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Abstract Two mobile robots are initially placed at the same point on an
infinite line. Each robot may move on the line in either direction not exceeding
its maximal speed. The robots need to find a stationary target placed at an
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unknown location on the line. The search is completed when both robots arrive
at the target point. The target is discovered at the moment when either robot
arrives at its position. The robot knowing the placement of the target may
communicate it to the other robot. We look for the algorithm with the shortest
possible search time (i.e. the worst-case time at which both robots meet at the
target) measured as a function of the target distance from the origin (i.e. the
time required to travel directly from the starting point to the target at unit
velocity).

We consider two standard models of communication between the robots,
namely wireless communication and communication by meeting. In the case
of communication by meeting, a robot learns about the target while sharing
the same location with a robot possessing this knowledge. We propose here an
optimal search strategy for two robots including the respective lower bound
argument, for the full spectrum of their maximal speeds. This extends the main
result of Chrobak et al. (SOFSEM 2015) referring to the exact complexity of
the problem for the case when the speed of the slower robot is at least one
third of the faster one. In the wireless communication model, a message sent by
one robot is instantly received by the other robot, regardless of their current
positions on the line. For this model, we design a strategy which is optimal
whenever the faster robot is at most

√
17 + 4 ≈ 8.123 times faster than the

slower one. We also prove that otherwise the wireless communication offers no
advantage over communication by meeting.

Keywords linear search · mobile robots · group search · different speeds

1 Introduction

Searching is a well-studied problem in which mobile robots need to find a
specific target placed at some a priori unknown location. In some cases, a team
of robots is involved, trying to coordinate their efforts in order to minimize
the time. The complexity of the multi-robot searching is usually defined as the
time when the first searcher arrives at the target position whose location is
controlled by an adversary.

In distributed computing, one of the central problems is rendezvous when
two mobile robots collaborate in order to meet in the smallest possible time.
The efficiency of the rendezvous strategy is expressed as the time when the last
involved robot reaches the meeting point, and the meeting point is arbitrary,
i.e., the robots may choose the most convenient one.

In the linear search problem studied in the present paper, a pair of robots
has to meet at an unknown fixed target point of the environment and the
time complexity of the process is determined by the arrival of the second
robot. More specifically, we consider two mobile robots placed at the origin
of an infinite line. Each robot has its maximal speed that it cannot exceed
while moving in either direction along the line. There is a stationary target,
placed at an unknown point of the line, that a robot discovers when arriving at
its placement. The robot which possesses the knowledge of the target position
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may communicate it to the other robot. We consider two communication mod-
els of the robots: communication by meeting when the robots can exchange
information only while being located at the same position, and wireless com-
munication when the robot finding the target may instantaneously inform the
other robot of its position. We want to schedule the movement of both robots
so that eventually each of them arrives at the target location. The cost of the
schedule is the first time when both robots are present at the target position.
We express it as a function of the distance between the target and the origin.

1.1 Previous Work

The linear search problem for a single robot was introduced by Beck [7] and
Bellman [8]. (The original problem of [7,8] involves a probability distribution
of placements of the target that the robot knows.) They proposed an optimal
online algorithm with competitive ratio 9 (i.e., the worst-case ratio of its cost
with respect to the offline cost). A variant of this question is the cow-path
problem in [3], in which the searcher has more than two directions to follow. The
original problem was also extended to searching in the plane [4], and numerous
other variations [12,15,20,22,28,29,31,32,34]. Bose et al. [11] recently studied
a variant of these problems where upper and lower bounds on the distance to
the target are given. On a line, without this information several observations
and partial results hint to the fact that the competitive ratio 9 cannot be
improved even if the search is performed by a team of same-speed robots
communicating by meeting if all robots have to reach the target [13]; see
also [5]. Surprisingly, the same search time can still be achieved by distinct-
speed robots if the slowest robot is at most 3 times slower than the fastest
one [13].

1.2 Our Results

In this paper, we consider the linear search problem for two robots equipped
with distinct maximal speeds. For the convenience of presentation we scale
their speeds so that the speed of the faster robot is 1 and the slower one is
0 < v ≤ 1.

In the model with communication by meeting, we propose an optimal strat-
egy for any value of v. In particular, our strategy works in time 1+3v

v−v2 d, for any
v ≤ 1

3 for the target being placed at unknown distance d from the origin,
which yields a competitive ratio 1+3v

1−v . The remaining part of the spectrum
has been partially covered in [13] where the authors provide an argument
for the lower bound 9d − o(d) when the robots share the maximal speed 1,
under certain conditions on the algorithm, and they show that this bound
can be met from above when the slower robot’s maximal speed is at least 1

3 .
We complement these results by providing the full formal proof of the lower
bound 9d − o(d) for any set of robots with maximal speed at most 1. In the
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model with wireless communication, we design a simple strategy achieving
search time 2+v+

√
v2+8v

2v d and competitive ratio 2+v+
√
v2+8v

2 . This algorithm
for wireless communication outperforms the optimal strategy for communi-
cation by meeting for v >

√
17 − 4 ≈ 0.123, which shows that the feature of

wireless communication is useful in this range of parameters. Interestingly, this
threshold is not an artifact of the particular algorithms we designed. We prove
that for any v the optimum competitive ratio in the wireless communication
model is achieved either by our strategy for wireless communication, or by
the trivial adaptation of the optimal strategy for communication by meeting.
Hence, for v ≤

√
17 − 4, the wireless communication gives no advantage over

communication by meeting.

1.3 Related Work

Numerous papers have been written on the searching problem, studying di-
verse models involving stationary or mobile targets, graph or geometric ter-
rain, known or unknown environment, one or many searchers, etc. (cf. [1,2,4,
26,35]). Depending on the setting, the problem is known under the name of
treasure hunting, pursuit-evasion, cops and robbers, fugitive search games, etc.
Sometimes the searching robot is not looking for an individual target point,
attempting rather to evacuate being lost in an unknown environment or deter-
mine its position within a known map (e.g. [18,24]). Several of these research
papers offer exciting challenges of combinatorial or algorithmic nature (see
[26]). In most papers studying algorithmic issues, the objective is either to
determine the feasibility of the search, (i.e., whether the search will succeed
under all adversarial choices) or to minimize its cost represented by the search
time, assuming some given speeds of searchers (and perhaps evaders).

Many searching algorithms are studied in the online setting (cf. [30]), where
the information about the environment is acquired as the search progresses.
The performance of an online algorithm is measured by its competitive ratio,
i.e., the worst-case ratio of its cost with respect to the offline cost, which is
the search time of the optimal algorithm with full a priori knowledge of the
environment and the target placement. Many search problems, especially for
geometric environments, are analyzed from this perspective, in particular when
the cost of the offline solution is just the distance to the target; see [4,13,25,
30].

Most of the papers study the searching problem for a single robot. As
a single searching robot usually cannot fully explore and map an arbitrary
unknown graph (unless e.g., by leaving pebbles at some nodes; see [9]), a
second searching robot is often necessary (and sufficient) in order to make
the task feasible (cf. [10]). However, optimization of the search by the use of
multiple robots often involves coordination issues, where the searchers need
to communicate in order to synchronize their efforts and adequately split the
entire task into portions assigned to individual robots (cf. [13,23,25,27]). As
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this objective is often not easy to achieve, some multi-robot search problems
turn out to be NP-hard (e.g., see [27]).

