 1. The conditional if(∗) denotes
non-deterministic choice. There is a single global variable which is written to by
the call write(#), and a single local variable x per sub-process, with initial value
0. The corresponding local of the parent is accessed via the keyword parent.

The states of the dynamic parametric process correspond to the lines in the
listing, the transitions represent the control flow, they are labeled with atomic
statements of the program.

The question is whether the root can eventually write #? This would be the
case if the value of the root’s local variable becomes 2. This in turn may occur
once the variable x of some descendant is set to 1. In order to achieve this,
cooperation of several sub-processes is needed. Here is one possible execution.

1. The root spawns two sub-processes in state p, say T1 and T2.
2. T1 changes the value of the local variable of the root to 1 (line 11).
3. T2 then can take the case 1 branch and first spawn T3.



1 root ( ) {
spawn (p ) ;
switch (x ) {

4 case 2 : write (#);
}

}
7

p ( ) {
switch ( parent . x ) {

10 case 0 : spawn (p ) ;
i f (∗ ) parent . x = 1
else switch (x ) {

13 case 1 : parent . x = 1 ; break ;
case 2 : break ;
} ; break ;

16 case 1 : spawn (p ) ;
i f (∗ ) parent . x = 0
else switch (x ) {

19 case 1 : parent . x = 2 ; break ;
case 2 : parent . x = 2 ; break ;
} ;

22 }
}

Fig. 1. A program defining a dynamic parametric process.

4. T3 takes the case 0 branch, spawns a new process and changes the value of
parent.x to 1.

5. As the variable parent.x of T3 is the local variable of T2, the latter can now
take the second branch of the nondeterministic choice and change parent.x

to 2 (line 19) — which is the local variable of the root.

In the following sections we present a formal definition of our parametric
model, state the reachability problem, and the main results.

2.1 Transition systems

A dynamic parametric process S is a transition system over a dedicated set
of action names. One can think of it as a control flow graph of a program.
In this transition system the action names are uninterpreted. In Section 2.2
we will define their semantics. The transition system is specified by a tuple
S = 〈Q,G,X, V,∆, qinit, vinit〉 consisting of:

– a (possibly infinite) set Q of states,
– finite sets G and X of global and local variables, respectively, and a finite

set V of values for variables; these are used to define the set of labels,
– an initial state qinit ∈ Q, and an initial value vinit ∈ V for variables,



– a set of rules ∆ of the form q
a−→ q′, where the label a is one of the following:

• τ , that will be later interpreted as a silent action,
• r(x, v), w(x, v), will be interpreted as a read or a write of value v ∈ V

from or to a local or global variable x ∈ X ∪G of the process,
• i(x, v), o(x, v), will be interpreted as a read or a write of value v ∈ V to

or from a local variable x ∈ X of the parent process,
• spawn(q), will be interpreted as a spawn of an arbitrary number (possibly

zero) of new sub-processes, all starting in state q ∈ Q. We assume that
the number of different spawn(q) operations appearing in ∆ is finite.

Observe that the above definition ensures that the set of labels of transitions is
finite.

We are particularly interested in classes of systems when Q is not finite.
This is the case when, for example, individual sub-processes execute recursive
procedures. For that purpose, the transition system S may be chosen as a con-
figuration graph of a pushdown system. In this case the set Q of states is Ql ·Γ ∗
where Ql is a finite set of control states, and Γ is a finite set of pushdown sym-
bols. The (infinite) transition relation ∆ between states is specified by a finite set

of rewriting rules of the form qv
a−→ q′w for suitable q, q′ ∈ Ql, v ∈ Γ ∗, w ∈ Γ ∗.

Instead of plain recursive programs, we could also allow higher-order recur-
sive procedures, realized by higher-order pushdown systems or even collapsible
pushdown systems as considered, e.g., in [15,8]. Here, procedures may take other
procedures as arguments.

2.2 Multiset semantics

In this section we provide the operational semantics of dynamic parametric pro-
cesses, where we interpret the operations on variables as expected, and the
spawns as creation of sub-processes. The latter operation will not create one
sub-process, but rather an arbitrary number of sub-processes. There will be also
a set of global variables to which every sub-process has access by means of reads
and writes.

As a dynamic parametric process executes, sub-processes may change the
values of local and global variables and spawn new children. The global state
of the entire process can be thus represented as a tree of sub-processes with
the initial process at the root. Nodes at depth 1 are the sub-processes spawned
by the root; these children can also spawn sub-processes that become nodes at
depth 2, etc, see e.g., Figure 3(a). Every sub-process has a set of local variables,
that can be read and written by itself, as well as by its children.

