
Weak Alternating Timed Automata

Pawel Parys1? and Igor Walukiewicz2??

1 Warsaw University,Poland
2 LaBRI, CNRS and Bordeaux University, France

Abstract. Alternating timed automata on infinite words are considered.
The main result is a characterization of acceptance conditions for which
the emptiness problem for the automata is decidable. This result implies
new decidability results for fragments of timed temporal logics. It is also
shown that, unlike for MITL, the characterisation remains the same even
if no punctual constraints are allowed.

1 Introduction

Timed automata [5] is a widely used model of real-time systems. It is obtained
from finite automata by adding clocks that can be reset and whose values can be
compared with constants. The crucial property of timed automata is that their
emptiness is decidable. Alternating timed automata have been introduced in [15,
20] following a sequence of results [1, 2, 19] indicating that a restriction to one
clock can make some problems decidable. The emptiness of one clock alternating
automata is decidable over finite words, but not over infinite words [23, 16].
Undecidability proofs rely on the ability to express “infinitely often” properties.
Our main result shows that once these kind of properties are forbidden the
emptiness problem is decidable.

To say formally what are “infinitely often” properties we look at the theory
of infinite sequences. We borrow from that theory the notion of an index of a
language. It is known that the index hierarchy is infinite with “infinitely often”
properties almost at its bottom. From this point of view, the undecidability result
mentioned above left open the possibility that safety properties and “almost
always” properties can be decidable. This is indeed what we prove here.

Automata theoretic approach to temporal logics [26] is by now a standard
way of understanding these formalisms. For example, we know that the modal
µ-calculus corresponds to all automata, and LTL to very weak alternating au-
tomata, or equivalently, to counter-free nondeterministic automata [29]. By trans-
lating a logic to automata we can clearly see combinatorial challenges posed by
the formalism. We can abstract from irrelevant details, such as a choice of opera-
tors for a logic. This approach was very beneficial for the development of logical
formalisms over sequences.

? Author supported by Polish government grant no. N206 008 32/0810.
?? Author supported by project DOTS (ANR-06-SETI-003).



An automata approach has been missing in timed models for an obvious
reason: no standard model of timed automata is closed under boolean operations.
Event-clock automata [7] may be considered as an exception, but the price to
pay is a restriction on the use of clocks. Alternating timed automata seem to be
a good model, although the undecidability result over infinite words shows that
the situation is more difficult than for sequences. Nevertheless, Ouaknine and
Worrell [22] have shown decidability of the emptiness problem provided all states
are accepting, and some locality restriction on the transition function holds.
Using this, they have identified a decidable fragment of MTL called Safety MTL.

In this paper we show that our main result allows to get a decidable fragment
of TPTL [8] with one variable, that we call Constrained TPTL. This fragment
contains Safety MTL and allows all eventually formulas. Its syntax has also some
similarities with another recently introduced logic: FlatMTL [11, 12]. We give
some elements of comparison between the logics later in the paper. In brief, the
reason why Constrained TPTL is not strictly more expressive than FlatMTL is
that the later includes MITL [6]. The later is a sub-logic of MTL where punctual
constraints are not allowed.

The case of MITL makes it natural to ask what happens to alternating timed
automata when we disallow punctual constraints. This is an interesting question
also because all known undecidability proofs have used punctual constraints in
an essential way. Our second main result (Theorem 4), says that the decidability
frontier does not change even if we only allow to test if the value of a clock is
bigger than 1. Put it differently, it is not only the lack of punctual constraints,
but also very weak syntax of the logic that makes MITL decidable.

Related work The idea of restricting to one clock automata dates back at least
to [14]. Alternating timed automata where studied in a number of papers [16, 23,
4, 3]. The most relevant result here is the decidability of the emptiness for the case
when when all states are accepting and some locality condition holds [22]. One of
technical contributions of the present paper is to remove the locality restriction,
and to add a non-accepting layer of states on the top of the accepting one.

For a long time MITL [6] was the most prominent example of a decidable
logic for real-time. In [23] Ouaknine and Worrell remark that MTL over finite
words can be translated to alternating timed automata, and hence it is decid-
able. They also show that over infinite words the logic is undecidable (which is a
stronger result than undecidability for the automata model in [16]). They have
proposed a fragment of MTL, called Safety MTL. Decidability of this fragment
was shown in [22] by reducing to the class of ATA mentioned in the previous
paragraph. A fragment of MTL called FlatMTL [11, 12] represents an interesting
but technically different direction of development (cf. Sect. 4).

