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Abstract. The rotor-router model, also called the Propp machine, was
first considered as a deterministic alternative to the random walk. It is
known that the route in an undirected graph G = (V, E), where |V | = n

and |E| = m, adopted by an agent controlled by the rotor-router mecha-
nism forms eventually an Euler tour based on arcs obtained via replacing
each edge in G by two arcs with opposite direction. The process of ush-
ering the agent to an Euler tour is referred to as the lock-in problem. In
recent work [11] Yanovski et al. proved that independently of the initial
configuration of the rotor-router mechanism in G the agent locks-in in
time bounded by 2mD, where D is the diameter of G.

In this paper we examine the dependence of the lock-in time on the
initial configuration of the rotor-router mechanism. The case study is
performed in the form of a game between a player P intending to lock-in
the agent in an Euler tour as quickly as possible and its adversary A
with the counter objective. First, we observe that in certain (easy) cases
the lock-in can be achieved in time O(m). On the other hand we show
that if adversary A is solely responsible for the assignment of ports and
pointers, the lock-in time Ω(m ·D) can be enforced in any graph with m

edges and diameter D. Furthermore, we show that if A provides its own
port numbering after the initial setup of pointers by P , the complexity of
the lock-in problem is bounded by O(m·min{log m,D}). We also propose
a class of graphs in which the lock-in requires time Ω(m · log m). In the
remaining two cases we show that the lock-in requires time Ω(m · D) in
graphs with the worst-case topology. In addition, however, we present
non-trivial classes of graphs with a large diameter in which the lock-in
time is O(m).
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1 Introduction

A graph is a fundamental combinatorial concept used for modeling complex
systems in various application domains including communication, transporta-
tion and computer networks, manufacturing, scheduling, molecular biology, and
peer-to-peer networks. Certain models based on graphs, very often classified
as alternative models of computation, rely on the use of mobile entities called
agents. An agent can be, e.g., a robot servicing a hazardous environment or a
software process navigating the Internet in search of information.

The family of anonymous graphs provides foundations for a model that has
found its application in network communication, graph exploration and stabil-
isation of distributed processes. In principle, due to minimalistic assumptions,
any solution provided in this model constitutes also a valid solution in any other
communication graph-based model. Another important rationale for the use of
anonymous graphs is the intention to study border cases (limits of computation)
in the field of distributed computing.

The rotor-router mechanism was introduced as a deterministic alternative to
the random walk and studied in the context of a wide selection of network
problems, including work on load balancing problems in [5, 6], graph explo-
ration [2,7,8], and stabilisation of distributed processes [3,9,11]. The rotor-router
mechanism is represented by an undirected anonymous graph G = (V, E), where
|V | = n and |E| = m. The nodes in V bear no names, however, the endpoints
of edges in E, called ports, are arranged in a cyclic order at each node. Fur-
thermore, each node is equipped with a pointer that indicates the current exit
port to be adopted by an agent on the conclusion of the next visit to this node.
The rotor-router mechanism guarantees that after each consecutive visit at a
node its pointer is moved to the next port in the cyclic order. Due to a limited
number of configurations in a graph G of a bounded size it is intuitive that a
walk of the agent controlled by the rotor-router mechanism must be locked-in in
a loop eventually. Rather surprisingly, however, Priezzhev et al. [9] proved that
an agent traversing a finite graph gets locked-in in an Euler tour based on arcs
obtained by replacing each edge in G with two arcs having opposite directions.
Later, Bhatt et al. [3] proved that the lock-in time is bounded by O(m ·n). This
bound was further improved by Yanovski et al. in [11] to 2mD, where D is the
diameter of G. Related models of traversal in undirected graphs were studied
in [4].