In previous research on the searching problem usually robots traveling at
the same speed were considered (cf. [13,14,17,18,21]). For other problems con-
sidering robots with distinct speeds (e.g., the patrolling problem studied in [16,
19,33]), only partial results were obtained. Optimal patrolling using more than
two robots on a ring [19], or more than three robots on a segment [33], is un-
known in general and all intuitive solutions have been proved sub-optimal for
some configurations of the speeds of the robots. Another example is the long-
standing lonely runner conjecture [37], concerning k entities moving with con-
stant speeds around a circular track of unit-length. If the speeds are pairwise
different, the conjecture states that at some moment all runners are located
equidistantly on the cycle. The conjecture is open in general, having been
verified for up to 7 runners [6].

A closely related problem, the rendezvous problem, has been central to dis-
tributed computing for many years. It was studied in various settings (cf. [36]),
but even for environments as simple as a line or a ring, optimal solutions are
not always known. Feasibility of the rendezvous problem is often determined
by a symmetry breaking process, which must prevent the robots from falling
into an infinite pattern avoiding the meeting. Searching and rendezvous may
be viewed as problems with opposite objectives. Searching is a game between
a searcher, who tries to find the target as fast as possible and the adversary,
who knows the searching strategy and attempts to maximize the search time
by its choice of the environment parameters, target placement (or its escape
route), etc. Hence in searching, the two players have contradictory goals. In
rendezvous the two players collaborate, trying to quickly find one another
(see [2]). Contrary to the searching problem, the rendezvous destination is not
given in advance but it may be decided by the robots.

2 Preliminaries

For any algorithm A, we denote by t(A, p) the search time of algorithm A if
the target is located at point p. In other words, this is the time at which all
robots meet at the target p. As it is standard in the literature, we assume that
the target is at a distance of at least 1 away from the origin.

In the offline setting, if the robots know the target, the search time is
clearly 1

v |p|, where v is the speed of the slowest robot. We use the competitive
ratio CR(A) of algorithm A, equal to

CR(A) = sup
|p|≥1

v·t(A,p)
|p| ,

as the main efficiency measure of the algorithms. In what concerns lower
bounds, we actually prove stronger lower bounds for the quantity

τ(A) = lim sup
|p|→∞

t(A, p)
|p|

.
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They imply lower bounds for the competitive ratio due to CR(A) ≥ v · τ(A).
Having fixed an algorithm A for a setR of robots, each robot Γ ∈ R follows

a fixed trajectory as long as it is unaware of the location of the target. We
use Γ (t) to denote the position of robot Γ at time t provided that the target
location is not known to the robot. Our lower bounds rely on the analysis of
the progress speeds lim supt→∞

|Γ (t)|
t . The largest of these values over Γ ∈ R

is called the overall progress speed. For each point p, the time T (p) = min{t :
∃Γ ∈ R Γ (t) = p} is called the discovery time of p (it is the first moment
when any robot visits p). For each time t, we denote D(t) = {p : T (p) ≤ t} the
segment of points discovered until time t. We call the value lim inft→∞

|D(t)|
t

the discovery speed.
Our results are primarily designed for a set R of two robots, denoted R

and r. Their speed limits are 1 and v (0 < v ≤ 1), respectively.

3 Communication by Meeting

In this model, once a robot finds the target, it must walk to meet the other
robot, and then the robots travel to the target. Naturally, the schedule consists
of three phases: the exploration phase while the target is unknown, the pursuit
phase where the informed robot chases after the other one in order to tell it
about the target, and the target phase when both robots walk to the target
location. Recall that for robots with equal speeds, one of the possible (opti-
mal) solutions consists in all the robots following together the same cow-path
trajectory [5,13], thus the pursuit and target phases may be nonexistent.

3.1 The Upper Bound

Let us first recall the structure of the cow-path trajectory. A robot visits, for
subsequent integers k ∈ N, the points pk := (−2)k on alternating sides of the
origin, traveling at full speed between consecutive points pk. In this strategy,
the robot discovers new locations after it passes pk on the way from pk+1

to pk+2. This happens from time tk := |pk|+2
∑k+1
j=0 |pj | = 9 ·2k−2 = 9|pk|−2

to t′k+2 := |pk+2|+ 2
∑k+1
j=0 |pj | = 12 · 2k − 2 = 3|pk+2| − 2. Consequently, the

search time is bounded from above by 9|p|.
As observed by Chrobak et al. [13], this strategy generalizes to a collection

of two robots with speed limits 1 and 1
3 . Both robots follow the cow-path

trajectory at their maximal speed, which means that they meet in pk at time
tk = 3t′k. When the faster robot R discovers the target at a point p between
pk and pk+2, it pursues the slower robot r and brings it to the target, which
turns out to be feasible within time 9|p|; see Fig. 1.

We extend this strategy to allow v < 1
3 as the speed limit of the slower

robot r. We insist on the two robots meeting in points pk at times tk for
adjusted values pk and tk. The smaller speed v of r allows R to travel further
before going back to pk. More formally, we increase the ratio |pk+1|/|pk| and
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t

0
pkpk+1 pk+2

R
r

t

0
pkpk+1 pk+2

R r

Fig. 1 Illustration of algorithm A∗ before target detection (left), and when the target has
been located (right). The horizontal axis represents the line searched and the vertical axis
represents the time. The empty circle denotes the target discovery. Double and single solid
lines represent the trajectories of the faster and the slower robot, respectively. Dashed lines
correspond to the overall progress speed and dotted lines to the search time.

Algorithm A∗ [for two robots with communication by meeting]

1. Until the target is located, both robots visit, in order of increasing k, the points pk =
(−c)k for all k ∈ N, where c = 1+ṽ

2ṽ
and ṽ = min(v, 1

3
). Robot R moves with speed 1

between consecutive points, and robot r with speed ṽ. Robot R starts its trajectory at
time 0, whereas robot r initially waits at the origin for 4 time units.

2. When R finds the target, it moves with speed 1 to meet and notify r.
3. After the meeting, the robots move together to the target at speed ṽ.

instead of taking pk = (−2)k, we set pk = (−c)k for some c > 2. We still make
both robots visit consecutive points pk at their full speeds, and we choose c so
that they meet in pk while r is there for the first time and R for the second
time. A condition inductively forcing the meeting at pk to be followed by a
meeting in pk+1 can be expressed as 1

v |pk+1−pk| = tk+1−tk = |pk+1−pk+2|+
|pk+2 − pk|, i.e., 1

v (c+ 1) = 2c2 + c− 1. This gives c = 1+v
2v , which we use for

our algorithm A∗. The meeting at p0 is guaranteed by delaying r for 4 time
units: Indeed, r arrives at p0 for the first time at time t0 = 4+ 1

v and R arrives
at p0 for the second time at time 3 + 2c, which is equal to t0 for our choice
of c.

The following theorem bounds the search time by robots using this strategy.

