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Abstract. We study the problem of exploration by a mobile entity
(agent) of a class of dynamic networks, namely the periodically-varying
graphs (the PV-graphs, modeling public transportation systems, among
others). These are defined by a set of carriers following infinitely their
prescribed route along the stations of the network. Flocchini, Mans, and
Santoro [FMS09] (ISAAC 2009) studied this problem in the case when
the agent must always travel on the carriers and thus cannot wait on a
station. They described the necessary and sufficient conditions for the
problem to be solvable and proved that the optimal number of steps (and
thus of moves) to explore a n-node PV-graph of k carriers and maximal
period p is in Θ(k · p2) in the general case.
In this paper, we study the impact of the ability to wait at the stations.
We exhibit the necessary and sufficient conditions for the problem to
be solvable in this context, and we prove that waiting at the stations
allows the agent to reduce the worst-case optimal number of moves by
a multiplicative factor of at least Θ(p), while the time complexity is
reduced to Θ(n · p). (In any connected PV-graph, we have n ≤ k · p.) We
also show some complementary optimal results in specific cases (same
period for all carriers, highly connected PV-graphs). Finally this new
ability allows the agent to completely map the PV-graph, in addition to
just explore it.
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1 Introduction

1.1 The problem

The problem of graph exploration consists, for a mobile entity, in exploring
all nodes (or edges) of an a priori unknown graph. This problem being one of
the most classical in the mobile agent computing framework, it has received
a lot of attention so far. Time complexity, space complexity or impact of a
priori knowledge have extensively been studied in the last 40 years (see, e.g.,
[PP99,Rei05,DP04]). However, the large majority of these works concern static
graphs. Considering nowadays networks, it is now common to deal with dynamic
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networks. In this paper, we study the graph exploration problem in one model
of dynamic networks, namely the periodically-varying graph (PV-graph) model.

Roughly speaking, a PV-graph consists of a set of carriers, each following
periodically its respective route among the sites of the system. This models in
particular various types of public transportation systems like bus systems or
subway systems for example. It also models low earth orbiting satellite systems,
or security systems composed of security guards making tours in the place to be
secured. Performing exploration in such systems may be useful for maintenance
operations for example. Indeed, an agent can check that everything is in order
during the exploration. This agent may be a piece of software, or a human being.

The exploration problem in the PV-graph model was already considered by
Flocchini, Mans, and Santoro in [FMS09]. They considered that the agent cannot
leave the carrier to stay on a site. Not being able to stay on a site is particularly
legitimate in low earth orbiting satellite systems for example, where the sites do
not correspond to any physical station. However, in most public transportation
systems, it is possible for the agent (human or not) to stay on a site in order
to wait for a (possibly different) carrier. In this paper, we consider the same
problem but in the case when the agent can leave carriers to wait on a site. We
study the impact of this new ability on the complexity (time and number of
moves) of the PV-graph exploration problem.

1.2 Related work

Motivated by the automatic exploration of the Web, Cooper and Frieze [CF03]
studied the question of the minimum cover time of a graph that evolves over
time. They considered a particular model of so-called web graphs and show that
if after every constant number of steps of the walk a new node appears and is
connected to the graph, a random walk does not visit a constant fraction of nodes.
Kuhn, Lynch and Oshman [KLO10] introduced a stability property (intervals of
connectivity). They assume that for any T consecutive rounds, there is a stable
and connected common subgraph. In 2008, Avin, Koucky and Lotker [AKL08]
showed that a random walk may have an exponential cover time in some dynamic
graphs. They also show that a variant, the lazy random walk, has however a
polynomial cover time in any dynamic graph.

In 2009, Flocchini, Mans and Santoro [FMS09] introduced a new model of
dynamic networks, the PV-graph model. They first show that if the nodes of the
PV-graph are labeled, the knowledge of an upper bound on the longer period
or the exact knowledge of the number n of nodes is necessary and sufficient for
an agent to explore the PV-graph. If the nodes of the PV-graph are anonymous,
then the knowledge of an upper bound on the longer period is necessary and
sufficient. In both settings, the time and move complexity of the agent is proved
to be in Θ(k · p2), where k is the number of carriers and p the maximum period
of the carriers. In the particular case of homogeneous PV-graphs (PV-graphs for
which all carriers have the same period), the time and move complexity drops
to Θ(k · p).



