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Abstract

Strategies in repeated games can be classified as to
whether or not they use memory and/or randomization. We
consider Markov decision processes and 2-player graph
games, both of the deterministic and probabilistic varieties.
We characterize when memory and/or randomization are
required for winning with respect to various classes of -
regular objectives, noting particularly when the use of mem-
ory can be traded for the use of randomization. In partic-
ular, we show that Markov decision processes allow ran-
domized memoryless optimal strategies for all Müller ob-
jectives. Furthermore, we show that 2-player probabilistic
graph games allow randomized memoryless strategies for
winning with probability 1 those Müller objectives which
are upward-closed. Upward-closure means that if a set of
infinitely repeating vertices is winning, then all supersets of
are also winning.

1 Introduction

A two-player graph game is played on a directed graph
whose vertices are partitioned into player-1 vertices and
player-2 vertices. The two players move a token along the
edges of the graph. At player-1 vertices, the first player
chooses an outgoing edge, and at player-2 vertices the sec-
ond player moves the token to a neighboring vertex. The
outcome of the game is an infinite path through the graph.
An objective for a player can be specified as an -regular
condition on the outcome of the game [27, 23]. These -
regular games are used in the modeling [1, 14, 11], verifica-
tion [34, 12, 2, 20], and control (synthesis) [6, 3, 31, 29] of
state-based systems, where the vertices represent states and
the players represent components or agents of a system.
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A strategy for a player is a recipe that describes how
the player chooses a move whenever it is her turn. Strate-
gies can be classified as follows. A pure strategy always
chooses a particular edge to extend the game. In contrast,
a randomized strategy may choose at a vertex a probabil-
ity distribution over the outgoing edges. In other words, a
randomized strategy instructs the player to toss a coin in
order to decide on her move. Randomized strategies are
not helpful to win the game with certainty, but they may
be useful to win the game with probability 1. To formalize
this, notice that every vertex and every pair consist-
ing of a player-1 strategy and a player-2 strategy de-
termines (1) a set of possible outcomes
if the two players follow the strategies and starting the
game from the initial vertex , and (2) a probability distribu-
tion over which indicates the likelihood
of each possible outcome. We say that at vertex player-1
surely wins the game with objective if there is a player-
1 strategy such that for all player-2 strategies we have

, that is, every possible outcome sat-
isfies . A weaker condition is that player-1 almost-surely
wins at with objective , meaning that there is a player-
1 strategy such that for all player-2 strategies the set

of undesirable possible outcomes has
probability 0.
Strategies can be classified also according to their mem-

ory requirements. A memoryless strategy depends only on
the current position of the token. In contrast, a memory
strategy may depend on the path the token has taken to ob-
tain its current position. It is well-know that there are -
regular objectives which can be surely won using a mem-
ory strategy, but cannot be surely won using a memoryless
strategy. Here is a simple example: there are three vertices,
, , and ; at player 1 moves the token to either

or , and at both of these vertices, player 2 has no choice
but to move the token back to . The objective to visit both
and infinitely often cannot be won by player 1 with-

out using memory; for instance, a winning player-1 strategy
may alternate the two moves and . Note,



however, that in this game player 1 does have a randomized
memoryless strategy to almost surely win, such as the strat-
egy that always chooses the successor of uniformly at
random. In other words, player 1 can trade memory against
a random coin. We systematically study this trade-off for
all -regular objectives.
The results are categorized according to the form of the

game graph and the form of the winning condition. For win-
ning conditions, we use the classical classes of parity, Ra-
bin, Streett, and Müller objectives [33]. For game graphs,
we distinguish graphs without probabilistic vertices, which
are the graphs described above, and graphs that may con-
tain also probabilistic vertices. At a probabilistic vertex,
the token is moved according to a fixed probability distri-
bution over the outgoing edges, that is, neither of the two
players can choose the successor vertex. Accordingly, we
classify the game graphs into -player graphs (only player-
1 vertices), -player graphs (player-1 and probabilistic
vertices), -player graphs (player-1 and player-2 vertices),
and -player graphs (player-1, player-2, and probabilis-
tic vertices). Notice that -player graphs are transition sys-
tems, and -player graphs areMarkov decision processes
(MDPs). Instead of almost-sure winning, we consider the
more general condition of optimality. For a vertex , a
player-1 strategy , and a player-2 strategy , let
by the probability of the set of de-
sirable possible outcomes. A player-1 strategy is opti-
mal at for if for all
player-1 strategies . It can be shown that player-1 al-
most surely wins at for iff she has a strategy with

