
WoLLIC 2002 Preliminary Version

Deciding low levels of tree-automata hierarchy

Igor Walukiewicz

LaBRI

Bordeaux University

Domaine Universitaire, bâtiment A30, 351 cours de la Libration

33405 Talence Cedex

France

igw@labri.fr

Abstract

The paper discusses the hierarchy of indices of finite automata over infinite objects.
This hierarchy corresponds exactly to the hierarchy of alternations of least and
greatest fixpoints in the mu-calculus. It is also connected to quantifier hierarchies
in monadic second-order logic. The open question is to find a procedure that given
a regular tree language decides its level in the index hierarchy. Here, decision
procedures are presented for low levels of the hierarchy. It is shown that these
procedures have optimal complexity.

1 Introduction

Finite state automata running in infinite time constitute a fundamental model
in the theory of verification of concurrent systems. One complexity measure
obviously suggested by this model is the number of states, but more subtle cri-
teria refer to the behavior of automaton and are specified in terms of positive
and negative constraints on events which occur infinitely often. The depth of
nesting of positive and negative conditions is reflected in the concept of the
index of an automaton. Interestingly, the hierarchy of indices has a counter-
part in the hierarchy of alternations of the least and greatest fixed points in
the µ-calculus and quantifier hierarchies in monadic second-order logic.

Wagner [20], as early as in 1977, established the strictness of the hierarchy
of indices for deterministic automata on infinite words. An analogous hier-
archy for nondeterministic automata is easily seen to collapse to the level of
Büchi automata. That is, nondeterminism can help to reduce the complex-
ity of the acceptance condition reflected by the index of an automaton. The
situation turns out to be different for automata on infinite trees. The power
of such automata has been recognized since the seminal paper by Rabin [16].
The strictness of the hierarchy for both deterministic and nondeterministic
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automata on infinite trees was proved in 1986 [10]. About the same time,
Muller and Schupp introduced alternating tree automata [9]. The hierarchy
problem for the µ-calculus (or equivalently alternating automata on trees of
arbitrary branching) was solved ten years later by Bradfield [4]. It was then
refined to the case of binary trees [5]. At the same time Arnold [1] gave a
very beautiful proof of this result based on a diagonal argument and Banach
fix-point theorem.

Once the hierarchy problems are resolved, the next challenge can be to
provide algorithms for determining the level in the hierarchy of a given recog-
nizable language. For word automata, polynomial–time algorithms for com-
puting the index of an automaton presented by Muller or parity condition were
given in [21] and [12], respectively. 1 For tree automata not much is known.
Urbański [19] showed that it is decidable if a deterministic Rabin tree au-
tomaton is equivalent to a nondeterministic Büchi one. A slightly different
approach [13] gives a PTIME algorithm for the problem. Otto [14] has shown
that it is decidable if a µ-calculus formula is equivalent to a formula without
fixpoints. This question is the same as asking whether a given alternating
automaton is equivalent to a weak automaton of a very restricted shape.

In this paper we give a unified presentation of the above mentioned re-
sults together with some new results on the lowest levels of the hierarchy
of nondeterministic and alternating automata. We show how to decide if
a nondeterministic (or alternating) automaton recognizes a (0, 0) or a (1, 1)
level language. We also provide the optimal complexity bounds for the prob-
lem. Büchi automata correspond to level (0, 1) in the hierarchy of indices.
At present it is not known how to decide (0, 1) level for nondeterministic
automata. It is also not known how to decide higher index levels for deter-
ministic tree automata. In this paper we consider binary trees. The extension
to trees of arbitrary degree seems possible, but is out of scope of this short
article. Independently, the result about (0, 0) and (1, 1) levels was developed
by Küsters and Wilke [8]. Their proof is different and they also work out the
case of trees of arbitrary degree.