We should also discuss the distinction between continuous and pointwise se-
mantics. In the later, the additional restriction is that formulas are evaluated
only in positions when an action happens. So the meaning of F(x=1)α in the
continuous semantics is that in one time unit from now formula α holds, while
in the pointwise semantics we additionally require that there is an action one
time unit from now. Pointwise semantics is less natural if one thinks of en-



coding properties of monadic predicates over reals. Yet, it seems sufficient for
descriptions of behaviors of devices, like timed automata, over time [24]. Here
we consider the pointwise semantics simply because the emptiness of alternating
timed automata in continuous semantics is undecidable even over finite words.
At present, it seems that an approach through compositional methods [13] is
more suitable to deal with continuous semantics.

The depth of nesting of positive and negative conditions of type “infinitely
often” is reflected in the concept of the index of an automaton. Wagner [27], as
early as in 1977, established the strictness of the hierarchy of indices for deter-
ministic automata on infinite words. Weak conditions were first considered by
Staiger and Wagner [28]. There are several results testifying their relevance. For
example Mostowski [17] has shown a direct correspondence between the index
of weak conditions and the alternation depth of weak second-order quantifiers.
For recent results on weak conditions see [18] and references therein.

Organization of the paper After a section with basic definitions we state our
main decidability result (Theorem 2) and an accompanying undecidability result
(Theorem 4). We give an outline of the proof of the former theorem. Sect. 4
introduces Constrained TPTL, gives a translation of the logic into a decidable
class of alternating timed automata, and discusses relations with FlatMTL.

For the reasons of space, proofs are largely omitted. They can be found in
the full version of the paper [25].
Acknowledgements: The second author would like to thank Abraham Riche for
his cooperation in early stages of this work.

2 Preliminaries

A timed word over a finite alphabet Σ is a sequence: w = (a1, t1)(a2, t2) . . . of
pairs from Σ×R+. We require that the sequence {ti}i=1,2,... is strictly increasing
and unbounded (non Zeno).

We will consider alternating timed automata (ATA) with one clock [16]. Let
x be this clock and let Φ denote the set of all comparisons of x with constants,
eg. (x < 1 ∧ x ≥ 0). A one-clock ATA over an alphabet Σ is a tuple

A = 〈Q,Σ, qo, δ, Ω : Q→ N〉

where Q is a finite set of states, and Ω determines the parity acceptance condi-
tion. The transition function of the automaton δ is a finite partial function:

δ : Q×Σ × Φ ·→ B+(Q× {nop, reset}).

where B+(Q×{nop, reset}) is the set of positive boolean formulas over atomic
propositions of the form >, ⊥, and (q, f) with q ∈ Q and f ∈ {nop, reset}.

Intuitively, automaton being in a state q, reading a letter a and having a clock
valuation satisfying θ can proceed according to the positive boolean formula
δ(q, a, θ). It means that if a formula is a disjunction then it chooses one of the



disjuncts to follow, if it is a conjunction then it makes two copies of itself each
following one conjunct. If a formula is “atomic” of the form (q, nop) or (q, reset)
then the automaton changes the state to q, and either does nothing or sets the
value of the clock to 0, respectively. Formula > is unconditionally accepting, and
⊥ unconditinally rejecting.

To simplify the definition of acceptance there is also one more restriction on
the transition function:

(Partition) For every q ∈ Q, a ∈ Σ and v ∈ R+, there is exaclty one θ
s.t. δ(q, a, θ) is defined, and v satisfies θ.

The acceptance condition of the automaton determines which infinite se-
quences of states (runs of the automaton) are accepting. A sequence q1q2 . . .
satisfies:

– weak parity condition if min{Ω(qi) : i = 1, 2, . . . } is even,
– strong parity condition if lim infi=1,2,...Ω(qi) is even.

Observe that the difference between weak and strong condition is that in the
weak case we consider all occurrences of states and in the strong case only those
that occur infinitely often. We will mostly use automata with weak conditions.
Whenever we will be considering strong conditions we will say it explicitly.