.
For Rabin objectives, it is known that pure memoryless

strategies suffice for the sure winning of 2-player games
[16, 15], and for the more special case of parity objectives,
it is known that there always exist optimal strategies in -
player games which are both pure and memoryless [26, 5].
At the other extreme, Streett games are known to require
memory for sure winning even in the 1-player case (cf. the
above example), and it is easy to see that they also re-
quire memory for almost-sure winning in the 2-player case
(cf. Example 3). However, for -player Streett games,
and more generally, for all -player Müller games, we
show that no memory is required for optimal strategies if
randomization is available (Theorem 9). In other words, in
MDPs the optimal value can be obtained without memory
for every objective which cannot distinguish between two
paths that visit the same vertices infinitely often. Further-
more, we show that if the objective is Rabin, then optimal-
ity in MDPs can be achieved by strategies that are both pure
and memoryless (Theorem 8).
We then take a closer look at the general case of -

player -regular games. We define a Müller objective
to be upward-closed if for every infinite path , if

every vertex that occurs infinitely often in also occurs
infinitely often in , then . For example, every
generalized Büchi objective is upward-closed. We prove
that memoryless strategies suffice for the almost-sure win-
ning of upward-closed -player games (Theorem 11). If
randomization is not used, then upward-closed objectives
(such as the generalized Büchi objective in the above ex-
ample) may require memory for almost-sure winning; thus,
the upward-closed games allow us to trade memory for ran-
domization. Indeed, we give an example of 2-player Müller
games with vertices where sure winning requires
memory but almost-sure winning can be achieved without
memory. Moreover, there is a game such that, if a Müller
objective is not upward-closed, then randomized memory-
less strategies are no better than pure memoryless strategies
for almost-sure winning, and they are not as powerful as
strategies with memory. This shows that the upward-closed
Müller games are the most general games with -regular
objectives where memory can be traded for randomization.

2 Preliminaries

Game graphs. A turn-based probabilistic game graph
( -player game graph) con-
sists of a directed graph , a partition , , of
the vertex set , and a probabilistic transition function :

, where denotes the set of probability
distributions over the vertex set . The vertices in are
the player-1 vertices, where player 1 decides the successor
vertex; the vertices in are the player-2 vertices, where
player 2 decides the successor vertex; and the vertices in
are the probabilistic vertices, where the successor vertex is
chosen according to the probabilistic transition function .
We assume that, for and , we have
iff , and we often write for . For
technical convenience we assume that in every ver-
tex has at least one outgoing edge, and we write
for .
An infinite path, or play, of the game graph is

an infinite sequence of vertices such that
for all . We write for the set of

all plays, and for every vertex we write for the
set of plays that start from the vertex . A set of
vertices is called -closed if for every , we have

implies . A -closed subset of induces
a subgame graph of , indicated by , if for every
vertex there is a vertex such that

.
The turn-based deterministic game graphs (2-player

game graphs) are the special case of the -player game
graphs with . The Markov decision processes ( -
player game graphs) are the special case of the -player
game graphs with or . We refer to the
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MDPs with as player-1 MDPs, and to the MDPs
with as player-2 MDPs. A game graph which is
both deterministic and an MDP is called a transition sys-
tem ( -player game graph): a player-1 transition system has
only player-1 vertices; a player-2 transition system has only
player-2 vertices.

Strategies. A strategy for player 1 is a function :
that assigns a probability distribution to every

finite sequence of vertices, which represents
the history of the play so far. Player 1 follows the strategy
if in each move, given that the current history of the play
is , she chooses the next vertex according to the prob-
ability distribution . A strategy must prescribe only
available moves, i.e., for all , , and ,
if , then . The strategies for
player 2 are defined analogously. We denote by and
the set of all strategies for player 1 and player 2, respec-
tively. Note that for player-1 MDPs the set is a singleton,
i.e., player 2 has only a single trivial strategy.
Once a starting vertex and strategies

and for the two players are fixed, the outcome
of the game is a random path for which the prob-
abilities of events are uniquely defined, where an event

is a measurable set of paths. Given strategies
for player 1 and for player 2, a play

is feasible if for every the following three condi-
tions hold: (1) if , then ; (2) if

, then ; and (3) if
then . Given strate-

gies and , and a vertex , we denote by
the set of feasible plays that start

from given strategies and . For a vertex and
an event , we write for the probability
that a path belongs to if the game starts from the vertex
and the players follow the strategies and , respectively.
In the context of player-1 MDPs we often omit the argu-
ment , because is a singleton set.

Objectives. Objectives for the players in nonterminating
games are specified by providing the set of winning plays

for each player. In this paper we study only zero-
sum games [30, 18], where the objectives of the two players
are strictly competitive. In other words, it is implicit that
if the objective of one player is , then the objective of the
other player is . Given a game graph and an objective

, we write for the game played on the graph
with the objective for player 1.
A general class of objectives are the Borel objec-

tives [21]. A Borel objective is a Borel set in the
Cantor topology on . In this paper we consider -regular
objectives [33], which lie in the first levels of the Borel
hierarchy (i.e., in the intersection of and ). The -
regular objectives, and subclasses thereof, can be specified

in the following forms.
For a play , we define

for infinitely many to be the set
of states that occur infinitely often in . We use colors to
define objectives independent of game graphs. For a set
of colors, we write : for a function that maps
each color to a set of vertices. Inversely, given a set
of states, we write for the set
of colors that occur in .