Proposition 3.1 For the algorithm A∗ and every point p ∈ R with |p| ≥ 1,
we have:

t(A∗, p) < 1+3v
v−v2 |p| if v ≤ 1

3 , (1)

t(A∗, p) < 9|p| if 1
3 ≤ v ≤ 1. (2)

Proof First, let us show (1). Assuming that there exists k so that the target p
is located between pk (exclusive) and pk+2 (inclusive), the meeting time in pk
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is

tk = 4 + 1
v

(
|pk|+ 2

k−1∑
j=0

|pj |
)

= 4 +
1

v
ck
c+ 1

c− 1
− 2

v(c− 1)
= ck

1 + 3v

v − v2
− 4

v

1− v
.

Suppose that |p − pk| = δ. After meeting r in pk, robot R needs time δ to
discover the target. At that time, the distance between the robots is δ(1 + v)
since they are going in opposite directions with their maximal speeds until
time tk + δ. Then, the faster robot pursues the slower one. With the speed
difference of 1 − v this takes δ(1+v)

1−v units of time. Next, the robots go back
to the target at speed v which requires time δ(1+v)

v−v2 , i.e., 1
v times more than

the pursuit. In total, the time between tk and the moment when both robots
reach the target is

δ +
δ(1 + v)

1− v
+
δ(1 + v)

v − v2
= δ

v − v2 + v + v2 + 1 + v

v − v2
= δ

1 + 3v

v − v2
.

Since tk < |pk| 1+3v
v−v2 , the total search time is t(A∗, p) < (|pk| + δ) 1+3v

v−v2 =

|p| 1+3v
v−v2 , as claimed.
If no such k exists, then we must have p = 1 or −c ≤ p ≤ −1. It is easy to

verify that t(A∗, 1) = 2 + 1
v <

1+3v
v−v2 . Moreover, if −c ≤ p ≤ −1, R discovers

the target and comes back to the origin at time 2 + 2|p|. At the same time,
r is at point 2(|p| − 1)v and it is moving away from R. Therefore, it takes an
additional 2(|p|−1)v

1−v (1 + 1
v ) + |p|

v time before both robots evacuate. Overall, in
this case, t(A∗, p) = 2(|p|+ 1) + 2(|p|−1)v

1−v (1 + 1
v ) + |p|

v = 1+3v
v−v2 |p| −

4v
1−v .

To show (2), we simply observe that, for v = 1
3 , we have 1+3v

v−v2 = 9. Note
that for v > 1

3 , the searcher moving at velocity 1
3 could increase its speed to v,

but no additional gain in efficiency is possible (see the lower bounds in [13,5]
and in Section 3.2). ut

Corollary 3.2 For the algorithm A∗, CR(A∗) ≤ 1+3v
1−v if v ≤ 1

3 , and CR(A∗) ≤
9v if v ≥ 1

3 .

3.2 The Lower Bound

Below, we show that the strategy from Section 3.1 achieves the best possible
competitive ratio. We first present a sketch of the arguments behind the in-
termediate results used for this aim. In fact, some of these lemmas are stated
so that they work in more general settings.

We first study a hypothetical algorithm A for a collection R of any num-
ber of robots, each with maximum speed not exceeding 1. In Lemma 3.3, we
analyze it from the perspective of a robot Γ ∈ R with maximum speed vΓ
and progress speed wΓ (not exceeding the overall progress speed w). By defini-
tion of the progress speed, the robot Γ sometimes visits points p = Γ (t) with
|p| ≈ t · wΓ . We fix such a point p and choose a point q on the opposite side
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of the origin, with deadline t(A, q) ≈ τ(A) · |q| sufficiently early that the robot
Γ , starting in p at time t, cannot reach q before the deadline. We deduce that
the robot Γ must already know that the target is not located at q. Such an
information, conveyed by one or more robots, can be transferred with maxi-
mum speed 1, which yields an upper bound on the discovery time T (q) of the
point q. On the other hand, the overall progress speed implies a lower bound of
approximately |q|w on T (q); see Fig. 2. Combining these two constraints, after
some calculations we obtain the inequality τ(A) ≥ vΓ+wΓ+w+vΓw

vΓw(1−wΓ ) .
We examine the consequences of this result in Corollaries 3.4–3.6. Setting

Γ as the robot with progress speed wΓ = w, we derive τ(A) ≥ 1+3w
w−w2 ≥ 9

(Corollary 3.4). This immediately shows that any algorithm A with τ(A) <
τ(A∗) must have its overall progress speed w strictly smaller than the overall
progress speed 1−v

1+3v of A∗ (Corollary 3.5). On the other hand, setting Γ as the
slowest robot r with maximum speed v, we conclude that unless τ(A) ≥ τ(A∗),
the progress speed wr of r is also strictly smaller than the progress speed of
the slower robot r in A∗, equal to 1

τ(A∗) . Consequently, the robot r may only
discover points at bounded distance from the origin (Corollary 3.6). Thus, in
the final part of the proof we analyze a hypothetical two-robot algorithm A
in which only the faster robot R discovers sufficiently far points. (Note that
A∗ satisfies this condition.) Since the slower robot r does not participate in
the exploration, the discovery speed depends on the trajectory of the faster
robot R only. This lets relate the discovery speed vd to the progress speed w
(Lemma 3.7). By Corollary 3.4, there are points p with discovery time T (p)
exceeding approximately ( 1+3w

w−w2 )−1|p|. To bound the length of D(T (p)), we
observe that the other endpoint q of this segment has its discovery time T (q)
bounded from below due to the progress speed w and from above due to the
maximum speed 1; see Fig. 3. After some calculations we achieve vd ≤ 2w

1+3w .
Finally, we prove a lower bound on the discovery speed vd in terms of τ(A)

and the speed limit v of the slower robot r (Lemma 3.8). For this, we just
note that at any time t, the robot r must take into account that the target is
located arbitrarily close to either endpoint of the segment D(t) (see Fig. 4),
which yields vd ≥ 2v

vτ(A)−1 . We combine the two bounds on discovery speed vd
with the upper bound on the overall progress speed w to prove that if the set
of points discovered by r is bounded, then τ(A) ≥ τ(A∗). Interestingly, our
proof remains valid in the wireless communication model; we exploit this fact
in Section 4.2. We conclude with the lower bound on τ(A) in Proposition 3.10.
In Theorem 3.11, we deduce that the algorithm A∗ has optimal competitive
ratio.

We will now formally prove all these results. First, let us relate the search
time and the progress speeds in an algorithm A for any collection R of robots.
Lemma 3.3 Let A be a line search algorithm with overall progress speed w for
a collection R of robots with speeds not exceeding 1, communicating by meeting.
If there is a robot Γ ∈ R with speed limit vΓ and progress speed wΓ , then τ(A)
is unbounded provided that w = 0 or wΓ = 1, and τ(A) ≥ vΓ+wΓ+w+vΓw

vΓw(1−wΓ )

otherwise.



10 Evangelos Bampas et al.

1
τ̄

≈ w≈ wΓ

Γ

p q

1

vΓ

0

t′

t

τ̄dq

dp dq

Fig. 2 Illustration of notions used in the proof of Lemma 3.3. Rays starting from the origin
as well as thick lines representing constraints are all annotated with the corresponding
speeds. Here, robot Γ , while in p at time t, must know that the target is not in q, or it must
be able to reach q before the deadline.