In the next section we introduce automata on words and trees. We also de-
fine the index hierarchy. In Section 3 we give an overview of the procedure for
deciding the level of a language in the index hierarchy for deterministic word
automata. Then we turn into nondeterministic tree automata. In Section 4
we show an EXPTIME lower bound on the complexity of deciding a level of a
language in the index hierarchy of nondeterministic automata on trees. In the
next section we give an EXPTIME algorithm deciding if a language given by
an alternating automaton is on (0, 0) level of the hierarchy. By duality we get
also an algorithm for (1, 1) level. After this we briefly sketch the procedure
for deciding if a language given by a deterministic automaton is on (0, 1) level.
The details of this procedure can be found in [13].

1 Another proof of the result stated as Corollary 15 in [12] appeared later in [6].
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2 Preliminaries

Automata on infinite words.

An infinite word over a finite alphabet Σ is a function u : N → Σ. By
Σω we denote the set of all infinite words over Σ. A nondeterministic parity
automaton on Σω is a tuple:

A = 〈Q, Σ, qI , δ ⊆ Q × Σ → P(Q), Ω : Q → N〉

where Q is a finite set of states with an initial state qI , δ is the transition func-
tion, and Ω : Q → N is the rank function. A deterministic parity automaton
is a nondeterministic automaton such that δ(q, a) is a singleton or an empty
set, for every (q, a) ∈ Q × Σ.

A run of an automaton A on an infinite word u ∈ Σω can be presented as
an infinite word ρ ∈ Qω such that ρ(0) = qI , and ρ(m+1) ∈ δ(ρ(m), u(m)), for
every m ∈ N. The run ρ is accepting if lim infn→∞ Ω(ρ(n)) is even; in other
words, the smallest rank repeating infinitely often is even. The language
L(A) recognized by A consists of those words in Σω for which there exists
an accepting run. A language L ⊆ Σω is recognizable if it is recognized by a
nondeterministic parity automaton.

Automata on infinite trees

A full binary infinite tree over an alphabet Σ is a function t : {0, 1}∗ → Σ.
We write Trees(Σ) for the set of all Σ labelled trees. We write w0 for the word
w extended with 0, similarly for w1. We can think of w0 as the left son of w

and of w1 as the right son of w. For M ∈ N we write t|M for a finite tree that
is a restriction of t to the nodes of depth at most M .

A nondeterministic parity automaton on Trees(Σ) is a tuple:

A = 〈Q, Σ, qI , δ ⊆ Q × Σ → P(Q × Q), Ω : Q → N〉

where the only difference with automata on words is in the type of transi-
tion function. A run of A on a tree t ∈ Trees(Σ) is itself a Q–valued tree
r : {0, 1}∗ → Q such that r(ε) = qI , and, for each w ∈ {0, 1}∗, we have
(r(w), a, r(w0), r(w1)) ∈ δ, whenever t(w) = a. A path in r is accepting if the
smallest rank occurring infinitely often along it is even. More formally, for
a path P = p0p1 . . . ∈ {0, 1}ω, this means that lim infn→∞ Ω(r(p0p1 . . . pn)) is
even. A run is accepting if so are all its paths. The tree language L(A) recog-
nized by A consists of those trees in Trees(Σ) that admit an accepting run. We
call a tree language L ⊆ TΣ regular if it is recognized by a nondeterministic
parity tree automaton.

Alternating automata

It is the easiest to define alternating automata with the help of parity
games. So we start with a short presentation of games of this kind.
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A parity game G = 〈V, V0, V1, E ⊆ V ×V, Ω : V → {0, . . . , d}〉 is a bipartite
labelled graph with the partition (V0, V1) of the set of vertices V . We say that
a vertex v′ is a successor of a vertex v if E(v, v′) holds. We do not require
that V is finite but we require that the set of ranks assigned to the vertices is
finite, i.e., the range of Ω is finite.

A play from some vertex v0 ∈ V0 proceeds as follows: first player 0 chooses
a successor v1 of v0, then player 1 chooses a successor v2 of v1, and so on ad
infinitum unless one of the players cannot make a move. If a player cannot
make a move he looses. The result of an infinite play is an infinite path
v0, v1, v2, . . . This path is winning for player 0 if the sequence Ω(v0), Ω(v1), . . .
satisfies the parity condition. The play from vertices of V1 is defined similarly
but this time player 1 starts.

