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Abstract. A web service is modeled here as a finite state machine. A
composition problem for web services is to decide if a given web service
can be constructed from a given set of web services; where the construc-
tion is understood as a simulation of the specification by a fully asyn-
chronous product of the given services. We show an EXPTIME-lower
bound for this problem, thus matching the known upper bound. Our
result also applies to richer models of web services, such as the Roman
model.
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1 Introduction

Inherently distributed applications such as web services [1] increasingly
get into the focus of automated verification techniques. Often, some basic
e-services are already implemented, but no such simple service can an-
swer to a more complex query. For instance, a user interested in hiking
Mt. Everest will ask a travel agency for information concerning weather
forecast, group travels, guides etc. The travel agency will contact different
e-services, asking for such information and making appropriate reserva-
tions, if places are available. In general, single services such as weather
forecast or group reservations, are already available and it is important to
be able to reuse them without any change. The task of the travel agency
is to compose basic e-services in such a way that the user’s requirements
are met (and eventually some constraints wrt. the called services, such as
avoiding unreliable ones). Thus, one main objective is to be able to check
automatically that the composition of basic e-services satisfies certain
desirable properties or realizes another complex e-service.

In this paper we study a problem that arises in the composition of e-
services as considered in [2–4]. The setting is the following: we get as input
a specification (goal) B, together with n available services A1, . . . ,An.
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Then we ask whether the composition of the services Ai can simulate the
behavior of the goal B. This problem is known as composition synthesis.
It amounts to synthesize a so-called delegator, that tells at any moment
which service must perform an action. In essence, a delegator corresponds
to a simulation of the goal service B by the composition of the available
services Ai. In the most general setting, as considered for instance in
[9, 8], services are modeled by communicating finite state machines [5],
that have access to some local data. In this paper, we reconsider the
simplified setting of the so-called Roman model [2] where services are
finite state processes with no access to data. This restriction is severe,
but it captures some quite natural cases. First, messages exchanged by
services are often synchronous (hand-shaking), which means that we do
not need the full power of communication channels. Second, even when
data-driven web applications are considered, some restrictions on data
are needed. For instance, [7] assumes that specific user information is
considered as constants in the data base scheme.

The main result of this paper is the Exptime lower bound for the
composition synthesis problem in the very simple setting where the com-
position of the finite state machines Ai is fully asynchronous (in particular
there is no communication). We also show that the same question can be
solved in polynomial time if we assume that the sets of actions of the
available machines are pairwise disjoint, i.e., each request can be handled
by precisely one service. Note that in the latter case, the set of actions
depends of course on the number of processes, whereas for the first re-
sult we show that the case where the set of actions is fixed is already
Exptime-hard. Thanks to the simplicity of the considered model the
same lower bounds hold also for much richer frameworks, as for example
Colombo [3]. For the Roman model a matching Exptime upper bound is
known [2]. The complexity of the composition problem for Colombo de-
pends on restrictions of the model and is undecidable in the most general
case.

As related work, it is worth mentioning the approach of Pistore et
al. [11] who use planning techniques. The other difference is that the final
goal is specified by a formula, and not as a simulation condition as we
have here. Moreover, the accent there is put on satisfying one demand,
i.e., constructing a sequence of actions rather than a transition system,
i.e. a new service. The other possibility is to consider bisimulation instead
of simulation relation. This corresponds to the so-called orchestration

problem, where the issue is to find a communication architecture of the
available services, that is equivalent to the goal, modulo bisimulation. We
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think that this is less natural in our simple setting, mainly due the nature
of the service composition which is modeled here as a fully asynchronous
product. Bisimulation requirement would mean also that the client should
be prepared to admit all the interleavings possible in the composition,
which usually makes the specification of the client’s goal too complex. A
result that is closely related to ours is the Exptime completeness of the
simulation and bisimulation problems between non-flat systems [10]. The
main difference to our setting is that both system and services are given
as composition of finite state machines using (binary) synchronization on
actions, i.e., an action can synchronize two services. In a sense this paper
shows that the lower bound for the simulation relation holds even without
any synchronization.

2 Notations

An asynchronous product of n deterministic automata

Ai = 〈Qi, Σi, q
0
i , δi : Qi × Σi → Qi〉

is a nondeterministic automaton:

A1 ⊗ · · · ⊗ An = 〈Q,Σ,q, δ : Q × Σ → P(Q)〉

where: Q = Q1 × · · · × Qn; Σ =
⋃

i=1,...,n Σi; q = (q0
1, . . . , q

0
n); and δ is

defined by:

t ∈ δ(s, a) iff for some i, ti = δi(si, a) and for all j 6= i we have
tj = sj.