A global state of a dynamic parametric process S has the form of a multiset
configuration tree, or m-tree for short. An m-tree is defined recursively by

t ::= (q, λ,M)

where q ∈ Q is a sub-process state, λ : X → V is a valuation of (local) variables,
and M is a finite multiset of m-trees. We consider only m-trees of finite depth.



Another way to say this is to define m-trees of depth at most k, for every k ∈ N

M-trees0 = Q× (X → V )× []

M-treesk = Q× (X → V )×M(M-treesk−1) for k > 0

where for any U , M(U) is the set of all finite multisubsets of U . Then the set
of all m-trees is given by

⋃
k∈N M-treesk.

We use standard notation for multisets. A multiset M over a universe U is a
mapping M : U → N0. It is finite if

∑
t∈U M(t) < ∞. A finite multiset M may

also be represented by M = [n1 · t1, . . . , nk · tk] if M(ti) = ni for i = 1, . . . , k
and M(t) = 0 otherwise. In particular, the empty multiset is denoted by []. For
convenience we may omit multiplicities ni = 1. We say that t ∈ M whenever
M(t) ≥ 1, and M ⊆ M ′ whenever M(t) ≤ M ′(t) for all t ∈ M ′. Finally,
M + M ′ is the mapping with (M + M ′)(t) = M(t) + M ′(t) for all t ∈ U . For
convenience, we also allow the short-cut [n1·t1, . . . , nk ·tk] for [n1·t1]+. . .+[nk ·tk],
i.e., we allow also multiple occurrences of the same tree in the list. Thus, e.g.,
[3 · t1, 5 · t2, 1 · t1] = [4 · t1, 5 · t2].

The semantics of a dynamic parametric process S is a transition system
denoted [[S]]. The states of [[S]] are m-trees, and the set of possible edge labels is:

Σ ={τ} ∪ {spawn} ×Q∪
{i(x, v), o(x, v), r(y, v),w(y, v), r(y, v),w(y, v) : x ∈ X, y ∈ X ∪G, v ∈ V } .

Notice that we have two new kinds of labels r(y, v) and w(y, v). These represent
the actions of child sub-processes on global variables y ∈ G, or on the local
variables x ∈ X shared with the parent.

Throughout the paper we will use the notation

Σext = {i(x, v), o(x, v), r(g, v),w(g, v) : x ∈ X, g ∈ G, v ∈ V }

for the set of so-called external actions. They are called external because they
concern the external variables: these are either the global variables, or the local
variables of the parent of the sub-process. Words inΣ∗ext will describe the external
behaviors of a sub-process, i.e., the interactions via external variables: these are
either the global variables, or the local variables of the parent of the sub-process.
Words in Σ∗ext will describe the external behaviors of a sub-process, i.e., the
interactions via external variables.

The initial state is given by tinit = (qinit, λinit, []), where λinit maps all locals to

the initial value vinit. A transition between two states of [[S]] (m-trees) t1
a

=⇒S t2
is defined by induction on the depth of m-trees. We will omit the subscript S
for better readability. The definition is given in Figure 2.

External transitions describe operations on external variables, be they global
or not. For globals, these operations may come from the child sub-processes. In
this case we relabel them as r ,w actions. This helps later to identify the rule
that has been used for the transition (see Prop. 2). Note that the values of
global variables are not part of the program state. Accordingly, these operations
therefore can be considered as unconstrained input/output actions.



External transitions:

(q1, λ,M)
a

=⇒ (q2, λ,M) if q1
a−→ q2 for a ∈ Σext

(q, λ,M1)
r(g,v)
=⇒ (q, λ,M2) if M1

r(g,v)
=⇒ M2 for g ∈ G

(q, λ,M1)
w(g,v)
=⇒ (q, λ,M2) if M1

w(g,v)
=⇒ M2 for g ∈ G

Internal transitions:

(q1, λ,M)
τ

=⇒ (q2, λ,M) if q1
τ−→ q2

(q1, λ,M1)
spawn(p)

=⇒ (q2, λ,M2) if q1
spawn(p)−→ q2 and M2 = M1 + [n · (p, λinit, [])] for some n ≥ 0

(q1, λ,M)
w(x,v)
=⇒ (q2, λ

′,M) if q1
w(x,v)−→ q2 and λ′ = λ[v/x]