1.1 Our contribution and outline of the paper

In this paper we examine the influence of the initial configuration of pointers
and port numbers on the time needed to lock-in the agent in an Euler tour.
The case study is performed in the form of a competition between a player P
intending to lock-in the agent in an Euler tour as quickly as possible and its
adversary A having the counter objective. We assume that both the player P
and its adversaryA have unlimited computational power, i.e., we do not take into
account the cost of computation of the initial configuration of ports and pointers
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to be adopted by P and A. The results of our studies are asymptotically tight
in terms of the worst-case choice of the graph topology and the initial location
of the agent.

We start our analysis with border cases. In the case P-all where the player P
is in charge of the initial arrangement of port numbers and pointers we observe
that the lock-in in an Euler tour can be obtained in time O(m). Also the case
A(�)P(f ), where P sets the pointers after the port numbers are assigned by A,
reduces to the border case where P is solely in charge of the initial configuration.
On the other hand, in the case A-all where the adversary A solely decides about
the initial configuration, we show that in any graph with m edges and diameter
D the adversary A is able to enforce the lower bound Ω(m · D) for the lock-in
matching the upper bound from [11].

Furthermore, we show that if A provides its own port numbering after the
initial setup of pointers by P , case P(f )A(�), the complexity of the lock-in
problem is bounded by O(m ·min{logm, D}). We also propose a respective class
of graphs in which the lock-in requires time Ω(m ·min{log m, D}). At the same
time we point out that, e.g., in Hamiltonian graphs the lock-in is obtained in
time O(m).

We conclude with the proof that in the remaining two cases the lock-in
requires time Ω(m · D) in graphs with the worst-case topology. In the case
A(f )P(�) where P responds by appropriate port assignment to initial setup of
pointers by A, we show that there exist graphs for which the lock-in requires
time Ω(m · D). At the same time, we present a non-trivial class of graphs with
an arbitrarily large diameter in which an appropriate choice of port numbers
leads to the lock-in in time O(m). Finally, in the case P(�)A(f ) where A sets
the pointers after the assignment of ports is revealed by P , the lower bound
Ω(m ·D) argument for the lock-in follows directly from the previous case. Also,
here we propose a non-trivial class of graphs, this time with an arbitrary di-
ameter D ≤ √

n, in which the lock-in is feasible in time O(m). Our results are
summarised in Table 1.

Table 1. Minimum and maximum values of the lock-in time in considered cases.

Scenario Worst case Best case

Case P-all Θ(m) Θ(m)
Case A(�)P(f ) Θ(m) Θ(m)
Case P(f )A(�) Θ(m · min{log m, D}) Θ(m)
Case A(f )P(�) Θ(m · D) Θ(m)
Case P(�)A(f ) Θ(m · D) Θ(m) for all D ≤ √

n

Case A-all Θ(m · D) Θ(m · D)
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1.2 The Euler tour lock-in problem revisited

In this section we provide basic definitions and we recall known facts in relation
to performance of the rotor-router mechanism in anonymous graphs. Recall that
G = (V, E) is an input graph in which the starting node is denoted by s.

Definition 1. For any m and D, D ≤ m, let Gm,D denote the class of graphs
with diameter between D and 4D and a number of edges between m and 4m.

Definition 2. For any v ∈ V let EG(v) denote the set of edges of G that are
incident to node v.

Definition 3. Let H = (X, C) be a connected subgraph of G induced by some
C ⊆ E. We denote by NG(H) the subgraph of G induced by the set

⋃
v∈X EG(v).

Definition 4 (port assignment). A port assignment to the nodes of graph G
is a collection of bijective functions between EG(v) and {1, . . . , deg(v)}, one for
each v ∈ V .

Definition 5 (pointer assignment). An initial pointer assignment to the
nodes of an undirected graph G = (V, E) is a function f : V → E, s.t., for
all v ∈ V , f (v) ∈ EG(v).

Definition 6. A node becomes saturated when all its incident edges are tra-
versed in both directions for the first time.

Note that when a node becomes saturated, its pointer returns to the initial
position for the first time.