A strategy σ for player 0 is a function assigning to every sequence of vertices
v ending in a vertex from V0 a successor vertex σ(v) ∈ V1. A strategy is
memoryless iff σ(v) = σ(w) whenever v and w end in the same vertex. A
strategy is winning iff it guarantees a win for player 0 whenever he follows the
strategy. Similarly we define a strategy for player 1.

An alternating tree automaton is a tuple:

A = 〈Q, Q∃, Q∀, Σ, q0, δ : Q × Σ → P(Q × {0, 1, ε}), Ω〉

There are two differences with respect to nondeterministic automata. First,
the set Q of states is partitioned into existential and universal states, Q∃ and
Q∀ respectively. Next, the transition function has different type. To execute
a transition (q′, d) ∈ Q × {0, 1, ε} in a vertex v means to go to the vertex vd

and change the state to q′. So, if d = ε then the automaton stays in v, if d = 0
then it moves to the left son of v. The idea is that if the automaton is in an
existential state q and in a vertex labelled by a then it chooses a transition
from δ(q, a) which it is going to execute. If q is universal then the choice is
made by the opponent; this is equivalent to saying that the automaton has to
execute all the transitions from δ(q, a).

It is the simplest to formalize the notion of a run and an acceptance of
an alternating automaton A in terms of games. Given a tree t we define the
acceptance game GA,t:

• the set V0 of vertices for player 0 is {0, 1}∗ × Q∃,

• the set V1 of vertices for player 1 is {0, 1}∗ × Q∀,

• from each vertex (v, q) and (q′, d) ∈ δ(q, t(v)) there is an edge to (vd, q′).

• the acceptance condition is given by Ω(v, q) = Ω(q)

We say that A accepts a tree t iff player 0 has a winning strategy in the
game GA,t. The language recognized by A is the set of trees accepted by A.

Alternating automata on words are defined similarly but since there is
only one successor of each position then the transition function has the type:
δ : Q × Σ → P(Q × {0, ε}).
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Hierarchy of Mostowski indices.

The Mostowski index of an automaton A with the acceptance condition
given by Ω is the pair (min(Ω(Q)), max(Ω(Q))). We may assume without a
loss of generality that min(Ω(Q)) ∈ {0, 1}. (Otherwise we can scale down the
rank by Ω(q) := Ω(q)−2.) Therefore, for any type of automata, the Mostowski
indices induce a hierarchy depicted in Figure 1.

For nondeterministic (1, 1) automata it is necessary to assume that there
is a special state > from which every tree is accepted. This assumption is
not need for automata with other indices as the language of all trees can be
accepted by (0, 0) automaton. The assumption is also not needed for (1, 1)
alternating automaton as the language of all trees is accepted from an universal
state for which the transition function gives the empty set of moves.

(1, 2k + 1) (0, 2k)

(1, 3) (0, 2)

(1, 2) (0, 1)

(1, 1) (0, 0)

Fig. 1. Hierarchy of Mostowski indices

Automata of index (0, 1) are traditionally called Büchi automata and pre-
sented by A = 〈Σ, Q, qI , δ, F 〉, where F is the set of states of rank 0 (called
accepting states). Note that a path in a run of a Büchi automaton is accepting
if some accepting state occurs infinitely often.

A hierarchy is strict if there is an automaton at each level that cannot be
simulated by any automaton of any lower level. As it was mentioned in the
introduction, the hierarchy is known to be strict for deterministic automata
on words [20], and for all kinds of automata on infinite trees. In contrast,
for nondeterministic word automata the hierarchy collapses to the level (0, 1)
level (Büchi automata) [15], and for the alternating automata even to the
intersection of levels (0, 1) and (1, 2) [2].
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Connections to the mu-calculus

There is a very close connection between the index hierarchies and the
hierarchy in the µ-calculus. In the later we measure the complexity of a
formula by counting the number of alternations between the least, µ, and the
greatest, ν, fix-point operators. So Σµ

1 is the set of formulas only with µ, Πµ
1

are the formulas only with ν and Σµ
2 are the µ-closures of Πµ

1 formulas. For a
formal definition of the hierarchy we refer the reader to [11,3].