Observe that the product automaton can be non deterministic because
the alphabets Σi are not necessarily disjoint.

We define a simulation relation on nondeterministic automata in a
standard way. Take two nondeterministic automata A = 〈QA, Σ, q0

A, δA :
QA × Σ → P(QA)〉 and B = 〈QB , Σ, q0

B , δB : QB × Σ → P(QB)〉 over
the same alphabet. The simulation relation 4⊆ QA × QB is the biggest
relation such that if qA 4 qB then for every a ∈ Σ and every q′A ∈
δA(qA, a) there is q′B ∈ δB(qB, a) such that q′A 4 q′B . We write A 4 B if
q0
A 4 q0

B.

Problem: Given n deterministic automata A1, . . . ,An and a deterministic
automaton B decide if B 4 A1 ⊗ · · · ⊗ An.

We will show that this problem is Exptime-complete. It is clearly
in Exptime as one can construct the product A1 ⊗ · · · ⊗ An explicitly
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and calculate the biggest simulation relation with B. The rest of this
paper will contain the proof of Exptime-hardness. We will start with the
Pspace-hardness, as this will allow us to introduce the method and some
notation.

3 Pspace-hardness

We will show Pspace-hardness of the problem by reducing it to the exis-
tence of a looping computation of a linearly space bounded deterministic
Turing machine. The presented proof of the Pspace bound has the ad-
vantage to generalize to the encoding of alternating machines that we will
present in the following section.

Fix a deterministic Turing machine M working in space bounded by
the size of its input. We want to decide if on a given input the computation
of the machine loops. Thus we do not need any accepting states in the
machine and we can assume that there are no transitions from rejecting
states. We denote by Q the states of M and by Γ the tape alphabet of
M . A configuration of M is a word over Γ ∪ (Q × Γ ) with exactly one
occurrence of a letter from Q× Γ . A configuration is of size of n if it is a
word of length n. Transitions of M will be denoted as qa −→ q′bd, where
q, q′ are the old/new state, a, b the old/new tape symbol and d ∈ {l, r}
the head move.

Suppose that the input is a word w of size n. We will construct au-
tomata A1, . . . ,An and B such that B 4 A1⊗· · ·⊗An iff the computation
of M on w is infinite.

We start with some auxiliary alphabets. For every i = 1, . . . , n let

Γi = Γ × {i} and ∆i = (Q × Γi) ∪ (Q × Γi × {l, r}) .

We will write ai instead of (a, i) for elements of Γi. Let also ∆ =
⋃

i=1,...,n ∆i.

The automaton Ai = 〈Qi, Σi, q
0
i ,−→〉 is defined as follows:

– The set of states is Qi = Γ ∪ (Q × Γ ) ∪ {⊤}, and the alphabet of the
automaton is Σi = ∆.

– We have transitions:
• a

qai

−→ qa, for all a ∈ Γ and q ∈ Q,

• qa
q′bid
−→ b, for qa → q′bd the transition of M on qa (there is at most

one).
• From a, transitions on letters in ∆i \ {qai : q ∈ Q} go to ⊤.

Similarly, from qa transitions on ∆i \ {qbid} go to ⊤ if there is a
transition of M on qa; if not, then qa has no outgoing transitions.
From ⊤ there are self-loops on all letters from ∆.
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– For i = 2, . . . , n the initial state of Ai is wi, the i-th letter of w; for
A1 the initial state is q0w1, i.e., the initial state of M and the first
letter of w.

Figure 1 shows a part of Ai:

⊤ qa

a b

qai

∆i
\ {

qai
: q

∈ Q}

∆i \ {q
′bid}

q′bid

∆

Fig. 1. Part of Ai

The idea is classical: automaton Ai controls the i-th tape symbol,
whereas automaton B defined below is in charge of the control part of M .
The challenge is to do this without using any synchronization between
adjacent automata Ai,Ai+1. Next, we introduce an automaton K that
will be then used to define B. The set of states of K is QK = {s, e} ∪
(Q×

⋃
Γi ×{l, r}); the initial state is s and the final one e; the alphabet

is ∆; the transitions are defined by:

– s
q′bir
−→ q′bir for i = 1, . . . , n − 1, whenever we have a transition qa →

q′br in M for some state q and some letter a;

– s
q′bi+1l
−→ q′bi+1l for i = 2, . . . , n, whenever we have a transition qa → qbl

in M for some state q and some letter a;

– q′bir
q′ci+1

−→ e and q′bi+1l
q′ci

−→ e for all c ∈ Γ .