Proof Let us choose τ̄ , ε ∈ R so that τ̄ > τ(A) and ε > 0. Then, there exists
d0 > 0 such that 1

τ̄ t(A, p) < |p| < (w + ε)T (p) for |p| ≥ d0. Also, there are
arbitrarily large times t such that |Γ (t)|

t ≥ wΓ − ε; we fix one with t ≥ τ̄ d0.

Let p = Γ (t) and dp = |p|. Also, consider a point q at distance dq =
vΓ t+dp
vΓ τ̄−1

from the origin, opposite to p; see Fig. 2. Note that dq ≥ t
τ̄ ≥ d0, so 1

τ̄ t(A, q) <
dq < (w + ε)T (q).

Suppose that the robot Γ at time t cannot exclude the possibility that the
target is located at q. Then, it must be able to reach q by the deadline, at
t(A, q) < τ̄dq. Since Γ (t) = p and the robot Γ cannot exceed the speed limit
of vΓ , we conclude that t + 1

vΓ
(dp + dq) < τ̄dq. However, the distance dq is

defined so that t+ 1
vΓ

(dp + dq) = τ̄ dq, a contradiction.

Consequently, the robot Γ must already know at time t that the target
is not at point q. The robots can only communicate by meeting and their
speeds are limited by 1, so this information needs at least dq + dp time to be
transferred from q to p. In other words, some robot Γ ′ must have visited q at
time T (q) ≤ t− dp − dq.
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Combined with dq < (w + ε)T (q), this implies dq < (w + ε)(t − dp − dq),
i.e., dq <

(w+ε)(t−dp)
1+w+ε . By definition of dq, this further yields

vΓ t+dp
vΓ τ̄−1 <

(w+ε)(t−dp)
1+w+ε ,

(vΓ t+ dp)(1 + w + ε) < (w + ε)(t− dp)(vΓ τ̄ − 1),

dp(1 + w + ε+ (w + ε)(vΓ τ̄ − 1)) < t((w + ε)(vΓ τ̄ − 1)− vΓ (1 + w + ε)),

dp(1 + (w + ε)vΓ τ̄) < t((w + ε)(vΓ τ̄ − 1− vΓ )− vΓ ),

dp
t < (w+ε)(vΓ τ̄−1−vΓ )−vΓ

(w+ε)vΓ τ̄+1 .

However, recall that time t was chosen so that dp ≥ (wΓ − ε)t. Therefore,

wΓ − ε < (w+ε)(vΓ τ̄−1−vΓ )−vΓ
(w+ε)vΓ τ̄+1 .

As ε > 0 can be chosen arbitrarily close to 0, we conclude that

wΓ ≤ w(vΓ τ̄−1−vΓ )−vΓ
wvΓ τ̄+1 ,

wΓwvΓ τ̄ + wΓ ≤ w(vΓ τ̄ − 1− vΓ )− vΓ ,
wΓ + w + vΓw + vΓ ≤ τ̄ vΓw(1− wΓ ).

If w = 0 or wΓ = 1, this is a contradiction: 0 = wvΓ τ̄(1−wΓ ) ≥ vΓ +wΓ +
w + vΓw ≥ vΓ > 0. Hence, τ(A) cannot be bounded from above. Otherwise,
wvΓ (1 − wΓ ) > 0, so τ̄ ≥ vΓ+wΓ+w+vΓw

vΓw(1−wΓ ) . Since τ̄ can be chosen arbitrarily
close to τ(A), we conclude that τ(A) ≥ vΓ+wΓ+w+vΓw

vΓw(1−wΓ ) . ut

The following immediate corollary gives a complete proof of the lower
bound 9 in the general case; it also proves the optimality of A∗ for v ≥ 1

3 .
(Recall the partial arguments of the lower bound of 9 in [13]; see also [5].)

Corollary 3.4 For any algorithm A with overall progress speed w and any col-
lection R of robots with speeds not exceeding 1 and communicating by meeting,
we have τ(A) ≥ 1+3w

w−w2 ≥ 9.

Proof We apply Lemma 3.3 for the robot Γ with progress speed w and speed
vΓ ≤ 1. We obtain

τ(A) ≥ vΓ+2w+vΓw
vΓ (w−w2) =

1+
2w
vΓ

+w

w−w2 ≥ 1+3w
w−w2 .

Finally, we observe that

1+3w
w−w2 − 9 = 1+3w−9w+9w2

w−w2 = (1−3w)2

w−w2 ≥ 0,

so τ(A) ≥ 9. ut

Another straightforward corollary proves the optimality of A∗ provided
that the progress speed w is sufficiently large.
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Corollary 3.5 Let A be a line search algorithm for any collection R of robots
with speeds not exceeding 1 and communicating by meeting. If the overall
progress speed satisfies w ≥ 1−v

1+3v , then τ(A) ≥ τ(A∗).

Proof Observe that the function f(v) = 1+3v
v−v2 is decreasing for 0 < v ≤ 1

3

and increasing for 1
3 ≤ v < 1. For v ≤ 1

3 , we have w ≥ 1−v
1+3v >

1− 1
3

1+1 = 1
3 , so

Corollary 3.4 yields

τ(A) ≥ f(w) ≥ f( 1−v
1+3v ) = 1+3v

v−v2 ≥ τ(A∗).

On the other hand, for v ≥ 1
3 , Corollary 3.4 implies

τ(A) ≥ f(w) ≥ f( 1
3 ) = 9 ≥ τ(A∗).

In both cases we derived the claimed inequality. ut

Next, we conclude that in any algorithm beating A∗, the slowest robot r
cannot discover arbitrarily far points.

Corollary 3.6 Let A be a line search algorithm for a collection R of robots
with speeds not exceeding 1 and communicating by meeting. If the set of points
discovered by the slowest robot r with speed v is unbounded, then τ(A) ≥ τ(A∗).

Proof For a proof by contradiction, suppose that τ(A) < τ∗, where τ∗ =
τ(A∗). By Corollary 3.5, this yields a bound w < 1−v

1+3v ≤
1
vτ∗ on the overall

progress speed. Moreover, if r discovers arbitrarily far points, then its progress
speed wr satisfies wr ≥ 1

τ(A) >
1
τ∗ . Hence, Lemma 3.3 applied for the slowest

robot r yields

τ∗ > τ(A) ≥ v+wr+w+vw
vw(1−wr) ≥

v + 1
τ∗ + 1

vτ∗ + v
vτ∗

v 1
vτ∗

(
1− 1

τ∗

) = τ∗ v
2τ∗+2v+1
v(τ∗−1) .

In other words,

vτ∗ − v > v2τ∗ + 2v + 1,

τ∗ > 1+3v
v−v2 .

This contradiction concludes the proof. ut

Next, we aim at showing that τ(A) ≥ τ(A∗) provided that the set of
points discovered by the slower robot r is bounded. Our proof does not rely on
the communication by meeting model, so we state this result in the wireless
communication model. We start with two bounds on the discovery speed and
then deduce the claimed inequality with some calculations.

Lemma 3.7 Let A be a line search algorithm for a single robot with maximum
speed 1, progress speed w, and discovery speed vd. Then vd ≤ 2w

1+3w .
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1
τ̄

≈ w

p q

1

0

t′

t
D(t)

dp dq

Fig. 3 Illustration of notions used in the proof of Lemma 3.7.