Flocchini, Kellett, Mason, and Santoro [FKMS10] studied the mapping of
a PV-graph containing black holes (sites destroying agents). They considered
that several agents are operating in the PV-graph, and that they can leave
messages on the sites. The goal of the agents is to construct the map of the
PV-graph without losing too many agents. Casteigts, Flocchini, Santoro and
Quattrociocchi [CFQS10] integrated a large collection of concepts, formalisms
and results in the literature about dynamic graphs in an unified space.

1.3 Our results

In this article, we extend the study of Flocchini, Mans and Santoro [FMS09] to
the case when the agent can leave a carrier to stay at a site. This new ability
allows the agent to explore PV-graphs that are less connected over time (formal
definitions are given in Section 2). We prove that in the general case (so, even
considering non highly-connected PV-graphs) the move complexity is reduced to
Θ(min{k ·p, n·p, n2}), while the time complexity decreases to Θ(n·p). (Note that
in any connected PV-graph, we have n ≤ k ·p.) If the PV-graphs are restricted to
be both homogeneous and highly-connected, then Flocchini, Mans and Santoro
proved that the time complexity is in O(k · p). In this paper, we prove that if
the PV-graphs satisfy only one of these restrictions, then the time complexity
remains in Θ(n · p). Besides, it turns out that our algorithm not only performs
exploration but also performs mapping, i.e., it can output an isomorphic copy of
the PV-graph. Finally, note that our algorithm does not use possible identifiers
of the nodes, while all our lower bounds still hold when the agent has access to
unique node identifiers.

2 Model and definitions

We consider a system S = {s1, · · · , sn} of n sites among which k carriers are
moving. Each carrier c has an identifier Id(c) and follows a finite sequence R(c) =
(si1 , · · · , sip(c)) of sites, called its route, in a periodic manner. The positive integer
p(c) is called the period of the carrier c. More precisely, the carrier c starts at
node si1 at time 0 and then proceeds along its route, moving to the next site at
each time unit, in a cyclic manner (that is, when c is at node sip(c) , it goes back
to si1 and follows the route again and again).

A PV-graph (for periodically-varying graph) is a pair (S,C), where S is a set
of sites, and C is a set of carriers operating among these sites. We will usually
denote by n, k and p, respectively, the number of sites, the number of carriers
and the maximum over the periods of the carriers. A PV-graph is said to be
homogeneous if and only if all its carriers have the same period.

For any PV-graph G, we define two (classical) graphs H1(G) and H2(G) as
follows. Both graphs have the set of carriers as the set of nodes. There is an edge
in H1(G) between two carriers c and c′ if and only if there exists a site appearing
in the routes of c and c′. There is an edge in H2(G) between two carriers c and
c′ if and only if there exists a site s and a time t ≥ 0 such that c and c′ are



both in s at time t. A PV-graph is said to be connected if and only if H1(G)
is connected. A PV-graph is said to be highly-connected if and only if H2(G) is
connected. In this paper, we will always consider PV-graphs that are at least
connected. (Non-connected PV-graphs cannot be explored.) Furthermore note
that, for any connected PV-graph, its parameters n (number of sites), k (number
of carriers), and p (maximal period) satisfy the inequality n− 1 ≤ k(p− 1).

An entity, called agent, is operating on these PV-graphs. It can see the car-
riers and their identities. It can ride on a carrier to go from a site to another.
Contrary to the model in [FMS09], the agent is allowed to leave a carrier, stay
at the current site, and get back on a carrier (the same or another). We do
not assume any restriction on the memory size of the agent or on its computa-
tional capabilities. We consider two models concerning the nodes’ identities. In
an anonymous PV-graph, the nodes do not have any identities, or the agent is
not able to see them. In a labeled PV-graph, the nodes have distinct identities
and the agent can see and memorize them.

We say that an agent explores a PV-graph if and only if, starting at time 0
on the starting site of the first carrier (this can be assumed without loss of
generality), the agent eventually visits all sites of the PV-graph and switches
afterwards to a terminal state. This terminal state expresses the fact that the
agent knows that exploration has been completed.

3 Solvability

Similarly as in the case when the agent cannot wait, an agent without informa-
tion on the PV-graphs it has to explore cannot explore all PV-graphs (even if
restricted to the labeled homogeneous highly-connected ones).

Theorem 1. There exists a family of labeled homogeneous highly-connected PV-
graphs such that no agent can explore all the graphs of this family if it has no
information on the PV-graphs it has to explore.