We define B as the minimal deterministic automaton recognizing (L(K))∗.
In other words, B is obtained by gluing together states s and e. Figure 2
is a schema of the automaton K.

Remark 1. All Ai and B are deterministic automata of size polynomial
in n. The input alphabets of the Ai are almost pairwise disjoint: the only
states with common labels on outgoing transitions are the ⊤ states.

Definition 1. We say that a configuration C of size n of M corresponds
to a global state s of A1 ⊗ · · · ⊗An iff si = C(i) for i = 1, . . . , n; in other

words, if the state of Ai is the same as the i-th letter of C.
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s e

q′bi+1l

q′bir

q′bi+1l

q′bir

q′ci

q′ci+1

Fig. 2. Automaton K

Definition 2. We say that a global state s of A1 ⊗ · · · ⊗ An is proper
when there is no ⊤-state in s.

Lemma 1. If s is a proper state then for every letter a ∈ ∆ there is at

most one transition of A1 ⊗ · · · ⊗ An from s on a. Once the automaton

enters a state that is not proper it stays in non proper states.

It is easy to see that from a non proper state, A1 ⊗ · · ·⊗An can simulate
any state of B. The reason is that from ⊤, any move on letters from ∆ is
possible.

Lemma 2. Suppose that A1 ⊗ · · · ⊗ An is in a state s that corresponds

to a configuration C of M .

– If C is a configuration with no successor, then there is a word v ∈
L(K) that cannot be simulated by A1 ⊗ · · · ⊗ An from s.

– Otherwise the successor configuration C ⊢ C ′ exists, and there is a

unique word v ∈ L(K) such that s
v

−→ t and t is proper. Moreover

t corresponds to C ′. All other words from L(K) lead to non proper

configurations of A1 ⊗ · · · ⊗ An.

Proof. For the first claim, assume that s corresponds to a configuration,
thus there is exactly one i such that Ai is in a state from Q × Γ . The
other automata are in states from Γ .

If C is terminal then Ai is in a state qa which has no outgoing tran-
sition. This means that this state can simulate no move on letters q′bir,
for q′ ∈ Q and bi ∈ Γi (and such a move exists in K, as the machine M

must have a move to the right if it is nontrivial). All other automata are
also not capable to simulate q′bir as they can do only moves on letters
∆j for j 6= i.

Now suppose that C ⊢ C ′. To avoid special, but simple, cases suppose
that the position i of the state is neither the first nor the last. Let si = qa
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and suppose also that qa → q′br is the move of M on qa. The case when
the move is to the left is similar.

The only possible move of K from s which will put A1 ⊗ · · · ⊗ An

into a proper state is q′bir. This makes Ai to change the state to b and
it makes K to change the state to q′bir. From this latter state the only
possible move of K is on letters q′c′i+1 for arbitrary c′ ∈ Γ . Suppose that
Ai+1 is in the state c = si+1 ∈ Γ , then all moves of K on q′c′i+1 with
c′ 6= c can be matched with a move to ⊤ of Ai+1. On q′ci+1 the automaton
Ai+1 goes to q′c and automaton K goes to e. This way the state in the
configuration is changed and transmitted to the right. We have that the
new state of A1 ⊗ · · · ⊗ An corresponds to the configuration C ′.

Lemma 3. We have B 4 A1⊗· · ·⊗An iff M has an infinite computation.

Proof. Recall that B is the minimal deterministic automaton recogniz-
ing (L(K))∗, and has initial state s. The initial state of A1 ⊗ · · · ⊗ An

corresponds to the initial configuration C0 of M . We show that s 4 t

with t corresponding to a configuration C of M , iff the computation of
M starting in C is infinite.