Proof Let ε > 0; then |p| < (w + ε)T (p) for points p sufficiently far from the
origin. Moreover, let τ̄ < 1+3w

w−w2 and observe that, by Corollary 3.4, τ(A) > τ̄ ;
thus, there are arbitrarily far points p with t(A, p) > τ̄ |p|.

Let us choose such a point p discovered at time t := T (p) = t(A, p) > τ̄ |p|,
and let q be the furthest point on the opposite side of the origin, discovered
at time t′ := T (q) < t. Denote dp = |p| and dq = |q|; see Fig. 3. The distance
dq can be arbitrarily large provided that p is chosen sufficiently far; therefore,
dq < (w + ε)t′. Furthermore, the speed limit yields t ≥ t′ + dp + dq, so

dq < (w + ε)(t− dp − dq)
dq(1 + w + ε) < (w + ε)(t− dp)

dq <
(w+ε)(t−dp)

1+w+ε

Now, observe that

|D(t)|
t =

dp+dq
t <

dp+
(w+ε)(t−dp)

1+w+ε
t =

dp+(w+ε)t
t(1+w+ε) < 1+τ̄(w+ε)

τ̄(1+w+ε) .

Since t can be chosen arbitrarily large, we obtain vd ≤ 1+τ̄(w+ε)
τ̄(1+w+ε) . Because ε

can be chosen arbitrarily close to 0 and τ̄ can be chosen arbitrarily close to
1+3w
w−w2 , we furthermore conclude that

vd ≤
1 + 1+3w

w−w2w
1+3w
w−w2 (1 + w)

= w−w2+w(1+3w)
(1+3w)(1+w) = 2w+2w2

(1+3w)(1+w) = 2w
1+3w ,

as claimed. ut

Lemma 3.8 Let A be a line search algorithm for a collection R of robots,
using wireless communication or communication by meeting. If R contains a
robot r with speed v, then the discovery speed vd must satisfy vd ≥ 2v

vτ(A)−1 .
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1
τ̄

1
τ̄

q p

r
v

v

D(t)

0

t

τ̄dq

τ̄dp

dq dp

Fig. 4 Illustration of notions used in the proof of Lemma 3.8. The slowest robot r must be
able to reach p by τ̄dp and q by τ̄dq .

Proof Let τ̄ be a real number such that τ̄ > τ(A); then t(A, p) < τ̄ |p| for
points p sufficiently far from the origin.

Let p and q be furthest points on the opposite sides of the origin discovered
at or before some time t. Moreover, let dp = |p| and dq = |q|; see Fig. 4.
Note that dp and dq are arbitrarily large provided that t is chosen sufficiently
large. At time t, there are undiscovered points arbitrarily close to p and q.
Hence, the robot r must be able to reach p before τ̄ dp and q before τ̄ dq, i.e.,
τ̄ dp ≥ t+ 1

v |p−r(t)| and τ̄ dq ≥ t+
1
v |q−r(t)|. The point r(t) is located between

p and q, so these two inequalities yield

τ̄(dp + dq) ≥ 2t+ 1
v (dp + dq) ,

(dp + dq)(vτ̄ − 1) ≥ 2tv,

|D(t)|
t =

dp+dq
t ≥ 2v

vτ̄−1 .

This inequality holds for each sufficiently large t, so we have

vd = lim inf
t→∞

|D(t)|
t ≥ 2v

vτ̄−1 .

To derive the claimed bound on vd, we note that τ̄ can be chosen arbitrarily
close to τ(A). ut

Corollary 3.9 Let A be a line search algorithm for two robots R and r with
speeds 1 and v, respectively, using wireless communication or communication
by meeting. If the set of points discovered by r is bounded, then τ(A) ≥ τ(A∗).

Proof For a proof by contradiction, suppose that τ(A) < τ(A∗). The trajectory
of R can be interpreted as a line search algorithm A′ for a collection R = {R}
of one robot. Since the set of points discovered by r is bounded, the discovery
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speeds of A and A′ are the same, say vd. For the same reason, we have τ(A′) ≤
τ(A), and, due to Corollary 3.5, w < 1−v

1+3v . By Lemma 3.7, this yields

vd ≤ 2w
1+3w <

2 1−v
1+3v

1+3 1−v
1+3v

= 2(1−v)
1+3v+3(1−v) = 2(1−v)

4 = 1−v
2 .

On the other hand, Lemma 3.8 implies

vd ≥ 2v
vτ(A)−1 >

2v
vτ(A∗)−1 ≥

2v

v 1+3v
v−v2 − 1

= 2v(1−v)
1+3v−(1−v) = 1−v

2 .

This is a contradiction. ut

Corollaries 3.6 and 3.9 prove τ(A) ≥ τ(A∗) under complementary assump-
tions. Hence, we obtain the main result of this section.

Proposition 3.10 Any algorithm A in the communication by meeting model
for two robots with speeds 1 and v, respectively, satisfies τ(A) ≥ τ(A∗).

We conclude that A∗ is an optimum algorithm for the communication by
meeting model.

Theorem 3.11 Consider the line search problem in the communication by
meeting model for two robots with speeds 1 and v, respectively. For each 0 <
v ≤ 1, the algorithm A∗ achieves the optimum competitive ratio:

CR(A∗) =

{
1+3v
1−v if 0 < v ≤ 1

3 ,

9v if 1
3 ≤ v ≤ 1.

4 Wireless Communication

In this model, we have only the exploration phase and the target phase. Nev-
ertheless, it turns out that the algorithm A∗ presented in Section 3.1 is still
optimal if the maximum speeds of the two robots are very different: if v ≤√

17 − 4 ≈ 0.123. An algorithm B∗ optimal for v ≥
√

17 − 4 is described in
Section 4.1. As opposed to A∗, in B∗ both robots participate in the exploration
phase. By Corollary 3.9, this is actually necessary to improve upon A∗.

4.1 The Upper Bound

The optimal strategy for two robots traveling at the same speed [5] is very
simple: Both robots explore in opposite directions at full speeds. When a
robot learns that the other robot has found the target, it changes its direction
towards the target.

Let us analyze the performance of this strategy for robots with distinct
speeds. The total search time is a sum of three terms: the time for a robot to
discover the target, the time for the other robot to go back to the origin and the
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t

0

r R

t

0

r R

t

0

Rr

Fig. 5 Illustration of algorithm B∗ before target discovery (left), when the target is dis-
covered by r (middle), and by R (right). The horizontal axis represents the line searched
and the vertical axis represents the time. The empty circle denotes the target discovery.
Double and single solid lines represent the trajectories of the faster and the slower robot,
respectively. Dashed lines correspond to the progress speeds of the two robots and dotted
lines to the search time.

Algorithm B∗ [for two robots with wireless communication]

1. Until the target is discovered, the two robots move in opposite directions. Robot r moves
with its maximal speed v and robot R with speed v′ = 1

2
(
√
v2 + 8v − v) ≤ 1.

2. When either robot finds the target, it notifies the other one using wireless communication
and the other robot moves to the target using its maximal speed.

time for that robot to reach the target. We consider two cases. First, suppose
that the faster robot R discovers the target at distance d from the origin. Then
the total search time is d+d+ 1

vd = (2+ 1
v )d. On the other hand, if the slower

robot r discovers the target, the search time is worse: 1
vd+ 1

vd+ d = ( 2
v + 1)d.