1. Reachability and safety objectives. Given a color ,
the reachability objective requires that some vertex of
color be visited. Let be the set of so-
called target vertices. Formally, we write Reach

for some
for the set of winning plays. Given , the safety ob-
jective requires that only vertices of color be vis-
ited. Let be the set of so-called safe ver-
tices. Formally, the set of winning plays is Safe

for all .
2. Büchi and generalized Büchi objectives. Given a
color , the Büchi objective requires some vertex of
color be visited infintely often. Let be the set
of so-called Büchi vertices. Formally, the set of win-
ning plays is Büchi .
Given a set of colors, the general-
ized Büchi objective requires that all Büchi objec-
tives in be satisfied. Formally, the set of winning
plays is Büchi .

3. Rabin, parity, and Streett objectives. Given a set
of pairs of colors, the

Rabin objective requires that for some , all
vertices of color be visited finitely often and some
vertex of color be visited infinitely often. Let

be the corresponding set of
so-called Rabin pairs, where and
for all . Formally, the set of winning plays is
Rabin

. The parity (or Rabin-
chain) objectives are the special case of Rabin objec-
tives where . Given ,
the Streett objective requires that for each ,
if some vertex of color is visited infinitely often,
then some vertex of color is visited infinitely often.
Formally, for the set
of so-called Streett pairs, the set of winning plays is
Streett

. Note that the Rabin and Streett
objectives are dual.

4. Müller and upward-closed objectives. Given a set of
colors, and a set of subsets of the colors, the
Müller objective requires that the set of colors that ap-
pear infinitely often in a play is exactly one of the sets
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in . Formally, for the set
of so-called Müller sets of vertices, the set of winning
plays is Müller .
We call a (game graph independent) specification of
the objective Müller , because does not refer to
the vertex names of . The specification is upward-
closed if for all , if , then .

The generalized Büchi objectives, Rabin objectives, and
Strett objectives are special cases of Müller objectives. In
particular, all Büchi and generalized Büchi objectives are
upward-closed. Moreover, reachability and safety objec-
tives can be turned into Büchi objectives on slightly modi-
fied game graphs. However, a parity, Rabin, or Streett ob-
jective need not be upward-closed.
We commonly use terminology like the following: a
-player Müller game Müller consists of a
-player game graph and a Müller objective for

player 1, where is a set of Müller sets.

Values of a game and optimal strategies. Given objec-
tives for player 1 and for player 2, we define the
value functions and for the players 1 and 2,
respectively, as follows:

A strategy for player 1 is optimal from vertex for objec-
tive if The optimal
strategies for player 2 are defined analogously.

Theorem 1 (Quantitative determinacy [24]). For all
-player game graphs, all Borel objectives , and all

vertices ,

Every -regular objective can be expressed as a parity
objective [28, 33]. The existence of optimal strategies for

-player games with parity objectives follows from [26,
5]. This gives the following theorem.

Theorem 2 (Optimal strategies). For all -player
game graphs with Müller objectives, optimal strategies
exist for both players.

Sure and almost-sure winning strategies. Given an objec-
tive , a strategy is a sure winning strategy for player 1
from a vertex if for every strategy of player 2 we
have . Similarly, a strategy is an
almost-sure winning strategy for player 1 from a vertex for
the objective if for every strategy of player 2 we have

. The sure and almost-sure winning strategies
for player 2 are defined analogously. Given an objective ,

Figure 1. An MDP with a reachability objec-
tive.

the sure winning set for player 1 is the set of
vertices from which player 1 has a sure winning strategy.
The almost-sure winning set for player 1 is
the set of vertices from which player 1 has an almost-sure
winning strategy. The sure winning set and
the almost-sure winning set for player 2
are defined analogously. It follows from the definitions that
for all -player game graphs and all objectives , we
have and

.
Computing sure winning and almost-sure winning sets

and strategies is referred to as the qualitative analysis
of -player games. It follows from Theorem 2 that

. The fol-
lowing result is the classical determinacy result for -player
deterministic games.

Theorem 3 (Qualitative determinacy [25]). For all -
player game graphs and all Borel objectives , we have

The following example shows that Theorem 3 cannot be
extended to -player and -player games.

Example 1 Consider the MDP with a reachability objec-
tive shown in Fig. 1. In all our figures we use to denote
player-1 vertices, to denote player-2 vertices, and to
denote probabilistic vertices. The objective of player 1
is to reach the vertex . Given the strategy that chooses

at vertex , the target is reached with proba-
bility 1. However, there is an infinite paths that is consistent
with the player-1 strategy but only visits the vertices
and . Hence, and

. This shows that in general for MDPs and -
player games .