A language defined by a µ-calculus formula is a set of trees where the
formula holds in the root. We have [3]:

Theorem 2.1 A language of binary trees is definable by a Σµ
n formula iff it

is the language of some alternating automaton of index (1, n). Similarly for
Πµ

n and (0, n − 1) automata.

In this paper we are also interested in the indices of nondeterministic tree
automata. These are different than the indices of alternating automata men-
tioned in the above theorem. Still for the small levels that we consider here,
the two are the same [2].

Theorem 2.2 For any of the indices (0, 0), (1, 1) and (0, 1): if a tree language
is recognized by an alternating automaton with one of these indices then it is
recognized by a nondeterministic automaton with the same index.

The theorem is not true for index (1, 2) or any bigger index.

Theorem 2.1 gives a connection between formulas with fixpoints and au-
tomata. We will be also interested in the formulas of the modal logic, i.e., the
formulas with no fix-point at all. These correspond to strict tree automata. A
strict tree automaton is a tree automaton with a partial order ≤ on states, and
such that all possible transitions from a state q lead to states strictly smaller
than q. The following easy fact makes a desired connection.

Fact 2.3 A language of binary trees is definable by a modal formula iff it is
the language of some strict automaton.

3 Deciding hierarchies for words

As we have mentioned above the Mostowski hierarchy over words is infinite
only for deterministic automata. In this section we shortly summarize the
results from [12] showing how to calculate the deterministic index of a given
language.

To see the examples of the strictness of the hierarchy consider for each
n ∈ N an alphabet Σn = {1, . . . , n}. Then we define the languages:

Mn ={w ∈ Σω
n : lim inf

n→∞
w(n) is even}

Nn ={w ∈ Σω
n : lim inf

n→∞
w(n) is odd}

So, Mn contains words where the smallest number appearing infinitely often
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is even, and Nn contains words where this number is odd.

It is easy to see that Mn can be recognized by a (1, n) deterministic au-
tomaton and Nn can be recognized by a (0, n − 1) deterministic automaton.
The proof that there are no simpler automata for those languages, follows
from a more general lemma presented below. It shows a connection between
the Mostowski index of an ω-word language and the shape of a deterministic
parity automaton recognizing the language. Roughly speaking, it says that
in the graph of an automaton recognizing a “hard” language there must be a
subgraph, called a flower, “witnessing” this hardness.

Definition 3.1 Let A = 〈Σ, Q, q0, δ, Ω〉 be a deterministic parity automaton
on words. The graph of A is the graph obtained by taking Q as the set of
vertices and adding an edge from q to q ′ whenever 〈q, a, q′〉 ∈ δ, for some
letter a.

A path in a graph is a sequence of vertices v1, . . . , vj, such that, for every
i = 1, . . . , j − 1 there is an edge from vi to vi+1 in the graph. A maximal
strongly connected component of a graph is a maximal subset of vertices of
the graph, such that, for every two vertices v1, v2 in the subset there is a path
from v1 to v2 and from v2 to v1.

For an integer k, a k-loop in A is a path v1, . . . , vj in the graph of A with
v1 = vj, j > 1 and k = min{Ω(vi) : i = 1, . . . , j}. Observe that a k-loop must
necessarily go through at least one edge.

Given integers m and n, a state q ∈ Q is a m-n-flower in A if for every
k ∈ {m, . . . , n} there is, in the graph of A, a k-loop containing q.

qn

m

m + 1

Fig. 2. m-n-flower

Definition 3.2 We say that a language L ⊆ Σω admits an m-n-flower if there
exists a deterministic Mostowski automaton A, such that, L = L(A) and A
has an m-n-flower q for some q not a useless state in A (i.e. q occurring in
some accepting run of A).

The delicate point about the above definition is that it talks about ex-
istence of a deterministic automaton for the language. Intuitively we are
interested in the minimal automaton for the language, but for automata on
infinite words the notion of minimality is not very convenient to work with.
In particular there are languages with several different minimal deterministic
automata recognizing them.
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Lemma 3.3 (Flower Lemma) For every n ∈ N and L ⊆ Σω: (1) if L is
(1, n+ 1)-unfeasible then L admits a 2i-(2i + n)-flower, for some i; (2) if L is
(0, n)-unfeasible then L admits a (2i + 1)-(2i + 1 + n)-flower, for some i.