(q1, λ,M)
r(x,v)
=⇒ (q2, λ,M) if q1

r(x,v)−→ q2 and v = λ(x)

(q, λ,M1)
r(x,v)
=⇒ (q, λ,M2) if M1

i(x,v)
=⇒ M2 and v = λ(x)

(q, λ,M1)
w(x,v)
=⇒ (q, λ′,M2) if M1

o(x,v)
=⇒ M2 and λ′ = λ[v/x]

Here, we say that

M1
a

=⇒ M2 for a ∈ Σext

if there is a multi-subset M1 = M ′+[n1 ·t1, . . . , nr ·tr] (where the ti need not necessarily

be distinct) and executions ti
αia=⇒ t′i for i = 1, . . . , r for sequences αi ∈ (Σ \Σext)

∗ and
M2 = M ′ + [n1 · t′1, . . . , nr · t′r].

Fig. 2. Multiset semantics of dynamic parametric processes.

Internal transitions may silently change the current state, spawn new sub-
processes or update or read the topmost local variables of the process. The
expression λ[v/x] denotes the function λ′ : X → V defined by λ′(x′) = λ(x′)
for x′ 6= x and λ′(x) = v. In the case of spawn, the initial state of the new sub-
processes is given by the argument, while the fresh local variables are initialized
with the default value. In the last two cases (cf. Figure 2) the external actions
i(x, v), o(x, v) of the child sub-processes get relabeled as the corresponding in-
ternal actions r(x, v),w(x, v) on the local variables of the parent.

We write t1
α

=⇒ t2 for a sequence of transitions complying with the sequence
α of action labels. Note that we allow several child sub-processes to move in one
step (see definition of M1

α
=⇒ M2 in Figure 2). While this makes the definition

slightly more complicated, it simplifies some arguments later. Observe also that
the semantics makes the actions (labels) at the top level explicit, while the
actions of child sub-processes are explicit only if they refer to globals or affect
the local variables of the parent.

2.3 Problem statement and main result

In this section we define the reachability problem and state our main result
in Theorem 1: it says that the reachability problem is decidable for dynamic
parametric processes built upon an admissible class of systems. The notion of



admissible class will be introduced later in this section. Before we do so, we
introduce a consistency requirement for runs of parametric processes. Recall
that our semantics does not constrain the operations on global variables. Their
values are not stored in the overall state. At some moment, though, we must
require that sequences of read/write actions on some global variable y ∈ G can
indeed be realized via reading from and writing to y.

Definition 1 (Consistency). Let y ∈ G be a global variable. A sequence α ∈
Σ∗ is y-consistent if in the projection of α on operations on y, every read action
r(y, v) or r(y, v) which is not the first operation on y in α is immediately preceded
either by r(y, v), r(y, v) or by w(y, v) or w(y, v). The first operation on y in α
can be either r(y, vinit), r(y, vinit) or w(y, v),w(y, v) for some v.

A sequence α is consistent if it is y-consistent for every variable y ∈ G. Let
Consistent be the set of all consistent sequences. As we assume both G and V
to be finite, this is a regular language.

Our goal is to decide reachability for dynamic parametric processes.

Definition 2 (Consistent run, reachability). A run of a dynamic paramet-
ric process S is a path in [[S]] starting in the initial state, i.e., a sequence α such

that tinit
α

=⇒S t holds. If α is consistent, it is called a consistent run.
The reachability problem is to decide if for a given S, there is a consistent

run of [[S]] containing an external write or an output action of some distinguished
value #.

Our definition of reachability talks about a particular value of some variable,
and not about a particular state of the process. This choice is common, e.g.,
reaching a bad state may be simulated by writing a particular value, that is only
possible from bad states. The definition admits not only external writes but also
output actions because we will also consider processes without external writes.

We cannot expect the reachability problem to be decidable without any re-
striction on S. Instead of considering a particular class of dynamic parametric
processes, like those build upon pushdown systems, we will formulate mild con-
ditions on a class of such systems that turn out to be sufficient for deciding the
reachability problem. These conditions will be satisfied by the class of pushdown
systems, that is our primary motivation. Still we prefer this more abstract ap-
proach for two reasons. First, it simplifies notations. Second, it makes our results
applicable to other cases as, for example, configuration graphs of higher-order
pushdown systems with collapse.