3 Special Families of Strategies

Pure, finite-memory, and memoryless strategies. We
classify strategies according to their use of randomization
and memory. The strategies that do not use randomiza-
tion are called pure. A player-1 strategy is pure if for
all and , there is a vertex such that
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. The pure strategies for player 2 are de-
fined analogously. We denote by and the sets of
pure strategies for player 1 and player 2, respectively. A
strategy that is not necessarily pure is called randomized.
A strategy is finite-memory if it depends on the current

vertex and on a finite number of bits from the history of
the play so far. We denote by the set of finite-memory
strategies for player 1, and by the set of pure finite-
memory strategies; that is, . A memo-
ryless strategy does not depend on the history but only on
the current vertex. A memoryless strategy for player 1 can
be represented as function : such that for all

and , if , then . A pure
memoryless strategy is a pure strategy that is memoryless.
A pure memoryless strategy for player 1 can be represented
as a function : such that for all

. We denote by the set of memoryless strategies
for player 1, and by the set of pure memoryless strate-
gies; that is, . Analogously we define the
corresponding strategy families for player 2.
Given a strategy for player 1, we write for

the game played on the graph under the constraint that
player 1 follows the strategy . The corresponding defi-
nition for a player-2 strategy is analogous. Observe that
given a -player game graph and a memoryless player-
1 strategy , the result is a player-2 MDP. Similarly, for
a player-1 MDP and a memoryless player-1 strategy ,
the result is a Markov chain. Hence, if is a -
player game graph and the two players follow given memo-
ryless strategies and , the result is a Markov chain.
These observations will be useful in the analysis of -
player games.

Sufficiency of a family of strategies. Let
and consider the family of special

strategies for player 1. We say that the family suffices
with respect to an objective on a class of game graphs
for

sure winning if for every game graph , for every
vertex there is a player-1 strategy

such that for every player-2 strategy we
have ;

almost-sure winning if for every game graph ,
for every vertex there is a player-1
strategy such that for every player-2 strategy

we have ;

optimality if for every game graph , for every
vertex there is a player-1 strategy such
that .

For sure winning, the -player and -player games
coincide with 2-player deterministic games where the ran-
dom player (who chooses the successor at the probabilistic

vertices) is interpreted as an adversary, i.e., as player 2. This
is formalized by the proposition below.

Proposition 1 If a family of strategies suffices for sure
winning with respect to an objective on all -player game
graphs, then the family suffices for sure winning with
respect to also on all -player and -player game
graphs.

The following proposition states that randomization is
not necessary for sure winning.

Proposition 2 If a family of strategies suffices for sure
winning with respect to a Borel objective on all -
player game graphs, then the family of pure strate-
gies suffices for sure winning with respect to on all -
player game graphs.

The following result is the classical determinacy result
for 2-player deterministic graph games.

Theorem 4 (Pure and finite-memory strategies).

1. [25] The family of pure strategies suffices for
sure winning with respect to all Borel objectives on -
player game graphs.

2. [19] The family of pure finite-memory strategies
suffices for sure winning with respect to all Müller ob-
jectives on -player game graphs.

It is easy to see that for any -player game a sure winning
strategy is also an almost-sure winning strategy. Hence the
almost-sure winning strategies need not be more complex
than the sure winning strategies in -player games. This is
formalized by the proposition below.

Proposition 3 If a family of strategies suffices for sure
winning with respect to a Borel objective on all -player
game graphs, then the family suffices also for optimality
with respect to on all -player game graphs.

4 Reachability and Safety Objectives

Pure memoryless strategies suffice for sure winning and
optimality (and therefore for almost-sure winning) with re-
spect to reachability and safety objectives.

Theorem 5

1. The family of pure memoryless strategies suffices
for sure winning with respect to reachability and safety
objectives on -player game graphs.

2. [7] The family of pure memoryless strategies suf-
fices for optimality with respect to reachability and
safety objectives on -player game graphs.
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Theorem 5(1) for 2-player games is classical. It is an
easy consequence of the alternating reachability analysis of
AND-OR graphs; see [33] for details. Due to Proposition 1,
the result carries over to -player games. Theorem 5(2)
follows from the results of [7]. However, the proof given
there is analytical; it analyzes the behavior of discounted
games as the discount factor converges to 1. As in the fol-
lowing sections we will make frequent use of this result
for MDPs, we provide here an elementary proof that pure
memoryless strategies suffice for optimality with respect to
reachability objectives on MDPs. Our proof uses only facts
from graph theory and matrix algebra.
Consider a player-1 MDP

(where ), together with a set of target
vertices. Let , and let be the set of
vertices that cannot reach in the graph ; let also

. From , all strategies are optimal
with respect to the objective Reach , so we can fix a pure
memoryless strategy on arbitrarily. Consider the
following fixpoint equation for : , where for all

:

if ;
if ;
if ;
if .