An alternating timed automaton A and a timed word w = (a1, t1)(a2, t2) . . .
determine the acceptance game GA,w between two players: Adam and Eve. In-
tuitively, the objective of Eve is to accept w, while the aim of Adam is the
opposite. A play starts at the initial configuration (q0, 0). It consists of poten-
tially infinitely many phases. The (k+1)-th phase starts in (qk, vk), ends in some
configuration (qk+1, vk+1) and proceeds as follows. Let v′ := vk + tk+1 − tk. Let
θ be the unique (by the partition condition) constraint such that v′ satisfies θ
and b = δ(qk, ak+1, θ) is defined. Now the outcome of the phase is determined
by the formula b. There are three cases:

– b = b1 ∧ b2: Adam chooses one of subformulas b1, b2 and the play continues
with b replaced by the chosen subformula;

– b = b1 ∨ b2: dually, Eve chooses one of subformulas;
– b = (q, f) ∈ Q×{nop, reset}: the phase ends with the result (qk+1, vk+1) :=

(q, f(v′)). A new phase is starting from this configuration.
– b = >,⊥ the play ends.

The winner is Eve if the sequence ends in >, or it is infinite and the states
appearing in the sequence satisfy the acceptance condition of the automaton.

Formally, a partial play is a finite sequence of consecutive game positions of
the form 〈k, q, v〉 or 〈k, q, v, b〉 where k is the phase number, b a boolean formula,
q a location and v a valuation. A strategy of Eve is a mapping that assigns to
each such sequence ending in Eve’s position a next move of Eve. A strategy is
winning if Eve wins whenever she applies this strategy.

Definition 1 (Acceptance). An automaton A accepts w iff Eve has a winning
strategy in the game GA,w. By L(A) we denote the language of all timed words
w accepted by A.



The Mostowski index of an automaton with the, strong or weak, acceptance
condition given by Ω is the pair consisting of the minimal and the maximal value
of Ω: (min(Ω(Q)),max(Ω(Q))). We may assume without a loss of generality that
min(Ω(Q)) ∈ {0, 1}. (Otherwise we can scale down the rank by Ω(q) := Ω(q)−
2.). Automata with strong conditions of index (0, 1) are traditionally called Büchi
automata and their acceptance condition is given by a set of accepting states
Q+ ⊆ Q; in our presentation theses are states with rank 0.

3 Decidability for One-Clock Timed Automata

We are interested in the emptiness problem for one clock ATA. As mentioned
in the introduction, the problem is undecidable for automata with strong Büchi
conditions. Here we will show a decidability result for automata with weak accep-
tance conditions of index (0, 1). A different presentation of these automata is that
they are strong Büchi automata where there are no transitions from an accepting
state to a non-accepting state. Indeed, once the automaton sees a state of prior-
ity 0 then any infinite run is accepting (but there may be runs that get blocked).
In the following we will write Q+ for accepting states, and Q− for the other
states. For automata presented in this way the (strong or weak) Büchi accep-
tance condition says simply: there are only finitely many states from Q−. So the
automaton accepts if Eve has a strategy to reach >, or to satisfy this condition.

Theorem 2. For one-clock Büchi alternating timed automata with no transi-
tions from states in Q+ to states in Q−: it is decidable whether a given automa-
ton accepts a non Zeno timed word.

Ouaknine and Worrell [21] have proved undecidability of MTL over infinite
timed words. Their construction immediately implies undecidability for weak
automata with (1, 2) condition. So the above decidability result is optimal with
respect to index of the accepting condition.

Theorem 3 (Ouaknine, Worell). It is undecidable whether a given one-clock
Büchi nondeterministic timed automaton A accepts every infinite word, even
when there are no transitions in A from states in Q− to states in Q+.

The construction in op. cit. relies on equality constraints. Indeed, if we do
not allow equality constraints in MTL then we get a fragment called MITL, and
satisfiability problem for MITL over infinite words is decidable [6]. We show that
this phenomenon does not appear in the context of automata.

Theorem 4. It is undecidable whether a given one-clock Büchi alternating timed
automaton A accepts an infinite word, even when there are no transitions in A
from states in Q− to states in Q+, and when A does not test for equality.

In the rest of the section we give an outline of the proof of Theorem 2. Due
to space restrictions it is not possible to present the proof of Theorem 4. The



proof given in the full version of the paper [25] shows undecidability even when
one uses only tests: (x ≥ 1), and its negation.

To fix the notation we take a one clock ATA:

A = 〈Q,Σ, qo, δ, Q+ ⊆ Q〉.

We will assume that the transition function satisfies the partition condition.
For simplicity, we also assume that every value of δ is a boolean formula in a
disjunctive normal form. Moreover, we will require that in every disjunct of every
transition of A there is some pair with reset and some pair with nop. Every
automaton can be easily put into this form.