Intuitively, the faster robot explores too fast and it thus spends too much
time going back to the origin. Hence, we limit the progress speed of R to v′ ≤ 1.
When it already knows the target, the faster robot is still allowed to use its full
speed equal to 1. Now, the total search times are 1

v′ d+ 1
v′ d+ 1

vd = ( 2
v′+

1
v )d and

1
vd+ v′

v d+d = 1+v′+v
v d, respectively. We choose v′ to minimize the maximum of

these two quantities. As they are, respectively, a decreasing and an increasing
function of v′, for the optimal value v′ these terms are equal to each other,
i.e., v′ satisfies 1+v′+v

v = 2
v′ + 1

v .
The following fact gives the right values of v′ and of the search time τ∗.

This lets us complete the description of the algorithm B∗ (see Fig. 5), whose
analysis follows immediately from the discussion above.

Fact 4.1 For any speed v ∈ (0, 1], let us define τ∗ = 2+v+
√
v2+8v

2v and v′ =
√
v2+8v−v

2 . We have τ∗ = 1+v+v′

v and τ∗ = 1
v+ 2

v′ . Moreover, v′ is an increasing
function of v.

Proof By definition of τ∗ and v′,

1+v+v′

v = 2+2v+2v′

2v = 2+2v+
√
v2+8v−v

2v = 2+v+
√
v2+8v

2v = τ∗.
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Similarly,

1
v + 2

v′ = 1
v + 4√

v2+8v−v = 1
v + 4(

√
v2+8v+v)

(
√
v2+8v−v)(

√
v2+8v+v)

= 1
v + 4(

√
v2+8v+v)

8v = τ∗.

Finally, note that
v′ = 4v√

v2+8v+v
= 4√

1+8/v+1

indeed is an increasing function of v. ut

Recall that t(B∗, p) = |p|( 2
v′ + 1

v ) or t(B∗, p) = |p| 1+v′+v
v , depending on

which robot visits p first. Setting v′ according to Fact 4.1, in both cases we
obtain t(B∗, p) = τ∗|p|. In other words:

Proposition 4.2 For every point p ∈ R, the algorithm B∗ satisfies t(B∗, p) =
2+v+

√
v2+8v

2v |p|.

Corollary 4.3 For the algorithm B∗, CR(B∗) = 2+v+
√
v2+8v

2 .

4.2 The Lower Bound

In this section, we show that for each v, the optimum competitive ratio is
achieved by either A∗ or B∗. Below, we give an overview of this proof.

The argument starts with Lemma 4.4, which is a counterpart of Lemma 3.3.
Compared to Lemma 3.3, we allow for the wireless communication, but restrict
to the case of two robots and analyze the situation only from the perspective
of a robot Γ whose progress speed is equal to the overall progress speed w.
As in the original proof, we fix a point p = Γ (t) with |p| ≈ t · w, choose a
point q on the opposite side of the origin so that Γ cannot reach q before the
deadline, and conclude that Γ must already know at time t that the target
is not located at q. Then, the reasoning becomes different and to proceed, we
consider two cases. If q has been discovered by Γ (which then traveled to p),
we obtain the familiar upper bound on T (q), which is then combined with a
lower bound following from the limited progress speed. Otherwise, the other
robot Γ ′ may have used the wireless communication to notify Γ , so we can
only deduce T (q) ≤ t. However, we observe that the progress speed of Γ ′
is at most v, so in this case we get a better lower bound on T (q); see Fig. 6.
Combining all the constraints, after some calculations we obtain the inequality
τ(B) ≥ min( 1+3w

w−w2 ,
1+v+w

v ).
Our next aim is to prove that a large progress speed excludes improving

upon A∗ and B∗. Mimicking the idea behind Corollary 3.5, in Corollary 4.5
we use Lemma 4.4 to show that any algorithm B with progress speed w ≥
max(v′, 1−v

1+3v ) satisfies τ(B) ≥ min(τ(A∗), τ(B∗)).
Next, in Lemma 4.6 we prove the optimality of A∗ or B∗ assuming that

w < max(v′, 1−v
1+3v ). The proof of this lemma is by far the most intricate rea-

soning in this paper. We consider a hypothetical algorithm B with τ(B) <
min(τ(A∗), τ(B∗)). At the beginning, we note that Corollary 3.9 lets us as-
sume that the slower robot r must actively participate in the exploration
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phase; otherwise, there is no hope to defeat A∗. Thus, we consider a time t
when the slower robot r discovers a point p = r(t), and we define q to be the
other endpoint of D(t). If q was too close to the origin, then the robot r would
not have enough time to reach the target located in the vicinity of q. On the
other hand, the point q cannot be too far since the robot (r or R) discovering q
cannot exceed the overall progress speed and must be able to reach the target
if it was located in the vicinity of p; see Fig. 7.

A combination of these constraints lets us conclude that v′ < w < 1−v
1+3v ,

that R must have discovered q, and that no robot can visit q at time t′ ≥ t
before the vicinity of p has been explored. If the robot r discovers any point
p′ before q is visited again, then we may replace t with T (p′) and p with p′,
while preserving the point q. Thus, an appropriate choice of t (and p) lets us
guarantee that the slower robot r does not discover any further point until q
has been visited again.

Consequently, we examine the earliest time t′ ≥ t when some robot visits
q. Note that both endpoints of segment D(t′) must have been discovered by
the faster robot R. We consider two cases depending on the identity of the
robot visiting q. If this is the faster robot R, we bound the length of the
segment D(t′) relative to the time t′. The resulting value contradicts the lower
bound of Lemma 3.8 on the discovery speed. Otherwise, we repeat the whole
reasoning with t′ instead of t; see Fig. 8. After sufficiently many iterations,
we contradict Lemma 3.8. More precisely, we work with the function ∆(t) :=
|D(t)|− t · 2v

vτ(A∗)−1 : we show that it decreases each time we change t, whereas
the lower bound of Lemma 3.8 on the discovery speed implies that it tends to
infinity in the limit.

Corollary 4.5 and Lemma 4.6 cover the complementary cases of large and
small progress speeds, respectively, so Proposition 4.7 and Theorem 4.8 imme-
diately follow.

In the remainder of this section, we provide formal proofs of the aforemen-
tioned claims. First, we relate the progress speed w of a strategy B with its
limit search time τ(B).

Lemma 4.4 Let B be a line search algorithm in the wireless communication
model for two robots with speeds 1 and v, respectively. If the overall progress
speed is w, then τ(B) ≥ min( 1+3w

w−w2 ,
1+v+w

v ).

Proof Let us choose τ̄ , ε ∈ R so that τ̄ > τ(B) and ε > 0. Then, there exists
d0 > 0 such that 1

τ̄ t(B, p) < |p| < (w + ε)T (p) for |p| ≥ d0. Also, there is a
robot Γ and arbitrarily large times t such that |Γ (t)|

t ≥ w− ε; we fix one with
t ≥ τ̄ d0.

Let p = Γ (t) and dp = |p|. Also, consider a point q at distance dq =
t+dp
τ̄−1

from the origin, opposite to p, and denote t′ = T (q); see Fig. 6. Observe that
dq ≥ t

τ̄ ≥ d0, so 1
τ̄ t(B, q) < dq < (w + ε)t′.