(1)

This system of equations in general has many fixpoints,
and it is well-known that the least fixpoint equals

Reach ; see, e.g., [13]. For , define
the set of optimal successors of by

. Clearly, an optimal strategy must select
only optimal successors of vertices in . Thus, we cut
from the MDP all the edges with and

. It is immediate to check that is still a fixpoint
of (1) in the resulting MDP.
To obtain a memoryless strategy, we can choose all opti-

mal successors of vertices in uniformly at random.
To obtain a memoryless pure strategy, we observe that if a
vertex has multiple optimal successors, i.e.,

, and we cut an edge with , then
is still a fixpoint of (1) in the resulting MDP. However,

we cannot arbitrarily fix one optimal successor for each ver-
tex in and cut the edges to all other successors: doing
so could create new fixpoints below . This occurs, for in-
stance, whenever there are mutually reachable vertices with
equal , and the selected successors create a cycle that pre-
vents reaching . Our goal is to pick optimal successors,
and cut the edges to other successors, so that is the only
fixpoint of (1) in the resultingMDP. This will guarantee that

Reach for the resulting pure memoryless
strategy.
To ensure the uniqueness of the fixpoint, we cut edges

from while maintaining the invariant that every ver-

tex in can reach in the graph . Note that this
invariant holds initially by the definition of . Let
be a subset of edges that consists of shortest paths from
to such that every vertex has only one outgoing edge, i.e.,
for all , if , then .
Then, prune from player-1 vertices all edges that are not
in ; precisely, for all and , keep

if , and prune it otherwise. The MDP
corresponds thus to a Markov chain. We define the transi-
tion probability matrix and the vector
as follows, for all :

if and ;
if and ;
if ;

if and ;
if and ;
if .

Then , as a fixpoint of (1), is a solution of .
Since every vertex in has a path to in the graph

, the matrix corresponds to a transient chain, and
[22]. Hence, is the

unique fixpoint of (1), showing the optimality of the pure
memoryless strategy thus constructed.

5 Parity Objectives

Pure memoryless strategies suffice for sure winning and
optimality (and therefore for almost-sure winning) with re-
spect to parity objectives.

Theorem 6
1. The family of pure memoryless strategies suffices

for sure winning with respect to parity objectives on
-player game graphs.

2. [26, 5] The family of pure memoryless strategies
suffices for optimality with respect parity objectives on

-player game graphs.

Theorem 6(1) for 2-player games is a classical result
of [16]; an alternative proof is presented in [32]. Due to
Proposition 1, the result carries over to -player games.
Theorem 6(2) follows from two independent results: an
analytical proof using results on recursive games of Ev-
erett [17] is presented in [26]; a combinatorial proof using
graph-theoretic arguments is presented in [5].

6 Rabin Objectives

Pure memoryless strategies suffice for sure winning with
respect to Rabin objectives in -player and -player
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games, and for optimality (and therefore for almost-sure
winning) in -player games (MDPs). It is an open prob-
lem whether the family of pure memoryless strate-
gies suffices for almost-sure winning on -player game
graphs.

Theorem 7 The family of pure memoryless strate-
gies suffices for sure winning with respect to Rabin objec-
tives on -player game graphs.

Theorem 7 for 2-player games is a classical result
of [16]; an alternative proof is presented in [15]. Due to
Proposition 1, the result carries over to -player games.
It follows from Theorem 4 and Proposition 3 that the

family of pure finite-memory strategies suffices for
optimality (and almost-sure winning) with respect to Ra-
bin objectives on -player game graphs. On the other hand,
pure memoryless strategies suffice for optimality with re-
spect to Rabin objectives on MDPs, as stated by the follow-
ing theorem. This result does not follow from the preceding
results, as the case for 2 -player games is open, as noted
above.

Theorem 8 The family of pure memoryless strate-
gies suffices for optimality with respect to Rabin objectives
on -player game graphs.

This theorem can be proved using the techniques de-
veloped in [8, 9] to compute the maximal probability of
satisfying an -regular specification. We consider player-
1 MDPs and hence strategies for player 1. Let

with be a -player game
graph. The key concept underlying the proof is that of
an end-component. A set of vertices is an end-
component if is -closed and the subgame graph
is strongly connected. We denote by the set of all
end-components of .
We will use two facts about end-components. The first

fact states that, under any strategy, with probability 1 the
set of vertices visited infinitely often along a play is an
end-component. This theorem parallels the well-known
property of closed recurrent classes in Markov chains [22].
To state the lemma, for and , we define

.

Lemma 1 [8] For all vertices and strategies ,
we have .

For an end-component , we denote by the ran-
domizedmemoryless strategy that at each vertex
selects uniformly at random one of the edges
having . The following lemma is immediate, as un-
der strategy forms a closed recurrent class of a Markov
chain.

Lemma 2 [8] For all end-components and all ver-
tices , we have .