Our first step will be to construct some infinite transition system H(A), so
that the existence of an accepting run of A is equivalent to the existence of some
good path in H(A). In the second step we will use some structural properties of
this transition system to show decidability of the problem.

3.1 Construction of H(A)

This is surely the less interesting part of the proof, unfortunately we need to
spend some time here as H(A) is the object we work with in the second step.

We need to reformulate the definition of acceptance of A in terms of a se-
quence instead of a tree. Additionally, we would like to abstract from time values
in states and transitions, but still be able to tell if a run is non Zeno.

We start with the definition of regions. As we have only one clock we take:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (dmax − 1, dmax), {dmax}, (dmax,+∞)},

where dmax denotes the biggest constant appearing in δ, i.e., the transition
function of the automaton. There are three kinds of regions: bounded intervals
(denoted regI), one-point regions (denoted regP ), and one unbounded interval
(dmax,+∞). We will use the notation Ii for the region (i − 1, i). In a similar
way, I∞ will stand for (dmax,+∞). For v ∈ R+, let reg(v) denote its region;
and let fract(v) denote the fractional part of v.

We will use the transition alphabet:

Σ = Σ ∪ {(delay, ε)} ∪ ({delay} ×Σ).

A transition on a ∈ Σ will represent an execution of an action. A transition
on (delay, ε) will represent a passage of time with some valuation changing a
region. Finally, we will have the most complicated case of (delay, a) transitions.
Such a transition simulates a passage of time until a region becomes a one-point
region, execution of the action at this moment, and letting some time pass to
get into the next interval region. We will only present the transitions of the last
type, the other two being simpler.

In H(A) the states will be finite words of the form Λ∗I · Λ∞, where ΛI =
P(Q × regI) and Λ∞ = P(Q × {∞}). The transitions on an action (delay, a)
will have the form:

(λ1 . . . λk, λ∞)
(delay,a)−→ (δ′λ′1 . . . λ

′
k−1, λ

′′
∞)



where the elements on the right are obtained by performing the following steps:

– (Letting the time pass to reach singleton region.) We change regions in λk.
Every pair (q, Id) ∈ λk becomes (q, {d}). Let us denote the result by λ1

k.
– (Performing the action.) For i = 1, . . . , k,∞ we take λ′i, δ

′
i such that: λ1

k
a−→A

(λ′k, δ
′
k) and λi

a−→A (λ′i, δ
′
i) for i 6= k.

– (Letting the time pass again) We increase again regions in λ′k: from {d} they
become Id+1, or I∞ if d = dmax.

– (Grouping the results) We put δ′ =
⋃
δ′i ∪ {(q, Id) : (q, {d}) ∈ λ′k, d < dmax}

and λ′′∞ = λ′∞ ∪ {(q, I∞) : (q, {dmax}) ∈ λ′k}.

We write c→ c′, c
(delay,·)−→ c′, c � c′, c

Σ∗

� c′ to denote that we may go from
a configuration c to c′ using one transition, one transition reading a letter of the
form (delay, ·), any number of transitions or any number of transitions reading
only letters from Σ, respectively.

We say that a path is good if it passes through infinitely many transitions
labelled by letters (delay, ·). The whole point of this type of transitions is that
they allow to capture non Zeno behaviours:

Lemma 5. A accepts an infinite non Zeno timed word iff there is a good path in
H(A) starting in the state ({(q0, I1)}, {∅, I∞}) with only finitely many appear-
ances of states from Q−.

3.2 Finding a Good Path in H(A).

By Lemma 5, our problem reduces to deciding if there is a good path in H(A).
The decision procedure works in two steps. In the first step we compute the set
Ĝ of all configurations from which there exists a good computation. Observe
that if a configuration from Ĝ has only states from Q+ then this configuration is
accepting. So, in the second step it remains to consider configurations that have
states from both Q− and Q+. This is relatively easy as an accepting run from
such a configuration consists of a finite prefix ending in a configuration without
states from Q− and a good run from that configuration. Hence, there is a good
accepting computation from a configuration iff it is possible to reach from it a
configuration in Ĝ that has only Q+ states. Once we know Ĝ, the later problem
can be solved using the standard reachability tree technique.