Lemma 1 ([3]). Let G = (V, E) be a graph with a starting node s ∈ V , an
assignment of ports and pointers. The Euler tour lock-in in G is performed in
phases {Pi}i≥1. Each phase starts when the mobile agent leaves s via edge f (s)
indicated by the initial assignment of pointers and continues until the agent
traverses all edges incident to s in both directions. The following properties hold:

– While the agent is visiting nodes saturated in some earlier phase, it retraces
the route of phase Pi−1.

– If the agent encounters a node u that has been visited but not saturated in
an earlier phase, it suspends the retracing of the tour of phase Pi−1. A new
tour starts at u and ends there. Node u is now saturated. The tour of phase
Pi−1 is resumed (via port f (s)).

– Every edge is traversed at most once in each direction during each phase.

Eventually all nodes in G get saturated. In other words, there exists integer j ≥ 1,
s.t., starting from the phase Pj the agent adopts the same (Euler) tour in G.

One can conclude from Lemma 1 that during each phase Pi the agent gets
locked-in in a subgraph Gi of G where (1) G0 contains a single node s; (1) each
Gi is a subgraph of Gi+1; and (2) all edges in G that are incident to nodes in
Gi are present in Gi+1, i.e., NG(Gi) ⊆ Gi+1. Since the number of edges in each
Gi is bounded by m the following theorem follows.
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Theorem 1 ([11]). For any graph, any starting node, and any initial pointer
and port assignments, the lock-in (which is equivalent with exploration of all
edges in G) is achieved in time O(m · D).

2 Case study of the lock-in problem

In this section we study the game between P and A in detail.

2.1 Border cases

In this section we briefly discuss border cases in which for any graph G the
complexity of the lock-in problem is either Θ(m) or Θ(mD).

Cases with lock-in time Θ(m). Consider first the case P-all where the player
P is solely responsible for the initial setup of port numbers and pointers. Since
we assume unbounded computational power of P clearly the player can choose a
configuration that locks-in the agent in an Euler tour right from the beginning.
Similarly, also in the case A(�)P(f ), after the adversary A sets port numbers, P
can respond with an appropriate assignment of pointers that leads to an Euler
tour instantly for any input graph G. Thus in those two cases the agent visits
all edges in G locking-in itself in an Euler tour in time O(m).

Case with lock-in time Θ(m · D). At the other end of the spectrum, in the
case A-all where the adversary A is solely responsible for the initial configuration
of port numbers and pointers the proof of the complexity Θ(m · D) is more
complex. We start with the following lemma.

Lemma 2. Given an input graph G = (V, E) with a starting node s ∈ V . For
any subset C ⊆ E, s.t. C contains at least EG(s) and also induces a connected
subgraph H = (X, C) of G, there exists an assignment of ports and pointers, s.t.,
the first phase of the exploration of G traverses all edges in C in both directions,
and only these edges.

Proof. Let C be an Euler cycle in H. Fix the corresponding sequence of edge
traversals e1, . . . , e2|C|, s.t. e1 is an edge incident to s (each undirected edge in
C is traversed exactly twice by C, once in each direction). We now define a port
assignment and an assignment of pointers f to the nodes of G.

For any node v ∈ V , let ev1
, . . . , evk

be the order in which its incident edges
are traversed in C, going out of v. It can happen that k < degG(v) if v has
incident edges in E \ C, or even k = 0 if v /∈ X . Define the port assignment for
the node v, s.t., for any i ≤ k, edge evi

is the port with number i. If k < degG(v),
extend this port assignment, s.t., edges in E \ C receive higher port numbers
than edges in C. Finally, define f (v) to be the edge ev1

if k ≥ 1, otherwise, define
f (v) to be an arbitrary edge in EG(v).
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Now, let E be the sequence of edges traversed by the agent in the first phase
of the exploration of G starting from s. For every node v ∈ V and every i,
consider the i-th time that E visits v. The edge followed then by E is evi