In order to formulate our conditions, we require the notion of automata, with
possibly infinitely many states. An automaton is a tuple:

A = 〈Q,Σ,∆ ⊆ Q×Σ ×Q,F ⊆ Q〉

where Q is a set of states, Σ is a finite alphabet, ∆ is a transition relation, and
F is a set of accepting states. Observe that we do not single out an initial state.
Apart from the alphabet, all other components may be infinite sets.

We now define what it means for a class of automata to have sufficiently
good decidability and closure properties.



Definition 3 (Admissible class of automata). We call a class C of automata
admissible if it has the following properties:

1. Constructively decidable emptiness check: For every automaton A from C
and every state q of A, it is decidable if A has some path from q to an
accepting state, and if the answer is positive then the sequence of labels of
one such path can be computed.

2. Alphabet extension: There is an effective construction that given an automa-
ton A from C, and an alphabet Γ disjoint from the alphabet of A, produces
the automaton A	Γ that is obtained from A by adding a self-loop on every
state of A on every letter from Γ . Moreover, A	Γ also belongs to C.

3. Synchronized product with finite-state systems: There is an algorithm that
from a given automaton A from C and a finite-state automaton A′ over the
same alphabet, constructs the synchronous product A×A′, that belongs to
C, too. The states of the product are pairs of states of A and A′; there is a
transition on some letter from such a pair if there is one from both states in
the pair. A pair of states (q, q′) is accepting in the synchronous product iff
q is an accepting state of A and q′ is an accepting state of A′.

There are many examples of admissible classes of automata. The simplest is the
class of finite automata. Other examples are (configuration graphs of) pushdown
automata, higher-order pushdown automata with collapse, VASS with action
labels, lossy channel systems, etc. The closure under alphabet extensions required
by Definition 3 is only added for convenience, e.g. for building synchronized
products of automata over the same alphabets of actions.

From a dynamic parametric process S we obtain an automaton AS by declar-
ing all states final. That is, given the transition system S = 〈Q,G,X, V,∆, qinit, vinit〉
we set AS = 〈Q,ΣG,X,V , ∆,Q〉, where ΣG,X,V is the alphabet of actions appear-
ing in ∆. The automaton AS is called the associated automaton of S.

Theorem 1. Let C be an admissible class of automata. The reachability problem
for dynamic parametric processes with associated automata in C, is decidable.

As a corollary of the above theorem, we obtain that the reachability problem is
decidable for pushdown dynamic parametric processes, that is where each sub-
process is a pushdown automaton. Indeed, in this case C is the class of pushdown
automata. Similarly, we get decidability for dynamic parametric processes with
subprocesses being higher-order pushdown automata with collapse, and the other
classes listed above.

3 Set semantics

The first step towards deciding reachability for dynamic parametric processes is
to simplify the semantics. The idea of using a set semantics instead of a multiset
semantics already appeared in [9,4,11,5]. It reflects the idea that in the context of
parametrization, the semantics can be chosen as accumulative, in the sense that



we are only interested in sets of reachable configurations, rather then counting
their multiplicities. We adapt the set semantics to our model, and show that
it is equivalent to the multiset semantics — at least as far as the reachability
problem is concerned.

Set configuration trees or s-trees for short, are of the form

s ::= (q, λ, S)

where q ∈ Q, λ : X → V , and S is a finite set of s-trees. As in the case of m-trees,
we consider only finite s-trees. In particular, this means that s-trees necessarily
have finite depth. Configuration trees of depth 0 are those where S is empty.
The set S-treesk of s-trees of depth k ≥ 0 is defined in a similar way as the set
M-treesk of multiset configuration trees of depth k.

With a given dynamic parametric process S, the set semantics associates a
transition system [[S]]s with s-trees as states. Its transitions have the same labels
as in the case of multiset semantics. Moreover, we will use the same notation as
for multiset transitions. It should be clear which semantics we are referring to,
as we use t for m-trees and s for s-trees.

As expected, the initial s-tree is sinit = (qinit, λinit, ∅). The transitions are
defined as in the multiset case but for multiset actions that become set actions:

S
spawn(p)

=⇒ S ∪ {(p, λinit, ∅)} and S1
a

=⇒ S2 if a ∈ Σext

for S2 = S1 ∪ B where for each s2 ∈ B there is some s1 ∈ S1 so that s1
αa

=⇒ s2
for some sequence α ∈ (Σ \Σext)

∗.
The reachability problem for dynamic parametric processes under the set

semantics asks, like in the multiset case, whether there is some consistent run of
[[S]]s that contains an external write or an output of a special value #.

Proposition 1. The reachability problems of dynamic parametric processes un-
der the multiset and the set semantics, respectively, are equivalent.