Consider a set of Rabin
pairs. For convenience, set for .
With this notation, the Rabin objective can be read as fol-
lows: a play is winning if there is some such
that (1) the play is eventually confined in , and (2) the
play visits infinitely often. We denote by the set
consisting of the end-components such that there is
an for which and . The
set consists thus of the end-components that satisfy the
Rabin objective. Let be union of all such
winning end-components. From Lemmas 1 and 2 above, it
follows that the maximal probability of satisfying Rabin
is equal to the maximal probability of reaching the union of
the winning end-components. We present a proof of this
fact, as it will be useful in the construction of a pure mem-
oryless strategy.

Lemma 3 [8] Rabin Reach .

Proof. Given any strategy , let be a strategy that
behaves like outside of , and that upon enter-
ing at a state , follows the strategy , for some
end-component with . Then, from
Lemma 2 it follows that for all vertices , we
have Reach Rabin , and thus,

Rabin Reach . For the re-
verse inequality, consider again an arbitrary strategy , and
notice that from Lemma 1 we have:

Rabin Rabin

Rabin

Reach

As pure memoryless strategies suffice with respect to
reachability in MDPs, the above proof is a first step in
showing that there are pure memoryless optimal strategies.
However, the strategy constructed above is not necessar-
ily pure memoryless, because it needs to remember one of
the winning end-components (corresponding to the entrance
in ), and it follows a randomized strategy inside that
end-component. We can construct a suitable pure memory-
less strategy as follows. Let , thus fix-
ing an arbitrary order among the winning end-components.
For , let be any fixed
such that and . In other words,

is a Rabin pair that witnesses the
winning of the end-component . With this notation, for

let be the pure memoryless strategy defined
over which chooses only successors in such that:

7



in , it coincides with a pure memoryless
strategy for reaching ;

in , it chooses an arbitrary destination in .

The existence of such a strategy follows from the existence
of pure memoryless strategies with respect to reachability
(Theorem 5). For , let

be the rank of the vertex . Now define the
strategy as follows:

outside , the strategy coincides with a pure
memoryless optimal strategy with respect to the ob-
jective Reach ;

at each vertex , the strategy coincides
with .

Once such a memoryless strategy is fixed, the MDP be-
comes a Markov chain , with transition probabili-
ties defined by for , and by

for . The following lemma char-
acterizes the closed recurrent classes of this Markov chain
in the set , stating that they satisfy the Rabin objective.

Lemma 4 If is a closed recurrent class of the Markov
chain with , then there is an
such that and .

Proof. Let . The closed
recurrent classes of are the terminal strongly con-
nected components (SCCs) of the graph . By the
construction of , the rank of the vertices along all paths in

is nondecreasing. Hence, each terminal SCC
of must consist of vertices with the same rank;
we indicate this rank by . Then, at all states of
the strategy is used. Thus, it immediately fol-

lows that . Moreover, since from every state
of the strategy aims at
reaching , and as has no outgoing edges
in , it follows that .

The optimality of the strategy is a simple consequence
of Lemma 4.

Corollary 1 For all vertices , we have
Rabin Rabin .

Proof. In view of Lemma 3, we need to show that
Reach Rabin . To this

end, it suffices to note that by the construction of ,
we have Reach Reach and

Rabin Reach . The second equality
follows from the fact that under strategy , once a play en-
ters , with probability 1 we have for some
closed recurrent class of . Lemma 4 then leads to
the conclusion.

Figure 2. A Streett game.

7 Streett Objectives

Sure winning requires memory for Streett objectives
even in the case of 1-player games. This follows from the
example given in the introduction, which is repeated here.

Example 2 Consider the -player game graph shown in
Fig. 2. The objective is a Streett objective with two
Streett pairs: for

and and . We con-
sider the two possible pure memoryless strategies: (1) for
the strategy that always chooses , the Streett pair

is not satisfied; and (2) for the strategy that always
chooses , the Streett pair is not satisfied.
Hence there is no pure memoryless sure winning strategy
for player 1. It follows from Proposition 2 that there is no
randomized memoryless sure winning strategy either.

It will follow from Theorem 10 that memoryless strate-
gies suffice for almost-sure winning with respect to Streett
objectives on -player (and hence on -player) game
graphs. We now show that almost-sure winning -player
Streett games does require memory.

Example 3 Consider the -player game graph shown in
Fig. 3. The objective is a Streett objective with two Streett
pairs: for ,

, , and . Consider the two pos-
sible pure memoryless strategies for player 1: (1) for the
player-1 strategy that always chooses , the player-2
strategy that chooses ensures that the Streett pair

is not satisfied; and (2) for the player-1 strategy
that always chooses , the Streett pair is
not satisfied. For any randomized memoryless strategy that
chooses both and with positive proba-
bilities, the player-2 strategy that chooses ensures
that the vertex set is visited infinitely often.
Hence the Streett pair is not satisfied. Note, how-
ever, that the pure memory strategy that chooses
once whenever player 2 chooses , and otherwise
chooses , is a sure winning strategy (and hence
also an almost-sure winning strategy) for player 1.

The results on Streett games are summarized in the fol-
lowing theorem.

Theorem 9
1. The family of memoryless strategies does not suf-

fice for sure winning with respect to Streett objectives
on -player game graphs.