, which
coincides with the edge that C followed during the i-th visit at v. It follows that
E coincides with C and therefore E traverses all edges of C in both directions,
and only these edges. ⊓⊔

Lemma 3. Let G = (V, E) be an undirected graph with a starting node s ∈ V , a
given port assignment, and a pointer assignment f for each node of G. Let E be
the sequence of edges traversed by the agent in the first i phases of exploration,
for some i ≥ 1. Let H = (X, C) be the subgraph of G induced by the edges
traversed in E (not necessarily in both directions). The ports and pointers of
nodes in V \X can be modified, s.t., during Phase i + 1 of exploration the agent
traverses all edges of NG(H) in both directions, but it traverses no further edges
in G.

Proof. Let NG(H) = (Y, D). Clearly, Y ⊇ X and D ⊇ C. Phase i + 1 of the
exploration will saturate all nodes that were visited during the first i phases. This
implies that all edges incident to nodes in X are traversed in both directions
during the second phase. Therefore all edges in D will be traversed in both
directions.

To ensure that no other edges will be traversed, we modify the port assign-
ment of nodes in Y \X as follows. For each v ∈ Y \X , all edges connecting v to
nodes in X receive smaller port numbers than all edges connecting v to nodes
in V \ X. Furthermore, we set f (v) to be the edge with port number 1, for all
v ∈ Y \ X .

To prove the claim, assume for the sake of contradiction that during Phase
i + 1 the agent traverses some edges in E \ D. Let e be the first such edge. The
edge e must have been traversed on the way out from some node v ∈ Y \X . But,
due to the port numbering scheme defined above, the cyclic distance between
the port number of e and the first pointer at node v is greater than the number
of edges that connect v to nodes in X , which implies that at least one of these
edges was traversed at least twice in the same direction (toward v) during Phase
i + 1. This leads to a contradiction, since an edge is never traversed twice in the
same direction during the same phase. ⊓⊔

Theorem 2. For any graph G = (V, E) in Gm,D there exists a starting node s,
and a port and pointer assignment in G, s.t., the lock-in requires time at least
1

4
· mD.

Proof. Let T be the BFS tree of G rooted in an arbitrary node u ∈ V . Let r ≥ D
2

be the height of T . Finally, let H be the subgraph of G induced by the nodes of
the lowermost r

2
levels of T , and let H1 = (X, C) be a connected component of

H that contains at least one node from the r-th level of T (Figure 1).
If H1 contains at least m

2
edges, then pick an arbitrary starting node s in H1

and set the ports and pointers, s.t., the first phase of the exploration starting
from s explores exactly G1 = H1. This is feasible due to Lemma 2. Furthermore,
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r

2

H1
H2

Fig. 1. The partition of G into subgraphs that is described in the proof of Theorem 2.
Either subgraph H1 or subgraph H2 contains at least half of the edges of G.

arrange ports and pointers so that for any i ≥ 2, Gi = NG(Gi−1), where Gi

denotes the graph induced by the edges traversed during phase Pi of the explo-
ration. This is feasible by multiple applications of Lemma 3. In this case, the
exploration from s will require at least 2 · m

2
· r

2
≥ 1

4
·mD edge traversals before

visiting all nodes.
Otherwise, the subgraph H2 induced on G by the edge set E\C must contain

at least m
2

edges. Pick a starting node s in H2 and set the ports and pointers,
s.t., G1 = H2 and for any i ≥ 2, Gi = NG(Gi−1). The exploration will again
require at least 1

4
· mD edge traversals before visiting all nodes. ⊓⊔

2.2 Almost linear lock-in – case P(f )A(�)

In this section we discuss the case where the player P chooses pointers first and
the adversary A responds with the worst-case assignment of ports.

Theorem 3. For any graph G = (V, E) in Gm,D and any starting point s there
exists a pointer assignment, s.t. for any port assignment the lock-in can be ob-
tained in time O(m · min{log m, D}).