4 External sequences and signatures

In this section we introduce the objects that will be useful for summarizing the
behaviors of sub-processes. Since our constructions and proofs will proceed by
induction on the depth of s-trees, we will be particularly interested in sequences
of external actions of subtrees of processes, and in signatures of such sequences,
as defined below. Recall the definition of the alphabet of external actions Σext

(see page 6). Other actions of interest are the spawns occurring in S:

Σsp = {spawn(p) : spawn(p) is a label of a transition in S}

Recall that according to our definitions, Σsp is finite.
For a sequence of actions α, let ext(α) be the subsequence of external actions

in α, with additional renaming of w , and r actions to actions without a bar, if



they refer to global variables g ∈ G:

ext(a) =


r(g, v) if a = r(g, v) or a = r(g, v)
w(g, v) if a = w(g, v) or a = w(g, v)
a if a = i(x, v) or a = o(x, v)
ε otherwise

Let
α

=⇒k stand for the restriction of
α

=⇒ to s-trees of depth at most k (the
trees of depth 0 have only the root). This allows to define a family of languages
of external behaviors of trees of processes of height k. This family will be the
main object of our study.

Extk = {spawn(p) ext(α) : (p, λinit, ∅)
α

=⇒k s for some s, spawn(p) ∈ Σsp}

The following definitions introduce abstraction and concretization operations
on (sets of) sequences of external actions. The abstraction operation extracts
from a sequence its signature, that is, the subsequence of first occurrences of
external actions:

Definition 4 (Signature, canonical decomposition). The signature of a
word α ∈ Σ∗ext , denoted sig(α), is the subsequence of first appearances of actions
in α.

For a word α with signature sig(α) = b0b1 · · · bk, the (canonical) decomposi-
tion is α = b0α1b1α2b2 · · ·αkbkαk+1, where bi does not appear in α1 · · ·αi, for
all i.

For words β ∈ Σsp · Σ∗ext the signature is defined by sig(spawn(p)α) =
spawn(p) · sig(α).

The above definition implies that α1 consists solely of repetitions of b0. In Ex-
ample 2 the signatures of the executions at level 1 are spawn(p)i(x, 0)o(x, 1),
spawn(p)i(x, 1)o(x, 2), and spawn(p)i(x, 1)o(x, 0). Observe that all signatures at
level 1 in this example are prefixes of the above signatures.

While the signature operation removes actions from a sequence, the con-
cretization operation lift inserts them in all possible ways.

Definition 5 (lift). Let α ∈ Σ∗ext be a word with signature b0, . . . , bn and
canonical decomposition α = b0α1b1α2b2 · · ·αkbkαk+1. A lift of α is any word
β = b0β1b1β2b2 · · ·βkbkβk+1, where βi is obtained from αi by inserting some
number of actions b0, . . . , bi−1, for i = 1, . . . , k + 1. We write lift(α) for the set
of all such words β. For a set L ⊆ Σ∗ext we define

lift(L) =
⋃
{lift(α) : α ∈ L}

We also define lift(spawn(p) ·α) as the set spawn(p) · lift(α), and similarly lift(L)
for L ⊆ Σsp ·Σ∗ext .

Observe that α ∈ lift(sig(α)). Another useful property is that if β ∈ lift(α) then
α, β agree in their signatures.



5 Systems under hypothesis

This section presents the proof of our main result, namely, Theorem 1 stating
that the reachability problem for dynamic parametric processes is decidable for
an admissible class of systems. Our algorithm will analyze a process tree level
by level. The main tool is an abstraction (summarization) of child sub-processes
by their external behaviors. We call it systems under hypothesis.

L

L(a) (b)

root process

root’s variable

read/write to globals

read/write to globalsread/write to globals

input/output

child process

a tree of 
subprocesses

Fig. 3. Reduction to a system under hypothesis.

Let us briefly outline this idea. A configuration of a dynamic parametric pro-
cess is a tree of sub-processes, Figure 3(a). The root performs (1) input/output
external operations, (2) read/writes to global variables, and (3) internal opera-
tions in form of reads/writes to its local variables, that are also accessible to the
child sub-processes. We are now interested in possible sequences of operations on
the global variables and the local variables of the root, that can be done by the
child sub-processes. If somebody provided us with the set Lp of all such possible
sequences, for child sub-processes starting at state p, for all p, we could simplify
our system as illustrated in Figure 3(b). We would replace the set of all sub-trees
of the root by (a subset of) L = {spawn(p)β : β ∈ pref(Lp), spawn(p) ∈ Σsp}
summarizing the possible behaviors of child sub-processes.