Proof. Let S = {s1, s2, s3} be a set of three sites with distinct ids (Id(si) = i).
For l > 0, we define the PV-graph G` over the set S of sites composed of a single
carrier. Its route is (s1, s2, · · · , s1, s2, s1, s3), where (s1, s2) is repeated exactly l
times. Moreover, let G0 be the PV-graph over the set of sites {s1, s2} composed
of a single carrier, whose route is (s1, s2). The family {G0, G1, · · ·} is denoted G.

Assume, for the purpose of contradiction, that there exists an algorithm
solving the exploration problem in all the PV-graphs in G, provided that the
agent A running this algorithm does not receive any additional information. In
particular, A explores G0. Let m be the time at which A switches to the terminal
state. Assume now that A is placed in Gm. For the first m time units, A cannot
tell the difference between G0 and Gm, because A has no information about the
PV-graph it has to explore and in particular it does not know the number of
sites or an upper bound on the system period. It will therefore act exactly the
same in Gm than in G0. In particular, it will switch to the terminal state at time
m although the site s3 has not yet been explored. This contradiction concludes
the proof. ut



4 General case

In this section, we make no assumption on the PV-graphs (except the connected-
ness assumption of course). We basically show that the ability to wait allows the
agent to explore, and even map, all connected PV-graphs (not only the highly-
connected ones), provided that the agent knows for each of them an upper bound
on its maximal period. This can be done in only Θ(min{k · p, n · p, n2}) moves,
that is, at least p times less than when the agent cannot wait. Besides, the time
complexity is reduced from Θ(k · p2) to Θ(n · p).

4.1 Lower bound on the number of moves

Flocchini, Mans and Santoro [FMS09] proved a lower bound Ω(k · p) on the
number of moves to explore the PV-graphs with k carriers and maximum period
p (even if restricted to the labeled homogeneous highly-connected ones). This
lower bound does not apply directly in our setting because the agent, having
the possibility to wait, could potentially be able to explore in significantly less
moves. We will prove later that this is actually the case: the move complexity
of our algorithm is bounded by O(min{k · p, n · p, n2}). We prove here that this
complexity is optimal.

Lemma 1. For any n, k, and p sufficiently large, p ≥ bn−1k c+ 1 (necessary for
connectedness), there exists a labeled homogeneous highly-connected PV-graph
Gn,k,p with n sites, k carriers and period p such that any algorithm needs at
least min{k · p− 1, bn/8c · p− 1, 7n/8 · (bn/8c − 1)} moves to explore it.

Proof. Fix any integers n ≥ 8, k ≥ 8, and p ≥ 1 such that p ≥ bn−1k c+ 1. First
assume that k ≤ n/8.

– Subcase 1: p ≤ n2

4k − k.
Let q = bn/2kc. Note that q ≥ 4 and p ≥ q. We denote by r the non-negative
integer dp/qeq − p. Let S = {s1, s2, . . . , sn} be a set of n sites. We partition
S into the sets S0 and Si,j , with 1 ≤ i ≤ k and 1 ≤ j ≤ q, such that:
• S0 = {s1, s2, . . . , sdp/qe−1} and S1,1 = {sdp/qe};
• for all 1 ≤ i ≤ k and 1 ≤ j ≤ q, we have Si,j 6= ∅;
• for all 2 ≤ i ≤ k, we have |Si,1| ≤ dp/qe − 1;
• for all 1 ≤ i ≤ k and 2 ≤ j ≤ q − r, we have |Si,j | ≤ dp/qe;
• for all 1 ≤ i ≤ k and q − r < j ≤ q, we have |Si,j | ≤ bp/qc;

Note that such a partition is always possible when p satisfies our assumption

bn−1k c+ 1 ≤ p ≤ n2

4k − k.
The PV-graph Gn,k,p is now defined as follows. Let S be its set of sites and
C = {c1, c2, . . . , ck} be the set of its carriers. For every 1 ≤ i ≤ k, the route
R(ci) is defined as follows. The route starts at s1 at time 0 and then visits
s2, s3, · · · , sl, with l = dp/qe − |Si,1|, followed by each site of the set Si,1.
The route continues by visiting, for successive values of j from 2 to q, the
sites s1, s2, · · · , sl, with l = dp/qe − |Si,j | (or l = bp/qc − |Si,j | if j > q − r),



followed by each site of the set Si,j . Note that Gn,k,p is both homogeneous
(of period p) and highly-connected.
The PV-graph Gn,k,p is constructed in such a way that the agent basically
has to follow each carrier’s route entirely to visit all sites. More precisely,
to visit the sites of any set Si,j , the agent has to pay dp/qe moves (bp/qc if
j > q − r). Hence the minimum number of moves an exploring agent has to
perform in Gn,k,p is k · p− 1.