8



2. The family of memoryless strategies suffices for
almost-sure winning with respect to Streett objectives
on -player game graphs.

3. The family of memoryless strategies does not suf-
fice for almost-sure winning with respect to Streett ob-
jectives on -player game graphs.

8 Müller Objectives

It follows from Example 2 that sure winning strate-
gies require memory for Müller objectives even in -player
games. Moreover, Example 3 shows that in -player games
with Müller objectives almost-sure winning requires mem-
ory. We now show that for -player Müller games mem-
oryless almost-sure winning strategies exist.

Theorem 10 The family of memoryless strategies suf-
fices for optimality with respect to Müller objectives on

-player game graphs.

Given a set of Müller sets, we denote by
the set of end-components that are Müller sets

(see Section 6 for a definition of end-components); these
are the winning end-components. Let be
their union. From Lemmas 1 and 2, it follows that the max-
imal probability of satisfying the objective Müller is
equal to the maximal probability of reaching the union of
the winning end-components.

Lemma 5 Müller Reach .

The proof of this lemma is analogous to the proof of
Lemma 3. To construct a memoryless winning strategy,
we again let , thus fixing an arbitrary or-
der among the winning end-components, and we define the
rank of a vertex by

. We define a randomized memoryless strategy as
follows:

In , the strategy coincides with an optimal
memoryless strategy to reach .

At each vertex , the strategy coin-
cides with the strategy defined in Section 6;
that is, it selects uniformly at random one of the edges

having .

Once such a memoryless strategy is fixed, the MDP be-
comes a Markov chain , with transition probabilities
defined by for , and by

for . The following lemma characterizes
the closed recurrent classes of this Markov chain in the
set , stating that they are all winning end-components.

Lemma 6 If is a closed recurrent class of the Markov
chain , then either or .

Proof. Let . The
closed recurrent classes of are the terminal SCCs of
the graph . As the rank of the vertices along all
paths in is nondecreasing, each terminal SCC
of must consist of vertices with the same rank,
denoted . Clearly, . To see that

note that in player 1 follows the strategy
, which causes the whole of to be visited.

Hence, as is terminal, we have .

The optimality of the strategy is a simple consequence
of Lemma 6. The following corollary is proved in a fashion
analogous to Corollary 1.

Corollary 2 For all vertices , we have
Müller Müller .

9 Upward-closed Objectives

We show that memoryless almost-sure winning strate-
gies exist for all -player Müller games if the objective
can be specified in an upward-closed way.

Theorem 11 The family of memoryless strategies suf-
fices for almost-sure winning on -player game graphs
with respect to Müller objectives that have upward-closed
specifications.

Proof. Consider an upward-closed specification of an
objective Müller and a -player game graph

. Let be the almost-sure
winning set for player 1. It is easy to argue that for ev-
ery vertex , there is a vertex with

, and for every vertex , for
all edges we have . Hence,
is a subgame graph. By the definition of , player 1
has a winning strategy (memoryless or not) such that

Müller for all vertices and
player-2 strategies . Moreover, the strategy can choose
only edges in , as it cannot leave . Hence, from
now on we concentrate on the subgame graph .
Let be the memoryless player-1 strategy that plays

uniformly at random in . Precisely, for a vertex
, let , and let

be the player-1 strategy that at plays each edge
in uniformly at random. We claim that is winning,
that is, Müller for all vertices
and player-2 strategies , thus showing the existence of a
memoryless almost-winning strategy for player 1.
Assume, towards a contradiction, that player 2 has a

strategy such that Müller for some
vertex . Note that is a player-2 MDP under
strategy ; we denote this player-2 MDP by .
From our results on Müller MDPs, there must be an end-
component of which is winning for

9



Figure 3. A Müller game.

player 2, that is, . Moreover, player 2 has a memo-
ryless strategy that enables it to win with maximal prob-
ability in , and is a closed recurrent class of
the Markov chain .
Now consider the situation arising when player 1 uses its

original winning strategy against . Under strategy ,
the game graph is a player-1 MDP, which we de-
note by . As is closed under and , it has
no outgoing player-1 edge in . By the definitions
of and , player 1 can win with probability 1 from .
Therefore, again from our results on Müller MDPs, there
must be an end-component of which
is winning for player 1, that is, . This contradicts
the upward-closure of .

There are games with Müller objectives such that sure
winning with a pure strategy requires memory, where
is the number of vertices, but almost-sure winning can

be achieved by a randomized memoryless strategy. To see
this, for arbitrary , consider the set
of colors and the Müller specification . It fol-
lows from the split-tree construction of [15] that there is a
2-player game graph with vertices, each of which is
labeled by a unique color from , such that a pure sure win-
ning strategy on for the objective Müller requires

memory. On the other hand, since is upward-closed,
by Theorem 11 a randomized memoryless almost-sure win-
ning strategy exists.
We now show that there exists a 2-player game graph

such that for every Müller objective that is not upward-
closed, randomization does not help, i.e., memoryless
almost-sure winning strategies exist if pure memoryless
almost-sure winning strategies exist, whereas strategies
with memory may be almost-sure winning.