Proof. We show that the player can find an assignment of pointers, s.t. the
lock-in is obtained in Gi, for some i ≤ min{logm, D}.

Take an arbitrary BFS tree T in G rooted in s. For every node in T compute
a rank according to the following rules. Each leaf in T acquires rank 0. For each
internal node v (including the root s) we look at the rank of its children. If
the top rank r belongs to only one child the node v adopts r as its own rank.
Otherwise, i.e., when the top rank is shared by at least two children the node v
adopts the rank r + 1. One can prove that the rank ρ of the root s is the largest
and it does not exceed log m. It does not exceed D either, because we chose a
BFS tree. The rank of the root is known as the Strahler number, a numerical
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measure of branching complexity of the tree T [10]. Note that the nodes with
the same rank form a collection of downward chains in T .

After the ranks are introduced to T , the pointer at each node in T is assigned
to the port leading towards a child with the largest rank. This is to ensure that
Gi contains all nodes in T with ranks ≤ ρ − i + 1. And indeed G1 contains all
nodes with rank ρ since as soon as the traversal process is initiated the agent
is forced to visit all nodes with the highest rank (and possibly some others).
Assume now inductively that all nodes with ranks ≤ ρ − i + 1 belong to Gi.
These include the nodes that are connected to downward chains with rank ρ− i
with nodes still not present in Gi. But note that due to Lemma 1 all edges
incident to nodes in Gi are present in Gi+1 which means that each downward
chain with rank ρ − i will be accessed and all of their nodes will be traversed
when Gi+1 is formed. This proves that Gρ contains all nodes from G and Gρ+1

contains all nodes and edges. Since ρ ≤ min{log m, D} and the number of edges
in each Gi is bounded by m, the lock-in time is O(m · min{logm, D}). ⊓⊔

Note finally, that if G is Hamiltonian the player P can arrange pointers so
that they form a Hamiltonian tour. This ensures that G2 contains all edges in
G and that the complexity of the lock-in problem in such graphs is O(m).

We now show that there exist graphs for which the lock-in upper bound is
asymptotically matched from below.

Theorem 4. For any m and D ≤ m, there exists a graph G = (V, E) in Gm,D

with a starting node s, s.t., for any pointer assignment there is a port assignment
for which the lock-in requires time Ω(m · min{log m, D}).

Proof. Consider a graph formed of a complete graph K with Ω(m) edges and
O(

√
m) nodes connected by a path of length max{1, D− logm} with a complete

binary tree B of height min{logm, D}. This is to ensure that G2 contains all the
edges from K. Consider now the arrangement of pointers in each node of B. We
show that independently of the assignment of the pointer at an internal node v,
if i is the smallest integer such that v belongs to Gi, then one of its children is
not present in Gi.

And indeed, assume that Gi is the first graph in which v is visited by the
agent. There are three ports associated with v. One port leads to its parent and
two towards its children. If the player P decides to assign the pointer to the port
leading towards the parent of v after the agent arrives in v (forming a part of Gi)
it immediately returns back to the parent of v. Since each edge in Gi is visited
exactly once in each direction, see Lemma 1, the next visit at v must occur in
Gi+1. Thus none of its children can be present in Gi.

Now assume that the pointer is assigned to a port k leading to one of the
children c1 of v. Since the port numbers available at v are 1,2 and 3, the adversary
A assigns number (k mod 3) + 1 (that follows k in the cyclic order) to the port
leading to the parent of v. This is to ensure that after the agent comes back
from c1 it immediately returns to the parent of v. Since each edge in Gi is
visited exactly once in each direction, see Lemma 1, the next visit at v must
occur in Gi+1. This proves that the other child of v does not belong to Gi.
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Thus there is a path from the root of B to some leaf on which neither of two
consecutive nodes belong to the same Gi.