Computing accepting configurations. We start with the second step of our pro-
cedure as it is much easier than the first one. We need to decide if from an initial
state one can reach a configuration in Ĝ having only Q+ states. We can assume
that we are given Ĝ but we need to discuss a little how it is represented. It
turns out that there are useful well-quasi-orders on configurations that allow to
represent Ĝ in a finitary way.

A well-quasi-order is a relation with a property that for every infinite se-
quence c1, c2, . . . there exist indexes i < j such that the pair (ci, cj) is in the
relation.



The order we need is the relation, denoted �, over configurations of H(A):
we put (λ1 . . . λk, λ∞) � (λ′1 . . . λ

′
k′ , λ

′
∞) if λ∞ ⊆ λ′∞ and there exists a strictly

increasing function f : {1, . . . , k} → {1, . . . , k′} such that λi ⊆ λ′f(i) for each
i. Observe that here we use the fact that each λi is a set so we can compare
them by inclusion. This relation is somehow similar to the relation of being a
subsequence, but we do not require that the corresponding letters are equal, only
that the one from the smaller word is included in the one from the greater word.
A standard application of Higman’s lemma proves that � is a well-quasi-order.

The next lemma shows an important interplay between � relation and tran-
sitions of H(A).

Lemma 6. Let c1, c′1, c2 be configurations of H(A) such that c′1 � c1. Whenever
c1 � c2, then there exist c′2 � c2 such that c′1 � c′2 and the second computation
has the length not greater than the first one. Similarly, when from c1 there exists
a good computation, then from c′1 such a computation exists.

The proof of the lemma follows from examining the definition of transitions.
Some care is needed to ensure that the matching computation is good.

Corollary 7. The set Ĝ is downwards closed, so it can be described by the finite
set of minimal elements that do not belong to it.

As we have mentioned, there is a good accepting computation from a con-
figuration iff it is possible to reach from it a configuration from Ĝ that has only
Q+ states. A standard argument based on well-quasi-orders and examination of
a finite part of the reachability tree shows that this property is decidable.

Lemma 8. Let X be a downwards closed set in H(A). It is decidable if from a
given configuration one can reach a configuration in X with all states in Q+.

Computing Ĝ. In the rest of the section we deal with the main technical problem
of the proof that is computing the set Ĝ of all configurations from which there
exist a good computation. We will actually compute the complement of Ĝ. While
we will use well-orderings in the proof, standard termination arguments do not
work in this case. We need to use in an essential way a very special form of
transitions our systems have.

We write X↑= {c : ∃c′∈Xc′ � c} for an upward closure of set X. Observe
that by Lemma 6 the complement of Ĝ is upwards closed.

Let set pre∀delay (respectively pre∀Σ∗) contain all configurations, from which
after reading any letter (delay, ·) (any number of letters from Σ), we have to
reach a configuration from X:

pre∀delay(X) ={c : ∀c′(c
(delay,·)−→ c′ ⇒ c′ ∈ X)}

pre∀Σ∗(X) ={c : ∀c′(c
Σ∗

� c′ ⇒ c′ ∈ X)}.

We use these pre operations to compute a sequence of sets of configurations:

Z−1 = ∅ Zi = pre∀Σ∗(pre
∀
delay(Zi−1↑)).



It is important that we may effectively represent and compare all the sets
Zi ↑. Because the relation � is a well-quasi-order, any upward closed set X ↑
may be represented by finitely many elements c1, . . . , ck (called generators) such
that X↑= {c1, . . . , ck}↑. Moreover, an easy induction shows that Zi−1↑⊆ Zi↑ for
every i (because both pre∀ operations preserve inclusion). Once again, because
relation � is a well-quasi-order, there has to be i such that Zi−1↑= Zi↑. Let us
write Z∞ for this Zi.

First, we show that Z∞ is indeed the complement of Ĝ.

Lemma 9. There is a good computation from a configuration c iff c 6∈ Z∞↑.

To compute Z∞ it is enough to show how to compute Zi↑ from Zi−1↑. This
is the most difficult part of the proof. Once this is done, we can calculate all the
sets Zi↑, starting with Z−1 = ∅ and ending when Zi−1↑= Zi↑.

The main idea in calculating pre∀Σ∗(pre
∀
delay(X)) is that the length of its

generators may be bounded by some function in the length of generators of X.

Lemma 10. Given an upwards closed set X we can compute a constant D(X)
(which depends also on our fixed automaton A) such that the size of every min-
imal element of pre∀Σ∗(pre

∀
delay(X)) is bounded by D(X)

Once we know the bound on the size of generators, we can try all potential
candidates. The following lemma shows that it is possible.