A priori we don’t know how to find a deterministic automaton with a flower.
Fortunately it turns out that it is enough to take any deterministic automaton
for the language and then normalize it in some way. The resulting automaton
is guaranteed to have as big flower as the index the language requires. This
normalization procedure can be done in a quadratic time [12].

Corollary 3.4 The problem of establishing the index of the language accepted
by a deterministic automaton A with a Mostowski condition can be solved in
time O(|A|2).

4 The lower bound for nondeterministic tree automata

In this section we show that the hierarchy questions for nondeterministic tree
automata are EXPTIME-hard.

Theorem 4.1 For every i ∈ N. The problem of deciding if a given nondeter-
ministic automaton A accepts a (1, i) language is EXPTIME-hard. Similarly
for the (0, i) class.

Proof. We will reduce the universality problem for tree languages: given a
nondeterministic automaton A decide if L(A) accepts every tree (i.e. L(A) =
TreesΣ). This problem is known to be EXPTIME-hard even for automata
over finite trees [18].

Fix a language L>i not belonging to (1, i) level of the hierarchy. Such a
language exists as the hierarchy is infinite. For a given automaton A construct
an automaton B that accepts a tree if either:

• the left subtree is accepted by A and the right subtree is arbitrary, or

• the left subtree is arbitrary and the right subtree is in L>i.

This is schematically presented in Figure 3. Observe that the behaviour of B
does not depend on the label of the root of a tree. We claim that L(B) is on
(1, i) level iff L(A) = TreesΣ.

L(A) TreesΣ TreesΣ L>i

Fig. 3. The language L(B)

If L(A) = TreesΣ then L(B) = TreesΣ, so L(B) is a (1, i) language as it is
a (1, 1) language.

If L(A) 6= TreesΣ then we show that L(B) cannot be a (1, i) language.
Suppose for a contradiction that L(B) is recognized by a (1, i) automaton C.
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Take a tree t 6∈ L(A). If a tree from L(B) has t as the left subtree then it has
to have a tree from L>i in the right subtree. Let St be the set of states of C
from which it accepts t. Let Sr be the set of possible right states when the
left state is in St, i.e., Sr = {qr : ∃a∈Σ,ql∈St

(ql, qr) ∈ δ(qCI , a)}; here qCI is the
initial state of C. Let C(Sr) denote the automaton C where all states from Sr

are initial states. Directly from the definitions we have that L(C(Sr)) = L>i.
But this is impossible because C(Sr) is a (1, i) automaton and L>i is not a
(1, i) language. 2

5 The case of strict tree automata

In this section we present the decidability result for strict automata. This
is a sub-level of both (0, 0) and (1, 1) levels. Actually this is precisely the
intersection of the two levels. The interest in this level is mainly because
of the connections to modal logic. From Fact 2.3 we know that this level is
equivalent to definability in modal logic.

The main concept that we will need in the following is that of a type of a
tree with respect to a given automaton.

Definition 5.1 Fix an automaton A. A type of a tree t is the set of states
from which A accepts t: TypeA(t) = {q ∈ Q : t ∈ L(A(q))}. We will omit the
subscript when the automaton is clear from the context. We will use Types(A)
for the set of all types of A.

The following simple lemma gives a useful characterization of languages
recognized by strict automata. Recall that t|M denotes the restriction of t to
nodes of depth at most M .

Lemma 5.2 For every regular language L: L is recognizable by a strict au-
tomaton iff there is a bound M such that for every t ∈ L and for every t′, if
t|M = t′|M then t′ ∈ L.

Proof. Suppose L is recognized by a strict automaton A. Such an automaton
can look at the nodes of the tree at the depth at most equal to its size. So
the size of the automaton gives an upper bound on M .