Finally, since the height of B is Ω(min{logm, D}) and each Gi, for i ≤ 2,
contains at least m edges the lock-in requires time Ω(m · min{log m, D}). ⊓⊔

2.3 The two remaining cases

In the last part of the paper we discuss two cases with the worst-case complexity
Ω(m · D). We show, however, that here, in contrast to the border case A-all,
there exist non-trivial classes of graphs with a lock-in time of O(m).

Case A(f )P(�). In the case where the player responds by a port assignment
to the adversary’s initial pointer assignment, we demonstrate a family of graphs
in which locking-in requires time Ω(mD), matching the general worst-case upper
bound from Theorem 1. We also demonstrate a non-trivial family of graphs in
which for any choice of starting point the lock-in is achieved in time O(m).

Theorem 5. For any m and D ≤ m, there is a graph G = (V, E) in Gm,D

with starting node s, and a pointer assignment, s.t. for any port assignment the
lock-in requires time Ω(mD).

Proof. Let G be a lollipop graph obtained by connecting a complete graph Ka

to a path PD with D nodes via a bridging edge. The diameter of G is D + 1
and it is always possible to pick a = Θ(

√
m), s.t., the number of edges of G is

between m and 4m. Thus G ∈ Gm,D. Let s be a node of Ka different from the
node connecting Ka to PD, and let the pointers within Ka point towards s (the
pointer of s can initially be on an arbitrary port). Finally, set the pointers at
each node of PD towards Ka.

It is clear that, no matter which port assignment is chosen by the player,
during the first phase of the exploration initiated in s the agent traverses the
edges connecting s to its neighbors in the clique in both directions, thus visiting
all nodes in Ka. During the second phase the agent will traverse all Θ(m) edges
of Ka in both directions, and it will return to Ka by the first pointer of PD.
During subsequent phases of exploration the agent will progress along the path
at a rate of one edge per phase, until the last node of the path is reached.
Therefore, D phases are required, each of which retraces at least the Θ(m) edges
in Ka; the lower bound of Ω(m · D) for the lock-in time follows. ⊓⊔

Theorem 6. For any m and D ≤ m, there is a graph G = (V, E) in Gm,D,
s.t., for any starting node s and for any pointer assignment, there exists a port
assignment for which the lock-in is achieved in time ≤ 24m.

Proof. Let G = (V, E) be a chain of length D of complete bipartite graphs K2,2.
The number of edges in G is equal to 4D ≤ 4m. In the case where 4D < m,
append to G a star consisting of m − 4D + 2 edges, as illustrated in Figure 2.
In both cases, the diameter of G is either D or D + 2 and the number of edges
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is between m and 4m, thus G ∈ Gm,D. Let s ∈ V be the starting node in G,
and f be the pointer assignment supplied by the adversary A. Denote the set of
nodes of the chain of complete bipartite graphs by X , and the central node of
the appended star by u (if it exists).

For the time being, assume also that s ∈ X and s′ is the node on the opposite
to s side in the chain (i.e., the node that has exactly the same neighbors as s).
Furthermore, let Vi denote the subset of X that contains nodes at distance i from
s (i ≥ 0), with the exception that s′ belongs not to V2 but to V0. We adopt a
port assignment for the nodes of G as follows (refer to Figure 2 for illustration):

– For the special case of s and s′, arrange the port numbers arbitrarily.
– For the node u, assign port 1 to f (u). If f (u) connects u to the chain, assign

port number deg(u) to the other edge that connects u to the chain, and the
rest of the ports arbitrarily. Otherwise, assign port numbers deg(u)− 1 and
deg(u) to the edges connecting u to the chain, and set the rest of the port
numbers arbitrarily.

– For a node v ∈ X at the endpoint of the chain, if v is not connected to u
then set ports arbitrarily. If v is connected to u, then assign port 1 to f (v)
and assign the smallest possible port to the edge connecting v to u (if it is
not f(v)).