Lemma 11. For all upper-closed sets X, the membership in pre∀Σ∗(pre
∀
delay(X))

is decidable.

These two lemmas allow us to calculate Zi from Zi−1, and this is the last
piece we need to complete the proof the theorem. The proofs of the lemmas are
quite long, and require some additional notions. They can be found in the full
version of the paper [25].

4 Constrained TPTL

We present a fragment of TPTL (timed propositional temporal logic) that can
be translated to automata from our decidable class. We compare this fragment
with other known logics for real time. We will be rather brief in presentations of
different formalisms and refer the reader to recent surveys [9, 24].

TPTL[8] is a timed extension of linear time temporal logic that allows to
explicitly set and compare clock variables. We will consider the logic with only
one clock variable, and we denote it by TPTL1. The syntax of the logic is:

p | α ∧ β | α ∨ β | αUβ | αŨ β | x ∼ c | x.α

where: p ranges over action letters, x is the unique clock variable, and x ∼ c is
a comparison of x with a constant. We do not have negation in the syntax, but
from the semantics it will be clear that the negation is definable.

The logic is evaluated over timed sequences w = (a1, t1)(a2, t2) . . . We define
the satisfiability relation, w, i, v � α saying that a formula α is true at a position
i of a timed word w with a valuation v of the unique clock variable:



w, i, v � p if ai = p
w, i, v � x.α if w, i, ti � α w, i, v � x ∼ c if ti − v ∼ c
w, i, v � αUβ if ∃j>i (w, j, v � β and ∀k∈(i,j) w, k, v � α)
w, i, v � αŨβ if ∀j>i (w, j, v � β or ∃k∈(i,j) w, k, v � α)

Until operators permit us to introduce sometimes and always operators:

Fα ≡ ttUα Aα ≡ ff Ũα.

For the following, it will be interesting to note that the two until operators are
inter-definable once we have always and sometimes operators:

αŨβ ≡ Aβ ∨ βUα αUβ ≡ Fβ ∧ βŨα.

Observe that TPTL1 subsumes metric temporal logic (MTL). For example:
αU(i,j)β of MTL is equivalent to x.(αU((x > i) ∧ (x < j) ∧ β)). We will not
present MTL here, but rather refer the reader to [10] where it is also shown that
the following TPTL1 formula is not expressible in MTL:

x.(F (b ∧ F (c ∧ x ≤ 2))). (1)

Informally, the formula says that there is an event b followed by an event c in
less than 2 units of time.

The satisfiability problem over infinite timed sequences is undecidable for
MTL [21], hence also for TPTL1. Using our decidability result for alternating
timed automata, we can nevertheless find a decidable fragment, that we call
Constrained TPTL. The definition of this fragment will use an auxiliary notion
of positive TPTL1 formulas:

p | x.ϕ | x ∼ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕŨψ | F ((x ≤ c) ∧ ψ).

These formulas can be translated into automata where all states are accept-
ing. Observe that the formula (1) belongs to the positive fragment if we add
redundant (x ≤ 2) after b. The set of formulas of Constrained TPTL is:

p | x.ϕ | x ∼ c | α ∨ β | α ∧ β |αUβ | ϕ ϕ positive.

A translation of Constrained TPTL to automata is similar in a spirit to that for
Safety MTL [22]. Once again we refer the reader to the full version [25].

Theorem 12. It is decidable if there is a non Zeno timed word that is a model
of a given Constrained TPTL formula. The complexity of the problem cannot be
bounded by a primitive recursive function.

Safety MTL [22] can be seen as a MTL fragment of positive TPTL. In-
deed, both formalisms can be translated to automata with only accepting states,
but the automata obtained from MTL formulas have also the locality property
(cf. [22]). This property ensures that the clock is always reset when changing
state. The example (1) shows that this is not the case for TPTL.



Using equivalences mentioned above, FlatMTL [11] with pointwise non Zeno
semantics can be presented as a set of formulas given by the grammar:

p | α ∨ β | α ∧ β | αUJβ | χUIβ| χ J bounded and χ ∈MITL

The original definition admits more constructs, but they are redundant in the
semantics we consider. Both FlatMTL and Constrained TPTL use two sets of
formulas. The MTL part of the later logic would look like

p | α ∨ β | α ∧ β | αUIβ | ϕ ϕ positive.