A set L ⊆ Σsp ·Σ∗ext is called a hypothesis, as it represents a guess about the
possible behaviors of child sub-processes.

Let us now formalize the notion of execution of the system under hypothesis.
For that, we define a system SL that cannot spawn child sub-processes, but
instead may use the hypothesis L. We will show that if L correctly describes
the behavior of child sub-processes then the set of runs of SL equals the set of
runs of S with child sub-processes. This approach provides a way to compute
the set of possible external behaviors of the original process tree level-wise: first
for systems restricted to s-trees of height at most 1, then 2, . . . , until a fixpoint
is reached.

The configurations of SL are of the form (q, λ,B), where λ is as before a
valuation of local variables, and B ⊆ pref(L) is a set of sequences of external
actions for sets of sub-processes.



The initial state is rinit = (qinit, λinit, ∅). We will use r to range over configu-

rations of SL. Transitions between two states r1
a
99KL r2 are listed in Figure 4.

Notice that transitions on actions of child sub-processes are modified so that
now L is used to test if an action of a simulated child sub-process is possible.

External transitions under hypothesis:

(q1, λ, B)
a
99KL (q2, λ, B) if q1

a−→ q2 if a ∈ Σext

(q, λ,B)
w(g,v)
99K L (q, λ,B ∪B′ · {w(g, v)}) if ∅ 6= B′ ⊆ B, B′ · {w(g, v)} ⊆ pref(L)

(q, λ,B)
r(g,v)
99K L (q, λ,B ∪B′ · {r(g, v)}) if ∅ 6= B′ ⊆ B, B′ · {r(g, v)} ⊆ pref(L)

Internal transitions under hypothesis:

(q1, λ, B)
τ
99KL (q2, λ, B) if q1

τ−→ q2

(q1, λ, B)
spawn(p)
99K L (q2, λ, B ∪ {spawn(p)}) if q1

spawn(p)−→ q2 and spawn(p) ∈ pref(L)

(q1, λ, B)
w(x,v)
99K L (q2, λ

′, B) if q1
w(x,v)−→ q2 and λ′ = λ[v/x]

(q1, λ, B)
r(x,v)
99K L (q2, λ, B) if q1

r(x,v)−→ q2 and λ(x) = v

(q, λ,B)
w(x,v)
99K L (q, λ′, B ∪B′ · {o(x, v)}) if ∅ 6= B′ ⊆ B, B′ · {o(x, v)} ⊆ pref(L)

λ′ = λ[v/x]

(q, λ,B)
r(x,v)
99K L (q, λ,B ∪B′ · {i(x, v)}) if ∅ 6= B′ ⊆ B, B′ · {i(x, v)} ⊆ pref(L),

λ(x) = v

Fig. 4. Transitions under hypothesis (g ∈ G, x ∈ X).

We list below two properties of 99KL. In order to state them in a convenient
way, we introduce a filtering operation filter on sequences. The point is that
external actions of child sub-processes are changed to r and w , when they are
exposed at the root of a configuration tree. In the definition below we rename
them back; additionally, we remove irrelevant actions. So filter(α) is obtained by
the following renaming of α:

filter :

r(x, v)→ i(x, v) , r(g, v)→ r(g, v) ,
w(x, v)→ o(x, v) , w(g, v)→ w(g, v) ,
a→ a if a ∈ Σsp ,
a→ ε otherwise

The next two lemmas follow directly from the definition of
α
99KL.

Lemma 1. If (q, λ, ∅) α
99KL (q′, λ′, B) then B ⊆ pref(L), and every β ∈ B is a

scattered subword of filter(α).

Lemma 2. If L1 ⊆ L2 and (p, λ, ∅) α
99KL1

r then (p, λ, ∅) α
99KL2

r.



The next lemma states a basic property of the relation
α
99KL. If we take for L the

set of all possible behaviors of child sub-processes with s-trees of height at most

k, then
α
99KL gives us all possible behaviors of a system with s-trees of height at

most k + 1. This corresponds exactly to the situation depicted in Figure 3. The
proof of the lemma is rather technical.

Lemma 3. Suppose L = Extk. For every p, q, λ, and α we have: (p, λinit, ∅)
α
99KL

(q, λ,B) for some B iff (p, λinit, ∅)
α

=⇒k+1 (q, λ, S) for some S.