From a configuration C, machine M has only one computation: either
infinite, or finite that is blocking. Suppose that the computation from
C has at least one step and let C1 be the successor configuration. By
Lemma 2 from state s there is exactly one word v1 ∈ L(K) such that
A1 ⊗ · · · ⊗ An in order to simulate it is forced to go to a proper state t1.
Morover t1 corresponds to C1. On all other words from L(K), the product
A1⊗· · ·⊗An can go to a non proper state and from there it can simulate
any future behaviour of B. If C1 has no successor configuration then,
again by Lemma 2, there is a word in L(K) that cannot be simulated
by A1 ⊗ · · · ⊗ An from t1. If C1 has a successor then we repeat the
whole argument. Thus the behaviour of B from s can be simulated by
A1 ⊗ · · · ⊗ An from the state corresponding to C iff the machine M has
an infinite computation starting from C.

One can note that the construction presented in this section uses
actions that are common to several processes in a quite limited way:
the only states that have common outgoing labels are the ⊤ states from
which all behaviours are possible. This observation motivates the question
of the complexity when the automata A1, . . . ,An have pairwise disjoint
alphabets. With this restriction, the simulation problem can be solved
efficiently:
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Theorem 1. The following question can be solved in polynomial time:

Input: n deterministic automata A1, . . . ,An over pairwise disjoint in-

put alphabets, and a deterministic automaton B.

Output: decide if B 4 A1 ⊗ · · · ⊗ An.

Proof. Let Ci be a automaton with a single state ⊤, and with self-loops
on every letter from the alphabet Σi of Ai. We write A(i) for the asyn-
chronous product of all Cj, j 6= i, and of Ai. Similarly, t(i) will denote t

with all components but i replaced by ⊤. Suppose now that p is a state of
B, and t a state of A1 ⊗ · · · ⊗An. We write p 4i t if p is simulated by t(i)

in A(i). Notice that since B and Ai are both deterministic, we can decide
if p 64i t in logarithmic space (hence in polynomial time), by guessing
simultaneously a path in B and one in Ai.

We show now that p 4 t in A1 ⊗ · · · ⊗ An iff p 4i t for all i.
If p 4 t, then all the more p 4 t(i), since Cj can simulate Aj for

all j = 1, . . . , n. Conversely, assume that p 4i t for all i, but p 64 t.
This means that there exist computations p

a1...ak−→ p′ in B, t
a1...ak−→ u in

A1⊗· · ·⊗An and a letter a ∈ Σi for some i, such that p′ has an outgoing
a-transition, but ui does not (in Ai). Clearly, we also have a computation

t(i) a1...ak−→ u(i) in A(i). Since ui has no outgoing a-transition, so neither
does u(i), which contradicts p 4i t.

4 Exptime-hardness

This time we take an alternating Turing machine M working in space
bounded by the size of the input. We want to decide if M has an infinite
computation. This means that the machine can make choices of existential
transitions in such a way that no matter what are the choices of universal
transitions the machine can always continue. Clearly, one can reduce the
word problem to this problem, hence it is Exptime-hard (see [6]; for more
details on complexity see any standard textbook on complexity).

We will assume that M has always a choice between two transitions,
i.e., for each non blocking state/symbol pair qa there will be precisely two
distinct tuples q′b′d′, q′′b′′d′′ such that qa → q′b′d′ and qa → q′′b′′d′′. If q is
existential then it is up to the machine to choose a move; if q is universal
then the choice is made from outside. To simplify the presentation we
will assume that d′ = d′′, i.e., both moves go in the same direction. Every
machine can be transformed to an equivalent one with this property. We
will also assume that the transitions are ordered in some way so we will
be able to say that qa → q′b′d is the first transition and qa → q′′b′′d is
the second one.
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Suppose that the input word is w of size n. We will construct automata
A′

1,A
′′

1, . . . ,A
′

n,A′′

n and B such that B is simulated by A′

1⊗A′′

1 · · ·⊗A′

n⊗
A′′

n iff there is an infinite alternating computation of M on w. The main
idea is that automata A′

i and A′′

i control the i-th tape symbol, as in the
previous section, and each one is in charge of one of the two possible
transitions (if any) when the input head is at position i in an existential
state (universal moves are simpler).

We will modify a little the alphabets that we use. Let

∆′

i =(Q × Γi) ∪ (Q × Γi × {l, r} × {1})

∆′′

i =(Q × Γi) ∪ (Q × Γi × {l, r} × {2})

We then put ∆i = ∆′

i ∪ ∆′′

i , ∆ =
⋃

i ∆i, ∆′ =
⋃

i ∆
′

i and ∆′′ =
⋃

i ∆′′

i .