First, suppose that t′ > t. Then, the robot Γ must be able to reach q by
the deadline, at t(B, q) < τ̄dq. Since Γ (t) = p and the robot Γ cannot exceed
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≈ v≈ w ≈ w
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p q

1

1
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t

t′

τ̄dq

dp dq

Fig. 6 Illustration of notions used in the proof of Lemma 4.4. Here, robot Γ , while in p at
time t, must be able to reach q before the deadline or know that the target is not in q. For
the latter, one of the robots must have already visited q.

the speed limit of 1, we conclude that t+dp+dq < τ̄dq. However, the distance
dq is defined so that t+ dp + dq = τ̄ dq, a contradiction.

Thus, t′ ≤ t. Now, we consider two possibilities for the robot which discov-
ered q. If Γ (t′) = q, then t′ ≤ t−dp−dq by the speed limit of Γ . Consequently,

dq
w+ε < t− dp − dq,

dq(1 + w + ε) < (w + ε)(t− dp).

By definition of dq, this further yields

t+dp
τ̄−1 (1 + w + ε) < (w + ε)(t− dp),

(t+ dp)(1 + w + ε) < (w + ε)(t− dp)(τ̄ − 1),

dp(1 + w + ε+ (w + ε)(τ̄ − 1)) < t((w + ε)(τ̄ − 1)− (1 + w + ε)),

dp(1 + (w + ε)τ̄) < t((w + ε)(τ̄ − 2)− 1),

dp
t < (w+ε)(τ̄−2)−1

1+(w+ε)τ̄ .

Otherwise, either Γ = R and r discovered q, or Γ = r in which case w ≤ v. In
both sub-cases, we have dq < T (q)(v + ε) = t′(v + ε) ≤ t(v + ε). Combining
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this inequality with the definition of dq, we obtain

t+dp
τ̄−1 < t(v + ε),

t+ dp < t(v + ε)(τ̄ − 1),

dp < t(v + ε)(τ̄ − 1)− t,
dp
t < (v + ε)(τ̄ − 1)− 1.

Summing up, the two cases yield

dp
t ≤ max((v + ε)(τ̄ − 1)− 1, (w+ε)(τ̄−2)−1

(w+ε)τ̄+1 ).

However, recall that the time t was chosen so that dp
t ≥ w − ε. Therefore,

w − ε ≤ max((v + ε)(τ̄ − 1)− 1, (w+ε)(τ̄−2)−1
(w+ε)τ̄+1 ).

As ε > 0 can be chosen arbitrarily close to 0, we conclude that

w ≤ v(τ̄ − 1)− 1 or w ≤ w(τ̄−2)−1
wτ̄+1 ,

w + 1 ≤ v(τ̄ − 1) or w2τ̄ + w ≤ w(τ̄ − 2)− 1,

w + 1 + v ≤ vτ̄ or 1 + 3w ≤ (w − w2)τ̄ ,
w+1+v

v ≤ τ̄ or 1+3w
w−w2 ≤ τ̄ ,

i.e., τ̄ ≥ min( 1+3w
w−w2 ,

1+v+w
v ) for each τ̄ > τ(B). Consequently,

τ(B) ≥ min( 1+3w
w−w2 ,

1+v+w
v ),

as claimed. ut

We apply Lemma 4.4 to derive a tight lower bound on τ(B) provided that
the overall progress speed w is sufficiently large.

Corollary 4.5 Let B be a line search algorithm in the wireless communication
model for two robots with speeds 1 and v, respectively. If the overall progress
speed is w ≥ max(v′, 1−v

1+3v ), then τ(B) ≥ min(τ(A∗), τ(B∗)).

Proof Let us recall that the function f(v) = 1+3v
v−v2 is decreasing for 0 < v ≤ 1

3

and increasing for 1
3 ≤ v < 1. For v ≤ 1

3 , we have 1−v
1+3v ≥

1
3 . Hence, due to

w ≥ max(v′, 1−v
1+3v ) ≥ 1

3 , Lemma 4.4 yields

τ(B) ≥ min(f(w), 1+v+w
v ) ≥ min(f( 1−v

1+3v ), 1+v+v′

v ) ≥ min(τ(A∗), τ(B∗)).

On the other hand, for v ≥ 1
3 Lemma 4.4 implies

τ(B) ≥ min(f(w), 1+v+w
v ) ≥ min(f( 1

3 ), 1+v+v′

v ) ≥ min(τ(A∗), τ(B∗)).

In both cases we derived the claimed inequality. ut
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1
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τ∗v ≈ w
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t = tq
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dp dq

Fig. 7 Illustration of notions used in the first part of the proof of Lemma 4.6. The slower
robot r, while discovering p at time t, must be able to reach q before τ∗dq . Similarly, the
robot discovering q at time tq must be able to reach p before τ∗dp.

In the next lemma, we prove the same lower bound on τ(B) for the com-
plementary case of small progress speed.

Lemma 4.6 Let B be a line search algorithm in the wireless communication
model for two robots with speeds 1 and v, respectively. If the overall progress
speed w satisfies w < max(v′, 1−v

1+3v ), then τ(B) ≥ min(τ(A∗), τ(B∗)).

Proof For a proof by contradiction, suppose that τ(B) < τ∗, where τ∗ =
min(τ(A∗), τ(B∗)). Consequently, also due to the upper bound on w, there
exists d0 > 0 such that 1

τ∗ t(B, p) < |p| < T (p) max(v′, 1−v
1+3v ) for |p| ≥ d0.

By Corollary 3.9, τ(B) < τ(A∗) implies that the set of points discovered
by the slower robot r is unbounded. Thus, the set T := {t : T (r(t)) = t} of
times when the slower robot r discovers some point is also unbounded.

By Lemma 3.8, the discovery speed is at least vd ≥ 2v
vτ(B)−1 >

2v
vτ∗−1 , i.e.,

lim inft→∞
|D(t)|
t > 2v

vτ∗−1 . Consequently, the function

∆(t) := |D(t)| − t 2v
vτ∗−1

satisfies limt→∞∆(t) =∞.
Hence, for each threshold δ, the set Tδ := {t ∈ T : ∆(t) ≤ δ} is bounded.

Due to the structure of the set T , this implies tδ := supTδ ∈ Tδ. As a result,
we obtain arbitrarily large times t = tδ ∈ T such that ∆(t) < ∆(t′) for each
t′ ∈ T with t′ > t;
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Let us take t = tδ for some δ ≥ 0 such that t ≥ τ∗d0. Moreover, let
p = r(t) and let q the other endpoint of the segment D(t). Let us denote
dp = |p| and dq = |q|; see Fig. 7. Observe that dp, dq ≥ d0 because t ≥ τ∗d0

yields [−d0, d0] ⊆ D(t). (Otherwise, the target at distance d0 from the origin
would not be discovered prior to the deadline, which does not exceed τ̄ d0.)

At time t, there are undiscovered points arbitrarily close to q, so the robot
r must be able to reach q before τ∗dq. Consequently, t + 1

v (dp + dq) < τ∗dq,
i.e., dq >

tv+dp
vτ∗−1 . By the speed limit on r, we have dp ≤ tv, and therefore

dq >
tv+dp
vτ∗−1 ≥

2dp
vτ∗−1 ≥

2dp
vτ(B∗)−1 ≥

2dp

v
(

1
v+

2
v′

)
−1

= v′

v dp.