The question we will pursue now is whether in the lemma above, we may replace
Extk with some simpler set and still get all computations of the system of height
k + 1. The key observation here here is that the lift operation (cf. Definition 5)
does not add new behaviours:

Lemma 4. Assume that L ⊆ Σsp ·Σ∗ext and L′ = lift(L). Then (p, λinit, ∅)
α
99KL

(q, λ,B) for some B ⊆ pref(L) iff (p, λinit, ∅)
α
99KL′ (q, λ,B′) for some B′ ⊆

pref(L′).

So Lemma 3 says that child sub-processes can be abstracted by their external
behaviors. Lemmas 2 and 4 allow to abstract a set L of external behaviors by
a subset L1 ⊆ L, as long as L ⊆ lift(L1) holds. This property suggests to use a
well-quasi-order to characterize a smallest such subset, which we call core:

Definition 6 (Order, core). We define an order on Σ∗ext by α 4 β if β ∈
lift(α). This extends to an order on Σsp ·Σ∗ext : spawn(p)α 4 spawn(q)β if p = q
and α 4 β. For a set L ⊆ Σsp · Σ∗ext , we define core(L) as the set of minimal
words in L with respect to the relation 4.

The following lemma is easy to see:

Lemma 5. The relation 4 is a well-quasi-order on words with equal signature.
Since the number of signatures is finite, the set core(L) is finite for every set
L ⊆ Σsp ·Σ∗ext .

Consider, e.g., the set L = Ext1 of all external behaviors of depth 1 in Example 1.
Then core(L) consists of the sequences:

spawn(q) w(g0,#), spawn(p) i(x, 1)o(x, 2)o(x, 3), spawn(p) i(x, 1)o(x, 3)o(x, 2)

together with all their prefixes (recall that k in Extk refers to s-trees of depth at
most k).

The development till now can be summarized by the following:

Corollary 1. For a set L ⊆ Σsp ·Σ∗ext and its core L′ = core(L):

(p, λinit, ∅)
α
99KL (q, λ,B) for some B ⊆ L iff (p, λinit, ∅)

α
99KL′ (q, λ,B′) for some

B′ ⊆ L′.

Proof. Since core(L) ⊆ L, the right-to-left implication follows by monotonicity.
For the other direction we observe that L ⊆ lift(core(L)), so we can use Lemma 4
and monotonicity. ut



Now we turn to the question of computing the relation
α
99KL for a finite set

L. For this we need our admissibility assumptions from page 9.

Proposition 2. Let C be an admissible class of automata, and let S be a tran-
sition system whose associated automaton is in C. Suppose we have two sets
L,L′ ⊆ Σsp ·Σ∗ext with L ⊆ L′ ⊆ lift(L). Consider the set

K = {spawn(p)ext(α) : spawn(p) ∈ Σsp and (p, λinit, ∅)
α
99KL′ r′, for some r′}

determined by S and L′. If L is finite then we can compute the sets

core(K) and core({α ∈ K : α consistent}) .

The proof of the above proposition works by augmenting the transition sys-
tem S by a finite-state component taking care of the valuation of local variables
and of prefixes of L that were used in the hypothesis. For this we use the last
two conditions of Def. 3. The admissibility of C (constructively decidable empti-
ness) is then used to compute the core of the language of the automaton thus
obtained.

Corollary 2. The sets core(Ext0) and core(Ext0 ∩Consistent) are computable.

Corollary 3. Under the hypothesis of Proposition 2: for every k ≥ 0, we can
compute core(Extk) and core(Extk ∩ Consistent).

Proof. We start with L0 = core(Ext0) that we can compute by Corollary 2.
Now assume that Li = core(Ext i) has already been computed. By Lemma 3,

Li+1 equals the core of {spawn(p)ext(α) : (p, λinit, ∅)
α
99KLi

r, some r} which, by
Proposition 2, is effectively computable. ut

Now we have all ingredients to prove Theorem 1.