Example 4 Let be a set of colors, and let be a speci-
fication of a Müller objective over which is not upward-
closed. Let such that and witness
that is not upward-closed. Consider the 2-player game
graph shown in Fig. 3, where the vertices are the player-1
vertices, and the vertices are the player-2 vertices. The
colors of each vertex are defined by , , and

.
We show that every memoryless strategy that is not pure

is not an almost-sure winning strategy. Consider the ran-
domized memoryless strategy for player 1 which plays at

both edges and with positive prob-
ability. Let be the strategy for player 2 which chooses

at . Given the strategies and , the game
is a Markov chain and the vertex set is a
closed recurrent class of the Markov chain; hence it is vis-
ited infinitely often. Thus, the set of colors that are visited
infinitely often is , because . Since ,
there is no randomized memoryless almost-sure winning
strategy.
We now show that on the game graph of Fig. 3, for every

set , if and , then almost-sure win-
ning strategies exist for player 1. The vertex colors are
now defined by , , , and

. We construct a sure winning strategy (and
hence an almost-sure winning strategy) that uses memory.
Consider the following strategy for player 1: given any
sequence of vertices , let

if the last vertex of is not
otherwise.

Intuitively, the strategy can be described as follows: if at
vertex the edge is played, then player 1 plays

at ; if at vertex the edge is played,
then player 1 chooses followed by . We
prove that is a sure winning strategy for player 1 by con-
sidering the following three cases:
1. For every play such that occurs infinitely
often and occurs finitely often, we have

and .
2. For every play such that occurs infinitely
often and occurs finitely often, we have

and
.

3. For every play such that occurs infinitely
often and occurs infinitely often, we have

and
, because .

Since , it follows that is a sure winning strategy.

The following example shows that sure winning may re-
quire memory for -player games with upward-closed ob-
jectives. It follows that Theorem 11 cannot be strengthened
to sure winning strategies.

Example 5 Recall the -player game graph shown in
Fig. 2. The set of colors is , the vertex is
labeled with color , and is labeled with . The specifi-
cation of the Müller objective is ; that is, the
objective of the player is to visit both and infinitely of-
ten. We have already seen that there is no pure memoryless
sure or almost-sure strategy to achieve this objective. Note,

10



Table 1. AS - Almost Sure, PM - Pure Memoryless, F - Finite Memory, RM - Randomized Memoryless.
Parity Rabin Streett Müller Upward-closed

Players Sure Optimal Sure Optimal Sure Optimal Sure Optimal Sure AS
PM PM PM F F F F F F RM
PM PM PM PM F F F F F RM
PM PM PM PM F RM F RM F RM
PM PM PM PM F RM F RM F RM

however, that a strategy that alternately chooses between
and is a sure winning strategy. Now con-

sider the randomized memoryless strategy that chooses
the edges and each with probability .
Then, with probability 1 all vertices are visited infinitely
often. Thus is an almost-sure winning strategy.

10 Conclusion

The memory and randomization requirements of sure
winning and optimal (or almost-sure winning) strategies
for -, -, -, and -player game graphs are summa-
rized in Table 1. We showed that in -player games with
upward-closed objectives randomized memoryless almost-
sure winning strategies exist. Moreover, the randomized
memoryless strategies are always simple, in the sense that
they use only uniform randomization over given sets of
edges. Several important classes of Müller objectives, such
as generalized Büchi objectives, are upward-closed. In par-
ticular, in 2-player games with generalized Büchi objectives
the classical pure sure winning strategies require memory,
but randomized memoryless optimal strategies exist.
In the case of -player games with parity objectives

pure memoryless sure winning, almost-sure winning, and
optimal strategies exist [4, 5]. It is an open problemwhether
pure memoryless almost-sure winning strategies exist for

-player games with Rabin objectives. We also leave
open the problem whether memoryless optimal strategies
exist -player games with upward-closed objectives.
We considered turn-based games, where at each (non-

probabilistic) vertex one of the two players chooses a suc-
cessor vertex. A more general class of games are the con-
current games, where at each vertex both players simul-
taneously and independently choose moves, and the com-
bination of the chosen moves results either deterministi-
cally or probabilistically in a specific successor vertex. The
following results are known for concurrent games [10]:
memoryless strategies suffice for optimality with respect to
safety objectives; memoryless strategies suffice for optimal-
ity with respect to reachability objectives only in the limit;
and Büchi objectives require both infinite memory and ran-
domization for almost-sure winning. In the case of concur-
rent games, sure winning is always simpler than almost-sure

winning, in terms of the requirements of winning strategies.
In contrast, for MDPs with Müller objectives sure winning
strategies require memory but memoryless strategies suffice
for almost-sure winning.
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