By time t and, in general, as long as there are undiscovered points arbi-
trarily close to p, any robot Γ visiting q must be able to reach p before τ∗dp.
Such a visit of q is possible only at times t′ which satisfy t′+ (dp+dq) < τ∗dp.
Hence,

t′

dp
< τ∗ − 1− dq

dp
< τ∗ − 1− v′

v ≤ τ(B∗)− 1− v′

v = 1+v+v′

v − 1− v′

v = 1
v ,

which yields t′ < dp
v ≤ t. In other words, after time t, no robot can visit point

q again until the neighborhood of p has been discovered.
Moreover, the discovery time tq := T (q) satisfies

tq
dq
< (τ∗−1)

dp
dq
−1 < (τ∗−1) vv′−1 ≤ (τ(B∗)−1) vv′−1 = (1+v+v′

v −1) vv′−1 = 1
v′ .

Due to v′ ≥ v, this means that q has been discovered by the faster robot R.
We also have dq < tq max(v′, 1−v

1+3v ), which lets us conclude that

tqv
′ < dq < tq

1−v
1+3v .

Next, we shall prove that, after time t, the slower robot r cannot discover
any new point until q is visited again. For a proof by contradiction, suppose
that it discovers point p′ (at distance |p′| = dp′ from the origin, on the same
side as p) at time t′ > t, t′ ∈ T , and q is not visited between time t and t′.
Note that t′ ≥ t + 1

v (dp′ − dp), D(t′) = p′q, and D(t) = pq. By the choice of
t ∈ T , we have ∆(t) < ∆(t′), i.e.,

|D(t)| − t 2v
vτ∗−1 < |D(t′)| − t′ 2v

vτ∗−1 ≤ |D(t′)| − t 2v
vτ∗−1 − (dp′ − dp) 2

vτ∗−1 ,

and therefore

dp′ − dp = |D(t′)| − |D(t)| > 2(dp′−dp)

vτ∗−1 ≥ 2(dp′−dp)

vτ(B∗)−1 =
v′(dp′−dp)

v ≥ dp′ − dp,

a contradiction. Consequently, the robot r cannot discover any point before q
is visited again after time t. As we have already proved, the latter may happen
only after R visits p (and discovers its neighborhood).

Let t′ > t be the time when q is visited for the first time after t. Let p′
be the furthest point opposite to q discovered (by R) prior to time t′, and let
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1
τ∗

1
τ∗ ≈ w

r
R

p′ p q

v

1

0

t

t′

tq

τ∗dp

τ∗dq

dp dq

D(t)

D(t′)

dp′

Fig. 8 Illustration of notions used in the last part of the proof of Lemma 4.6.

dp′ = |p′|; see Fig. 8. There are undiscovered points arbitrarily close to q, so
t′ < τ∗dq ≤ τ(A∗)dq ≤ 1+3v

v−v2 dq ≤
tq
v .

Now, we consider two cases depending on which robot first visits q at time
t′. First, suppose that it is the faster robot R. By the speed limit, we have
t′ ≥ tq + 2(dp′ + dq). Since t′ > t = tδ for δ ≥ 0, we have ∆(t) > 0, i.e.,

|D(t′)|
t′ > 2v

vτ∗−1 ≥
2v

vτ(A∗)−1 ≥
2v

1+3v
1−v −1

= 1−v
2 .

On the other hand,

|D(t′)|
t′ =

dp′+dq
t′ ≤ t′−tq

2t′ = 1
2 −

tq
2t′ <

1
2 −

v
2 = 1−v

2 .

These two inequalities contradict each other.
Consequently, it must be the slower robot r which visits q at time t′ ≥

t+ 1
v (dp+dq). Hence, t′ ∈ T and, by definition of t ∈ T , this yields∆(t) < ∆(t′),

i.e.,

|D(t)| − t 2v
vτ∗−1 < |D(t′)| − t′ 2v

vτ∗−1 ≤ |D(t′)| − t 2v
vτ∗−1 − (dp + dq)

2
vτ∗−1 .

Consequently,

dp′−dp = |D(t′)|−|D(t)| ≥ (dp+dq)
2

vτ∗−1 ≥ (dp+dq)
2

vτ(A∗)−1 ≥ (dp+dq)
1−v
2v ,
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and therefore dp 1+v
2v + dq

1−v
2v ≤ dp′ . However, since R must be able to reach q

before τ∗dq, we have

tq + 2(dq + dp′) < τ∗dq ≤ τ(A∗)dq ≤ 1+3v
v−v2 dq,

and thus
d′p <

1+3v

v−v2
dq−tq
2 − dq = 1+3v

2(v−v2)dq − dq −
tq
2 .

Moreover, R must be able to reach p before τ∗dp, so

tq + (dq + dp) < τ∗dp ≤ τ(A∗)dp ≤ 1+3v
v−v2 dp,

and therefore
dp ≥ tq+dq

1+3v

v−v2
−1

=
(tq+dq)(v−v2)

(1+v)2 .

Hence,

(tq+dq)(v−v2)
(1+v)2

1+v
2v + dq

1−v
2v < 1+3v

2(v−v2)dq − dq −
tq
2 ,

(tq+dq)(1−v)
2(1+v) + dq

1−v
2v < 1+3v

2(v−v2)dq − dq −
tq
2 ,

tq

(
1
2 + 1−v

2(1+v)

)
< dq

(
1+3v

2(v−v2) − 1− 1−v
2v −

1−v
2(1+v)

)
,

tq
1+v+1−v

2(1+v) < dq

(
1+3v

2v(1−v) −
1+v
2v −

1−v
2(1+v)

)
,

tq
2

2(1+v) < dq

(
1+3v

2v(1−v) −
(1+v)2+v(1−v)

2v(1+v)

)
,

tq
1

1+v < dq

(
1+3v

2v(1−v) −
1+2v+v2+v−v2

2v(1+v)

)
,

tq < dq

(
(1+3v)(1+v)

2v(1−v) − 1+3v
2v

)
,

tq < dq
(1+3v)((1+v)−(1−v))

2v(1−v) ,

tq < dq
1+3v
1−v .

However, this contradicts dq < tq
1−v
1+3v . ut

Corollary 4.5 and Lemma 4.6 let us conclude the tight lower bound.

Proposition 4.7 Any algorithm B in the wireless communication model for
two robots with speeds 1 and v, respectively, satisfies τ(B) ≥ min(τ(A∗), τ(B∗)).

We conclude that for each v, either A∗ or B∗ is an optimum algorithm
for the wireless communication model. Simple calculations show that A∗ is
optimal for v ≤

√
17− 4, whereas B∗ is optimal for v ≥

√
17− 4.

Theorem 4.8 Consider the line search problem in the wireless communica-
tion model for two robots with speeds 1 and v, respectively. For each 0 < v ≤ 1,
either the algorithm A∗ or B∗ achieves the optimum competitive ratio:

min(CR(A∗),CR(B∗)) =

{
CR(A∗) = 1+3v

1−v if 0 < v ≤
√

17− 4,

CR(B∗) = 2+v+
√
v2+8v

2 if
√

17− 4 ≤ v ≤ 1.
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