Proof (of Theorem 1). Take a process S as in the statement of the theorem. The
external behaviors of S are described by the language

L =
⋃
k∈N
{spawn(p)ext(α) : (p, λinit, ∅)

α
99KExtk r, for some r}

If we denote Lk = core(Extk) then by Corollary 1, the language L is equal to

L′ =
⋃
k∈N
{spawn(p)ext(α) : (p, λinit, ∅)

α
99KLk

r, for some r}

By definition, Ext0 ⊆ Ext1 ⊆ · · · is an increasing sequence of sets. By Lemma 5,
this means that there is some m so that core(Extm) = core(Extm+i), for all i.
Therefore, L′ is equal to

{spawn(p)ext(α) : (p, λinit, ∅)
α
99KLm

r, for some r}

By Corollary 3, the set Lm = core(Extm) is computable and so is core(L′ ∩
Consistent). Finally, we check if in this latter set there is a sequence starting
with spawn(qinit) and an external write or an output of #. ut



6 Simpler cases

In this section we consider pushdown dynamic parametric processes, i.e., the case
where each sub-process can have its own stack. We show several restrictions of
the model yielding rather reasonable complexity for deciding reachability. Proofs
are omitted in this section, they can be found in the full version of the paper
http://arxiv.org/abs/1609.05385.

We start with the case where sub-processes cannot write to their own vari-
ables, but only to the variables of the parent. This corresponds to the situation
when after a parent has created child sub-processes, these child sub-processes
may communicate computed results to the parent, and to other sub-processes
created by the parent, but the parent cannot communicate to child sub-processes.
We call such a situation systems with generalized futures. We have seen an exam-
ple of such a system in Figure 1. Technically, systems with generalized futures
are obtained by disallowing w(x, v) actions in our general definition. We need
two more restrictions: first, we rule out global variables altogether; second, we
require that the initial value vinit of a register can be neither read nor written.
The first of the two restrictions follows the intuition that a parent should not
communicate with child sub-processes; the reason behind the second restriction
is that we want to avoid tracking when an initial value has been overwritten.

The reachability problem here is defined by the occurrence of an output
action o(x,#) of some special value #.

For systems with generalized futures, reachability can be decided by a cheaper
approach, based on signatures instead of cores.

Theorem 2. The reachability problem for pushdown dynamic parametric pro-
cesses with generalized futures is decidable in DExptime (exponential in |V |,
|X|, and polynomial in the size of the pushdown automaton defining S.)

A further simplification is to disallow i(x, v) actions. This means that child sub-
processes cannot read the value of the variable of their parents. Accordingly,
they still can report results, but no longer communicate between themselves.
We call this class systems with simple futures.

Theorem 3. The reachability problem is NP-complete for pushdown dynamic
parametric processes with simple futures, provided the number of variables is
fixed. The complexity becomes Ptime if the number of values is also fixed.

The two restrictions above disallowed global variables. The final restriction we
consider is to disallow local variables and to admit global variables instead. It
turns out that such systems can be flattened — implying that nesting of sub-
process creation does no longer add to expressivity. Accordingly, the complexity
is the same as for the parametrized model of [7,5]:

Theorem 4. The reachability problem for pushdown dynamic parametric pro-
cesses without local variables is Pspace-complete, assuming that the number of
variables is fixed.



7 Conclusions

We have studied systems with parametric process creation where sub-processes
may communicate via both global and local shared variables. This kind of com-
munication can model e.g. communication with message queues of capacity one.
We have shown that under mild conditions, the reachability problem for this
model is decidable. The algorithm relies on abstracting the behavior of the cre-
ated child sub-processes by means of finitely many minimal behaviors. This set
of minimal behaviors is obtained by a fixpoint computation whose termination
relies on well-quasi-orderings. This bottom-up approach is different from the
ones used before [7,5,11]. In particular, the presented approach avoids comput-
ing downward closures, showing that effectively computable downward closure
is not needed in the general decidability results on flat systems from [11]. In
particular, note that lossy channel systems form an admissible class of systems,
whereas their downward closures are not effective.

We have also considered special cases for pushdown dynamic parametric pro-
cesses where we obtained solutions of a relatively low complexity. In absence of
local variables we have shown that reachability can be reduced to reachability
for systems without dynamic sub-process creation, implying that reachability
is Pspace-complete. For the (incomparable) case where communication is re-
stricted to child sub-processes reporting their results to siblings and their par-
ents, we have also provided a dedicated method with DExptime complexity.
We conjecture that this bound is tight. Finally, when sub-processes can report
results only to their parents, the problem becomes just NP-complete.

An interesting problem for further research is to study the reachability of a
particular set of configurations as considered, e.g., for dynamic pushdown net-
works [2]. One such set could, e.g., specify that all children of a given sub-process
have terminated. For dynamic pushdown networks with nested or contextual
locking, such kinds of barriers have been considered in [6,13]. It remains as an
intriguing question whether or not similar concepts can be handled also for dy-
namic parametric processes.
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