The automaton A′

i is defined as follows:

– The set of states is Q′

i = {⊤} ∪ Γ ∪ (Q × Γ ) ∪ (Q × Γ × {l, r}), the
alphabet of the automaton is Σ′

i = ∆ ∪ {ζ}; where ζ is a new letter
common to all automata.

– We have the following transitions:

• a
qai

−→ qa for all a ∈ Γ and q ∈ Q,

• qa
q′b′

i
d1

−→ b′ and qa
q′′b′′

i
d1

−→ b′′ if q is an universal state and qa →
q′b′d, qa → q′′b′′d are the two transitions from qa. We have also
transitions to ⊤ on all the letters from ∆′

i \ {q
′b′id1, q′′b′′i d1}.

• qa
ζ

−→ q′b′d
q′b′

i
d1

−→ b′ and qa
q′′b′′

i
d1

−→ b′′ if q is an existential state and
qa → q′b′d, qa → q′′b′′d are the first and the second transitions
from qa, respectively. We have also transitions to ⊤ on all the
letters from ∆′

i \ {q′b′id1, q′′b′′i d1}. From q′b′d all transitions on
∆′

i \ {q
′b′id1} go to ⊤.

• From a, transitions on letters in ∆′

i \ {qai : q ∈ Q} go to ⊤. If qa

is terminal then there are no outgoing transitions from qa. From
⊤ there are self-loops on all letters from ∆c := ∆ ∪ {ζ}.

– The initial state of A′

i is wi, the i-th letter of w except for A1 whose
initial state is q0w1, the initial state of M and the first letter of w.

Figure 3 below presents parts of A′

i corresponding to universal and exis-
tential states.

The automaton A′′

i is the same as A′

i with the difference that we have
q′b′d2 instead of q′′b′′d1, q′′b′′d2 instead of q′b′d1 (notice the change of
primes and double primes), and ∆′′ instead of ∆′.
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⊤ qa

a b′b′′

qai

∆
′

i
\ ({q

ai
: q

∈ Q})

∆′

i \ {q
′b′id1, q′′b′′i d1}

q
′ b
′

i
d1q

′
′ b
′
′

i
d1

∆c

⊤ qa

q′b′d

a b′b′′

⊤

qai

∆
′

i
\ ({q

ai
: q

∈ Q})

∆′

i \ {q
′b′id1, q′′b′′i d1}

ζ

q
′ b
′
i
d1

q
′
′ b
′
′

i
d1

∆c

∆ ′

i \ {q ′

b ′

id1}

Fig. 3. Parts of the automaton A′

i corresponding to universal and existential states q,
respectively. The alphabet ∆c is ∆ ∪ {ζ}.

Next, we define a new automaton K that will be used to define new
automaton B. The states of K are

QK = {s, e, choice} ∪ (Q ×
⋃

i

Γi × {l, r})

plus some auxiliary states to implement transitions on two letters at a
time. We will write transitions with two letters on them for readability.
The initial state is s and the final one is e. The alphabet is ΣK =

⋃
Σi.

The transitions are defined by (cf. Figure 4):

– s
ζ

−→ choice;

– s
(q′bir1)(q′bir2)

−→ q′bir whenever we have a transition qa → q′br in M for
some universal state q and some letter a, and similarly from choice

instead of s when q is existential;

– s
(q′bi+1l1)(q′bi+1l2)

−→ q′bi+1l whenever we have a transition qa → q′bl in
M for some universal state q and some letter a, and similarly from
choice instead of s when q is existential;

– q′bir
(q′ci+1)

2

−→ e and q′bi+1l
(q′ci)2
−→ e for all c ∈ Γ .

We define B as the minimal deterministic automaton recognizing (L(K))∗.
It is obtained by gluing together states s and e.
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q′bi+1l q′bir

s

choice

e

(q
′ bi+

1
l1)

(q
′ bi+

1
l2) (q ′

b
ir1)(q ′

b
ir2)

(q′bi+1l1)(q
′bi+1l2) (q′bir1)(q

′bir2)

ζ

(q ′

c
i )(q ′

c
i)

(q
′ ci+

1
)(q

′ ci+
1
)

Fig. 4. Automaton K

Remark 2. All A′

i, A
′′

i and B are deterministic and of size polynomial in
n.

Definition 3. A configuration C of size n corresponds to a global state

s of A′

1⊗A′′

1 · · ·⊗A′

n⊗A′′

n if s2i = s2i−1 = C(i) for i = 1, . . . , n; in other

words, if the states of A′

i and A′′

i are the same as the i-th letter of C.