From this presentation it can be seen that there are at least two important
differences: Constrained TPTL does not have restrictions on the left hand side
of until, and it uses positive fragment instead of MITL. We comment on these
two aspects below.

Unrestricted until makes the logic more expressive but also more difficult
algorithmically. For example, already the logic generated by the later grammar
without the clause for positive formulas has non primitive recursive complexity.
This should be contrasted with Expspace-completeness result for FlatMTL.

The use of positive fragment instead of MITL is also important. The two
formalisms have very different expressive powers. The crucial technical property
of MITL is that a formula of the form αUIβ can change its value at most three
times in every unit interval. This is used in the proof of decidability of FlatMTL,
as the MITL part can be described in a “finitary” way. The crucial property
of the positive fragment is that it can express only safety properties (and all
such properties). We can remark that by reusing the construction of [21] we get
undecidability of the positive fragment extended with a formula expressing that
some action appears infinitely often. Theorem 4 implies that this is true even if
we do not use punctual constraints in the positive fragment. In conclusion, we
cannot add MITL to the positive fragment without losing decidability.

References

1. P. Abdulla and B. Jonsson. Veryfying networks of timed processes. In Proc.
TACAS’98, volume 1384 of LNCS, pages 298–312, 1998.

2. P. Abdulla and B. Jonsson. Timed Petri nets and BQOs. In Proc. ICATPN’01,
pages 53–70, 2001.

3. P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Worrell. Universality
analysis for one-clock timed automata. Fundam. Inform., 89(4):419–450, 2008.

4. P. A. Abdulla, J. Ouaknine, K. Quaas, and J. Worrell. Zone-based universality
analysis for single-clock timed automata. In FSEN, number 4767 in LNCS, pages
98–112, 2007.

5. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

6. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116–146, 1996.

7. R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science, 204, 1997.



8. R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204,
1994.

9. P. Bouyer. Model-checking timed temporal logics. In Workshop on Methods for
Modalities (M4M-5), Electronic Notes in Theoretical Computer Science, Cachan,
France, 2009. Elsevier Science Publishers. To appear.

10. P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL.
In FSTTCS, volume 3821 of LNCS, pages 432–443, 2005.

11. P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality. In
LICS, pages 109–120, 2007.

12. P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and com-
plexity in real-time model checking. In ICALP, volume 5126 of LNCS, pages
124–135, 2008.

13. Y. Hirshfeld and A. M. Rabinovich. Logics for real time: Decidability and com-
plexity. Fundam. Inform., 62(1):1–28, 2004.

14. D. V. Hung and W. Ji. On the design of hybrid control systems using automata
models. In FSTTCS, number 1180 in LNCS, pages 156–167, 1996.

15. S. Lasota and I. Walukiewicz. Alternating timed automata. In FOSSACS’05,
number 3441 in Lecture Notes in Computer Science, pages 250–265, 2005.

16. S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput.
Log., 9(2), 2008.

17. A. W. Mostowski. Hierarchies of weak automata and week monadic formulas.
Theoretical Computer Science, 83:323–335, 1991.

18. F. Murlak. Weak index versus borel rank. In STACS, Dagstuhl Seminar Proceed-
ings, pages 573–584. Dagsr, 2008.

19. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In Proc. LICS’04, pages 54–63, 2004.

20. J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS,
pages 188–197, 2005.

21. J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines.
In FoSSaCS, volume 3921 of LNCS, pages 217–230, 2006.

22. J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable. In
TACAS, number 3920 in LNCS, pages 411–425, 2006.

23. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

24. J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In
FORMATS, number 5215 in LNCS, pages 1–13, 2008.

25. P. Parys and I. Walukiewicz. Weak alternating timed automata. HAL,
http://hal.archives-ouvertes.fr/hal-00360122/fr/, 2009.

26. M. Y. Vardi and P.Wolper. Automata theoretic techniques for modal logics of
programs. In Sixteenth ACM Symposium on the Theoretical Computer Science,
1984.

27. K. Wagner. Eine topologische Charakterisierung einiger Klassen regulärer Folgen-
mengen. J. Inf. Process. Cybern. EIK, 13:473–487, 1977.

28. K. Wagner and L. Staiger. Automatentheoretische und automatenfreie charakter-
isierungen topologischer klassen regularer folgenmengen. EIK, 10:379–392, 1974.

29. T. Wilke. Classifying discrete temporal properties. Habilitation thesis, Kiel, Ger-
many, 1998.