Conversely, suppose that L has a bound M . There are finitely many trees
of depth M . So we can enumerate all depth M trees which are prefixes of trees
in L. Then we construct a strict automaton recognizing all these prefixes. 2

To test if a given automaton A = 〈QA, ΣA, qAI , δA, FA〉 is equivalent to
a strict automaton we construct an automaton BA on finite words over the
alphabet ΣB = Σ × {0, 1}:

BA = 〈P(QA), ΣB, {qAI }, δ
B, F B〉

where:
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• δB(S, (a, l)) = {{ql : ∃q∈S∃qr∈τ (ql, qr) ∈ δA(q, a)} : τ ∈ Types(A)}; and
similarly for (a, r) letter.

• F B = {S : L(A(S)) 6= ∅ ∧ L(A(S)) 6= TreesΣ}

Intuitively, δ(S, (a, l)) describes a situation when we want to accept from
a state from S being in a node of the tree labelled by a and planing to check
only the left subtree while assuming that the right subtree has some type. The
transition function gives for each possible type to the right a set of all states
from which we can accept the left subtree and have the whole tree accepted
from some state in S. An element of the acceptance set F is a set of states
from which A can accept some tree but from which it cannot accept all the
trees.

Lemma 5.3 L(A) is not recognizable by a strict automaton iff BA accepts
arbitrary long words.

Proof. For the right to left direction we need to find for every bound M two
trees t and t′ such that t|M = t′|M but t ∈ L(A) and t′ 6∈ L(A). Consider
a word w = w0, . . . , wM ∈ L(BA). Let rw = rw(0)rw(1) . . . rw(M + 1) be an
accepting run of BA on w.

For every suffix v of w we construct trees tv and t′v such that tv is accepted
from some state in r(M + 1 − |v|) and t′v is not accepted from any state in
r(M + 1 − |v|).

• If v = ε is the empty suffix then for tv we take a tree accepted from some
state in rw(M + 1) and for t′v we take a tree not accepted from any state in
rw(M + 1).

• Suppose v = wiu with wi = (ai, di). Consider the case when di = l, the
other case is symmetric. Let τi be the type such that rw(i + 1) = {ql :
∃q ∈ rw(i). ∃q′ ∈ τi. (ql, q

′) ∈ δ(q, a)}. The tree tv is the tree with the
root labelled ai with tu as the left subtree and a tree of type τi as the right
subtree. The tree t′v is defined similarly but now it has t′u as the left subtree.

By induction on the length of v one can show that tv is accepted from some
state in r(M +1−|v|) and t′v is not accepted from any state in r(M +1−|v|).
For the required t and t′ we can then take tw and t′w.

For the left to right direction we need to show that if L(A) is not recog-
nizable by a strict automaton then BA accepts arbitrary long words. Given
M ∈ N we are going to construct a word of length M recognized by BA. From
Lemma 5.2 we know that L(A) does not have a bound. Let us then take trees
t ∈ L(A) and t′ 6∈ L(A) such that t|M = t′|M . Let s1, . . . , sk be the sequence
of all the nodes on level M in t. One can think of t′ as obtained from t by
substituting some subtrees into some of these nodes. We construct a sequence
of trees as follows:

• t0 is t,

• ti+1 is obtained form ti by substituting in si the subtree of t′ rooted in si.
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By the construction tk = t′. Hence, there must be an index i such that
ti ∈ L(A) and ti+1 6∈ L(A). So the change of a subtree in the node si prevents
ti from being accepted.

We use ti and ti+1 to construct a word accepted by BA. Let u0, . . . , uM be
the path from the root to si. The word w0, . . . , wM is defined by wj = (aj, dj)
where aj is the label of the node uj and dj is the direction to the son which is
on the path to si. It can be shown by induction that there is a run of BA on
w that goes only only through accepting states. 2

Lemma 5.4 Automaton BA accepts arbitrary long words iff it accepts a word
of length > 2|A|.

Proof. The automaton BA has the property that from states not in F it does
not accept anything. If BA accepts a path of length > 2|A| then there is a
cycle in the graph of BA staying in the states from F . This cycle can be used
to produce arbitrary long words accepted by BA. 2

We obtain the following corollary that was originally shown in [14].

Corollary 5.5 The problem of deciding whether a language of a given alter-
nating automaton is definable by a strict automaton is EXPTIME-complete.