Definition 4. We say that a global state s of A′

1 ⊗A′′

1 · · · ⊗ A′

n ⊗A′′

n is

proper when ⊤ does not appear in s.

It is easy to see that from a non proper state, A′

1 ⊗A′′

1 · · · ⊗A′

n ⊗A′′

n

can simulate any state of B. The reason is that from ⊤, any move on
letters from ∆c is possible.

Lemma 4. Suppose that A′

1 ⊗ A′′

1 · · · ⊗ A′

n ⊗ A′′

n is in a state s cor-

responding to a configuration C of M . If C has no successor config-

uration then there is a word v ∈ L(K) that cannot be simulated by

A′

1 ⊗ A′′

1 · · · ⊗ A′

n ⊗ A′′

n from s. Otherwise, C has two successor con-

figurations C ⊢ C ′ and C ⊢ C ′′. We have two cases:

– If C is universal then there are two words v′ and v′′ in L(K) that lead

from s to proper states only, one state for v′ and one for v′′. These

states correspond to C ′ and C ′′, respectively. On all other words from

L(K), non proper states can be reached from s.

– If C is existential, then on the letter ζ the automaton A′

1 ⊗A′′

1 · · · ⊗
A′

n ⊗A′′

n can reach only one of the two states s′ or s′′. From s′ there
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is a word v′ such that ζv′ ∈ L(K) and on v′ from s′ the automaton

A′

1 ⊗ A′′

1 · · · ⊗ A′

n ⊗ A′′

n can reach a unique state, which moreover

corresponds to C ′. Similarly for s′′ and C ′′. On all words from L(K)
that are different from ζv′ and ζv′′, non proper states can be reached

from s.

Proof. As s corresponds to the configuration C, there is some i such that
both automata A′

i and A′′

i are in state qa, for some q ∈ Q and a ∈ Γ , and
all other automata are in states from Γ .

If C is a configuration without successor, then the state qa in A′

i and
A′′

i does not have any outgoing transition. Thus these automata cannot
simulate the ζ transition of K from s. No other automaton A′

j, or A′′

j can
simulate the ζ transition either, as they are all in states from Γ .

Suppose that C is an universal configuration with two possible tran-
sitions to the right, qa → q′b′r and qa → q′′b′′r. The case when the
moves are to the left is similar. In A′

i from the state qa we have a tran-
sition on q′b′ir1 leading to b′ and on q′′b′′i r1 leading to b′′. Similarly for
A′′

i , but on q′b′ir2 and q′′b′′i r2. These transitions can simulate both tran-
sitions (q′b′ir1)(q

′b′ir2) and (q′′b′′i r1)(q
′′b′′i r2) that are possible from s in

K. (All other transitions from s in K lead from s to a non proper state
of A′

1 ⊗ A′′

1 · · · ⊗ A′

n ⊗ A′′

n.) Let us focus only on the first case, when
(q′b′ir1)(q

′b′ir2) is executed in K and the state q′b′ir is reached. From this
state only transitions (q′c′i+1)

2 are possible, for all c′ ∈ Γ . Suppose that
A′

i+1 and A′′

i+1 are in state c ∈ Γ . Transition (q′ci+1)
2 of K is simulated

by moves to q′c in both A′

i+1 and A′′

i+1. This way the new state is trans-
ferred to the right. Transitions (q′c′i+1)

2 where c 6= c′ are simulated in
A′

1 ⊗A′′

1 · · · ⊗ A′

n ⊗A′′

n by moves of A′

i+1 and A′′

i+1 to ⊤.
Suppose that C is an existential configuration, with possible transi-

tions qa → q′b′r and qa → q′′b′′r. The case when moves are to the left is
similar. Consider first the transition of K from s that corresponds to the
letter ζ. Both A′

i and A′′

i can simulate this transition: the first goes to
state q′b′r, and the second goes to q′′b′′r. Assume that it is the transition
of A′

i that is taken; the other case is symmetric. We get to the position
when K is in the state choice , A′

i is in the state q′b′r and A′′

i in the
state qa. From choice , automaton K can do (q′b′ir1)(q

′b′ir2) that can be
simulated by the transitions of A′

i and A′′

i (every other transition of K

can be simulated by a move of A′

1 ⊗ A′′

1 · · · ⊗ A′

n ⊗ A′′

n to a non proper
state). Both automata reach the state b′. Automaton K is now in state
q′bir from where it can do (q′ci+1)

2 for any c ∈ Γ . The result of simulat-
ing these transitions while reaching a proper state is the transfer of the
state to the right, in the same way as in the case of the universal move.
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Finally, it remains to see what happens if K makes a move from s that
is different from ζ. In this case, at least one of the automata A′

i, A
′′

i can
simulate the corresponding transition on (peid1), (peid2) respectively, by
going to state ⊤, since we suppose that in any configuration of M , the
two outgoing transitions are distinct. Hence, a non proper state can be
reached.