– For any other v ∈ X , port 1 is always assigned to f (v). Let i ≥ 1 be the
distance of v from s, thus v ∈ Vi. If f (v) connects v to Vi−1, assign ports
2 and 3 to the edges connecting v to Vi+1, and port 4 to the remaining
edge that connects v to Vi−1. Otherwise, assign port 2 to the remaining edge
connecting v to Vi+1 and ports 3 and 4 to the edges connecting v to Vi−1.

We claim that during the second phase of exploration the agent traverses
all edges in both directions. In order to prove this claim, we first observe that
during the first phase of exploration the agent must visit all the nodes in V1.
Therefore, during the second phase all the edges connecting V0 to V1 are traversed
in both directions. Now, for some i ≥ 1, assume that during the second phase of
exploration the agent traverses all edges connecting Vi to Vi−1 in both directions.
According to the port assignment scheme defined above, for any v ∈ Vi there is
an incident edge e with port number 4 that connects it to some node in Vi−1. By

D

V1

V0

u

s

s
′

m − 4D
3

2
1

2

3 4

1

2 3

41

Fig. 2. The construction described in the proof of Theorem 6.
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assumption, e is traversed in both directions during the second phase. But before
the tour of the second phase can use edge e on the way out of v, it is forced
to use all other edges incident to v also on the way out of v, and in particular
the edges that connect v to Vi+1. Since this property holds for all v ∈ Vi, and
since the edges connecting Vi to Vi+1 constitute a cut that disconnects s from
Vi+1, it follows that these edges must be traversed in both directions during the
second phase. It follows by induction that all edges of the chain are traversed in
both directions during the second phase. Furthermore, consider any node v ∈ X
that is connected to u. The edge with the highest port number at v is traversed
in both directions, therefore by the same argument all edges incident to v are
traversed in both directions. Applying the same argument one more time for the
node u concludes the proof of the claim.

Now, if s /∈ X , we set the ports of nodes in X analogously, pretending that
s is one of the endpoints of the chain that are connected to u. After at most
two phases of exploration the agent traverses all edges of the star centered at u,
and thus it visits the two endpoints of the chain connected to u. Then, by an
analogous argument, during the third phase the agent traverses all edges in G
in both directions.

We have proved that for any starting point and any pointer assignment,
after at most three phases of exploration the agent traverses all edges in G in
both directions. Since during each phase at most 4m edges are traversed in each
direction, the upper bound of 24m for the lock-in time follows. ⊓⊔

Case P(�)A(f ). In the case where the adversary A responds by a pointer
assignment to player P ’s initial port assignment, we first prove existence of a
family of graphs in which locking-in requires time Ω(mD), matching the general
worst-case upper bound from Theorem 1.

Theorem 7. For any m and D ≤ m, there is a graph G = (V, E) in Gm,D

with a starting node s ∈ V , s.t. for any port assignment there exists a pointer
assignment under which the lock-in time in G is Ω(mD).

Proof. Follows immediately from Theorem 5. ⊓⊔

We show, however, that there is also a non-trivial class of graphs with diam-
eter O(

√
n) in which the lock-in time is O(m) in this case.

Theorem 8. For any D ≤ √
n, there is a graph G = (V, E) in Gm,D, s.t., for

any starting node s, there is a port assignment, s.t., for any possible pointer
assignment the lock-in time is O(m).

Proof. For any a, let Ga = (V, E) be the graph consisting of a chain of length a
of complete bipartite graphs Ka,a. We will show that for any starting node s,
there is a port assignment, s.t., for any possible pointer assignment the lock-in
time in Ga is bounded by 8m, where m = |E|.

Let s ∈ V be a starting node with eccentricity ǫ. Let V0 be the subset of
nodes on the same level of the chain as s, and let Vi, 1 ≤ i ≤ ǫ, be the subset of
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V \ V0 that contains all nodes at distance i from s. Moreover, let Ei denote the
set of edges connecting Vi to Vi+1.