6 The (0, 0) and (1, 1) cases

In this section we deal with the lowest levels of the hierarchy. We show that
the problem of deciding membership in these levels is EXPTIME-complete.

Lemma 6.1 If L is a (1, 1) language then for every t ∈ L there is a bound
M s.t. for every tree t′ with t|M = t′|M we have t′ ∈ L

Proof. Take a (1, 1) automaton for L. If this automaton accepts t then it
looks only on a finite part of t. 2

Remark 6.2 The implication in the other direction also holds. That is, if L

is regular and every tree in L has a bound then L is a (1, 1) language. This
follows from the results below.

Recall that Types(A) stands for the set of types of the automaton A.
Directly from the definition it follows that the types of the sons of the root
together with the label in the root determine the type of the root. We write

(τ0, τ1)
b

−→ τ to mean that a node has type τ if it is labelled by b and the left
and the right sons of a node have types τ0 and τ1 respectively.

Let S ⊆ Types(A) be a set of types of A. We will use L(S) to denote the
set of the trees having one of the types in S. Suppose that L(S) is a (0, 0)
language. We are going to describe a direct construction of a (0, 0) automaton
for L(S).
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Consider an automaton CS = 〈Types(A) \ ∅, Σ, S, δc, Ωc〉, where Ωc assigns
0 to each state, and δc is defined by:

(τ0, τ1) ∈ δc(τ, a) iff (τ0, τ1)
a

−→ τ

Observe that this automaton has a set of initial states.

Lemma 6.3 If L(S) is a (0, 0) language then L(S) = L(CS).

Proof. The inclusion ⊆ is easy. Having a tree t ∈ L(S) just assign to each
node its type. This assignment is a run of CS. By definition every run of CS

is accepting.

For the other inclusion suppose conversely that there is a tree t ∈ L(CS) \
L(S). Then t ∈ L(CS) ∩ L(S), where L(S) is the complement of L(S). By
assumption L(S) is a (1, 1) language so, by Lemma 6.1, the tree t has a bound
M . Take an accepting run r : {0, 1}∗ → Types(A) of CS on t. Let s1, . . . , sk

be all the nodes from t of depth M + 1. Let t′ be a tree where we substitute
in each node si a tree of type r(si). By definition of CS we know that t′ has
one of the types in S. So t′ ∈ L(S). This is a contradiction as t|M = t′|M
and t ∈ L(S).

Theorem 6.4 It is an EXPTIME-complete problem to decide if an alternat-
ing or a nondeterministic tree automaton accepts a (0, 0) language. Similarly
for (1, 1) languages.

Proof. The lower bound follows from Theorem 4.1. So it remains to show
the upper bound. Given an automaton A, let S ⊆ Types(A) be the types
containing the initial state. Hence, L(A) = L(S). It is enough to construct
CS and then check whether L(A) = L(CS). By Lemma 6.3 the equality holds
iff L(A) is a (0, 0) language.

By the definition of L(CS) we know that L(A) ⊆ L(CS) always holds.
So it is remains to check if L(CS) ⊆ L(A). For this we check that L(CS) ∩
L(A) = ∅ where A is the automaton accepting the complement of L(A).
As A is an alternating automaton of size n, we can construct A which is a
nondeterministic automaton of size O(n!) and O(n) size acceptance condition.
Automaton CS has the size O(2n) and trivial acceptance condition (every run
is accepting). So the test L(CS) ∩ L(A) = ∅ can be done in 2O(n log n) time.

The case for (1, 1) level follows by duality. The complement of a (1, 1)
language is a (0, 0) language. Hence, given an automaton A we can construct
an alternating automaton A for the complement an check whether it recognizes
a (0, 0) language. The construction of A can be done in linear time. 2

7 The (0, 1) case

At present it is known how to decide (0, 1) level (Büchi level) only for deter-
ministic tree languages. For such languages the lower bound from Theorem 4.1
does not hold. Actually, as we will see here, we can decide in PTIME if the
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language of a given deterministic automaton is on (0, 1) level (provided we
know that all states of the given automaton are productive.) The results
presented here come from [13].

We start from a very useful characterization of deterministic tree languages
in terms of paths in trees.