Theorem 2. The following problem is Exptime-complete:

Input: deterministic automata A1, . . . ,An and a deterministic au-

tomaton B.

Output: decide if B 4 A1 ⊗ · · · ⊗ An.

Proof. We use the construction presented above. By Lemma 4 we can
show similarly to the previous section, that the initial state s of B can be
simulated from a state t of A′

1 ⊗A′′

1 · · · ⊗ A′

n ⊗A′′

n that corresponds to a
configuration C of the alternating Turing machine M , iff M has an infinite
alternating computation from C. The problem is clearly in Exptime as
the state space of A′

1⊗A′′

1 · · ·⊗A′

n⊗A′′

n can be constructed in Exptime.

We conclude the section by showing that Theorem 2 still holds under
the assumption that the alphabet of the automata is of constant size.

Theorem 3. Let Σ be a fixed alphabet of at least 2 letters. The following

problem is Exptime-complete:

Input: deterministic automata A1, . . . ,An and a deterministic au-

tomaton B over the input alphabet Σ.

Output: decide if B 4 A1 ⊗ · · · ⊗ An.

Proof. We reduce directly from Theorem 2. Suppose that the input al-
phabet of all automata Ai,B is Σ × {1, . . . ,m}, for some m. Moreover,
let S be the set of states of B and let Q = Q1 × · · · × Qn be the set of
global states of A1 ⊗ · · · ⊗ An.

In each automaton Ai, B we replace every transition s
al−→ t by a

sequence of transitions with labels from Σ ∪ {#, $} as follows:

s
a

−→ (stl0)
#
−→ (stl1)

#
−→ (stl2) · · ·

#
−→ (stll)

$
−→ t

The (l + 1) states (stl0), . . . , (stll) are new. Let A′

i,B
′ be the automata

obtained from Ai, B, with state space Q′ and S′, respectively.
Take 4, the largest simulation relation from B to A1 ⊗ · · · ⊗ An. We

show how to extend 4 to 4′ such that 4′ is a simulation relation from B′

to A′

1⊗· · ·⊗A′

n (not necessarily the largest one). Let 4′ be the union of 4

with the set of all pairs ((stlk),u′), where s, t ∈ S, u′ = (u′

1, . . . , u
′

n) ∈ Q′,
and such that:

13



– s
al−→ t and v

al−→ w for some a ∈ Σ, v = (v1, . . . , vn) and w =
(w1, . . . , wn) such that s 4 v, t 4 w,

– there is some i with u′

i = (viwilk), and u′

j = vj = wj for j 6= i.

It is immediate to check that 4′ is a simulation relation. First, (old)
states from S can only be simulated by (old) states from Q. Second, a
new state (stlj) of B can be simulated only by states u′ ∈ Q′\Q. It can be
shown easily that the largest simulation relation from B′ to A′

1⊗· · ·⊗A′

n

coincides with 4′ (hence with 4) on the set S × Q of pairs of old states.

5 Conclusions

We have shown an Exptime lower bound for the composition of e-services
that are described as a fully asynchronous product of finite state ma-
chines. Thus, we answer the question left open in [2]. Since our lower
bound holds for the simplest model one can think of (no synchronization
at all), it also applies to richer models, such as products with synchroniza-
tion on actions as in [10] or communicating finite-state machines (CFSM)
as in [9, 8]. It is easy to see that the simulation of a finite-state machine
by a CFSM A with bounded message queues is in Exptime, since the
state space of A is exponential in this case. Hence, this problem, as well
as any of its variants with some restricted form of communication, is
Exptime-complete as well.

It remains open whether the bisimulation problem for a finite automa-
ton and a fully asynchronous product of finite automata is also Exptime-
hard. Another interesting question is how far one can relax the restrictions
on e-services given by communicating finite-state machines, in order to
preserve decidability.

Acknowledgement: We thank the anonymous referees for interesting
comments and suggestions for improvement.
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