Consider an arbitrary node v ∈ Vi, for some i. The degree of this node is 2a.
Exactly a edges in Ei connect v to nodes in the set Vi+1; call these the outward
edges of v. Moreover, exactly a of these edges connect v to nodes in the set Vi−1;
call these the inward edges of v. We define a port assignment as follows. For
any node v, its outward edges receive the odd port numbers 1, 3, . . . , 2a− 1, and
its inward edges receive the even port numbers 2, 4, . . . , 2a. The ports of nodes
in V0 are assigned arbitrarily.

Regardless of the adversary’s initial pointer assignment f , during the first
phase of the exploration the agent visits at least all neighbors of s, i.e., at least
all nodes in V1. Therefore, during the second phase of exploration all nodes in V1

become saturated which implies that all edges in E0 and in E1 are traversed in
both directions.

For the remaining part of the proof we consider only nodes and edges on the
side of V0 that contains Vǫ. The proof for the other side is analogous. We claim
that during the second phase of exploration the agent will visit at least one node
in Vǫ. For the sake of the proof, first observe that for any node and during any
phase of exploration, if x of the node’s inward edges are traversed on the way
out of v then, due to the alternating port assignment we adopted, at least x− 1
outward edges will be traversed also on the way out of v. Now, for any i ≥ 1 let yi

be the number of edges in Ei that are traversed in the direction (Vi → Vi+1)
during the second phase of exploration. Since Ei separates s from the nodes
in Vi+1, yi edges in Ei must be also traversed in the direction (Vi+1 → Vi) during
the second phase. By the previous observation, at least yi − a edges of Ei+1 will
be traversed in the direction (Vi+1 → Vi+2). Therefore, yi+1 ≥ yi − a. We have
already established that y1 = a2. This recurrence boils down to yi ≥ a2−(i−1)a,
which implies that for i ≤ ǫ ≤ a we have yi ≥ a. Thus, during the second phase
of exploration the agent visits at least one node at the end-point of the chain.

It follows that every node in the graph is at distance at most 1 from some
node visited during the second phase of exploration. Therefore, during the third
phase the agent visits all nodes in the graph, and in the fourth phase it traverses
all edges of the graph in both directions, achieving the Euler tour lock-in. Since
during each phase the agent traverses at most m edges, each at most once in
each direction, the upper bound of 8m for the lock-in time follows. ⊓⊔

3 Further work and open problems

Herein we have shown that it is advantageous to be in charge of pointer assign-
ment in the rotor-router model. In all cases where the player P is responsible
for pointer assignment the complexity of the lock-in problem is either linear or
close to linear. In contrast, in all remaining cases where the adversary A con-
trols assignment of pointers the worst-case complexity of the lock-in problem is
always Ω(m · D), i.e., the worst possible in view of Theorem 1.
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In view of results from Subsection 2.3 a detailed study on the lock-in problem
in more specific classes of graphs such as 2D-grids, planar or random graphs
would be highly appreciated. This could be accompanied by a comparative study
with the random walk procedure. Indeed, the lock-in time of a Propp machine
is, in all the studied scenarios, equal up to constant factors to the time required
to visit all the edges of the graph (its edge cover time). For example, in the A-all
scenario, the edge cover time using the Propp machine is precisely Θ(mD). This
compares interestingly to the expected edge cover time of a graph when using
random walk, which can be bounded as O(mD log m). Whereas our bound for
the Propp machine is tight for any graph, the bound for random walks is not;
indeed, for a 2D-grid on k × k nodes we have a worst-case edge cover time of
Θ(k3) using the Propp machine, and an expected edge cover time of Θ(k2 log2 k)
using random walk [1].

One could also imagine a game in which a player and its adversary choose
assignments of ports and pointers in consecutive nodes visited by the agent in
alternative turns. What is the complexity of such a game?
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