A labeled path in a tree t : {l, r}∗ → Σ is an infinite sequence σ0p1σ1p2σ2 . . .,
such that σi ∈ Σ, pi ∈ {0, 1}, and t(p1 . . . pi) = σi (so in particular t(ε) = σ0).
Note that a labeled path is an infinite word over an alphabet {0, 1} ∪ Σ. We
let Paths(t) denote the set of all labeled paths in t, and, for a tree language L,
Paths(L) =

⋃
t∈L Paths(t). For a word language K ⊆ ({0, 1} ∪ Σ)ω we define

a tree language:

∀K = {t ∈ TΣ : Paths(t) ⊆ K}

Proposition 7.1 The following conditions are equivalent for a tree language
L ⊆ TΣ.

(i) L is deterministically recognizable.

(ii) L is recognizable, and L = ∀(Paths(L)).

(iii) L = ∀K, for some recognizable language K of infinite words.

Take the graph of an automaton A on infinite words. We say that a state
of A is correctly reachable if it is reachable on a word ending in a letter from
Σ. We say that A admits a split 2 if, for some correctly reachable state q0,

there are two loops: q0
0
⇁ q1

w
⇁ q0 and q0

1
⇁ q2

v
⇁ q0, where w and v are some

words in Σ({0, 1}Σ)∗, such that the highest ranks occurring on these loops are
of different parity, and the smaller of the two is even.

Example: Let Σ = {a, b} and let L be the set of all infinite words of the
form σ0p1σ1p2σ2p3 . . ., with σi ∈ Σ and pi ∈ {0, 1}, in which b occurs infinitely
often. The language L can be recognized by a deterministic automaton with
states q (initial), qa, and qb of ranks Ω(q) = Ω(qa) = 1 and Ω(qb) = 0, and

transitions q
a
−→ qa, q

b
−→ qb, and qa, qb

0,1
−→ q. This automaton has a split in

state qa. Rabin [17] showed that the set of trees whose all paths are outside
L, i.e., on each path, b occurs only finitely often, cannot be recognized by a
Büchi automaton. This fact can be generalized as follows.

Lemma 7.2 A deterministic word automaton for Paths(L) admits a split iff
∀Paths(L) cannot be recognized by a Büchi tree automaton.

Hence to decide if a deterministic tree automaton A accepts a Büchi lan-
guage we can proceed as follows. At first we convert A into a deterministic
parity word automaton for Paths(L(A)). The construction is easy and does
not increase the number of the automaton’s states, however it requires know-
ing which states of A are productive. Once the automaton for Paths(L(A)) is
constructed, we obtain a deterministic automaton for Paths(L(A)) by simply

2 This concept is similar to that of gadget used in [19].
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scaling up the rank by 1. Now, it is easy to detect in polynomial time if a
word automaton has a split. This gives:

Theorem 7.3 It is decidable in polynomial time if a deterministically recog-
nizable tree language (presented by a deterministic parity automaton without
unproductive states) can be recognized by a Büchi automaton.

Let us remark that checking if a state of an automaton is productive is
as difficult for deterministic as for nondeterministic automata. For automata
with parity conditions the problem is known to be in NP∩co-NP [7].

8 Conclusions

We have considered the lowest levels of index hierarchies for automata on
binary trees. At present, for deterministic automata we can decide all levels up
to (0, 1). For nondeterministic and alternating automata we can decide (0, 0)
level, (1, 1) level, and the intersection of the two. It would be also interesting
to show these results for trees of arbitrary degree. For strict automata, or
equivalently for the intersection of (0, 0) and (1, 1) levels, this was done by
Otto [14]. We conjecture that a modification of the proofs presented here
should give the results for (0, 0) and (1, 1) level. Independently Küsters and
Wilke [8] have shown the same results for (0, 0) and (1, 1) levels; they have
also worked out the extension to trees of arbitrary branching.
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Folgenmengen. J. Inf. Process. Cybern. EIK, 13:473–487, 1977.

[21] T. Wilke and H. Yoo. Computing the Rabin index of a regular language of
infinite words. Information and Computation, 130(1):61–70, 1996.

15