– Subcase 2: p > n2

4k − k.
Let us first assume that k = bn/8c. The PV-graph Gn,k,p is defined in
this case as follows. Let S = {s1, s2, . . . , sn} be the set of its sites and let
C = {c1, c2, . . . , ck} be the set of its carriers. For every 1 ≤ i ≤ bn/8c,
the route R(ci) is any route of period p going through (and only through)
sites s1, s2, . . . , sn−bn/8c and sn−i+1, such that ci is only once per period in
sn−i+1, just after being in sn−bn/8c, and just before being in s1. Moreover,
if ci is in some site sj , 2 ≤ j ≤ n− bn/8c − 1, at some time t, then at time
t+ 1 the carrier ci can only be at sj−1, sj , or sj+1. We further assume that
all carriers are in s1 at time 0. If k is smaller than bn/8c, then each carrier
has to deal with several sites of the form sn−i+1, with 1 ≤ i ≤ bn/8c. This
is always possible thanks to our assumption on p. Note that Gn,k,p is both
homogeneous and highly-connected.
By construction, all sites sn−i+1, with 1 ≤ i ≤ bn/8c, are only accessible
through sn−bn/8c and the agent can only leave them by going to s1 with some
carrier. Again by construction, any agent willing to go from s1 to sn−bn/8c
has to go through all the sites s1, s2, . . . , sn−bn/8c. Therefore, for any i, j
such that 1 ≤ i 6= j ≤ bn/8c, going from sn−i+1 to sn−j+1 requires any
agent to perform at least n− bn/8c+ 1 moves. Since any agent performing
exploration of the PV-graph must visit all its sites, any agent requires at
least (n− bn/8c+ 1)(bn/8c − 1) moves to explore Gn,k,p.

Now assume that k > n/8. In this case, we simply use the above constructions
for bn/8c carriers. All carriers ci, with i > bn/8c are given the same route as
c1 for example. This gives us immediately a lower bound bn/8c · p − 1 for p ≤

n2

4bn/8c−bn/8c and still the lower bound 7n/8 ·(bn/8c−1) for p > n2

4bn/8c−bn/8c.
ut

Summarizing the previous lemma by considering the asymptotic behavior,
we directly obtain the following theorem.

Theorem 2. The move complexity of the PV-graph exploration problem is in
Ω(min{k ·p, n ·p, n2}), where n, k, and p denote respectively the number of sites,
the number of carriers, and the maximal period. This result holds even if the
agent knows completely the PV-graph, has unlimited memory, and even in the
labeled homogeneous highly-connected case.

4.2 Lower bound on time

We can prove a larger lower bound for the time complexity than for the move
complexity in the general case. More precisely, we have the following lemma.



Lemma 2. Consider any n, k, and p, with n ≥ 6, 2 ≤ k ≤ n−1
3 , and p ≥

bn−1k c+ 1 (necessary for connectedness). There exists a family Gn,p,k of labeled
homogeneous PV-graphs with n sites, k carriers and period p such that, for any
algorithm, there exists a PV-graph in this family which cannot be explored by the
algorithm using less than (k − 1)(pbn−1k c − 1) + bn−1k c − 1 time steps.

Proof. Fix any n, k, and p such that n ≥ 6, 2 ≤ k ≤ n−1
3 , p ≥ bn−1k c + 1.

Fix any j1, j2, . . . , jk−1 and t2, t3, . . . , tk such that, for every 1 ≤ i ≤ k − 1, we
have (i − 1)bn−1k c + 2 ≤ ji ≤ ibn−1k c + 1 and 1 ≤ ti+1 ≤ p. The PV-graph
G((j1, t2), (j2, t3), . . . , (jk−1, tk)) is defined as follows.

Let S = {s1, s2, . . . , sn} be the set of its sites and let C = {c1, c2, . . . , ck} be
the set of its carriers. Let us partition S into k + 1 subsets S0, S1, . . . , Sk−1, Sk

such that S0 = {s1}, Si = {s(i−1)bn−1
k c+2, . . . , sibn−1

k c+1}, for 1 ≤ i ≤ k− 1, and

Sk contains all the remaining sites.
Let j0 = 1 and t1 = 0. Consider any i such that 1 ≤ i ≤ k. The route

R(ci) is any route of period p going through (and only through) all the sites
in Si ∪ {sji−1

} satisfying the following two conditions. First, ci visits sji−1
only

once per period, at all times equal to ti modulo p. Second, the route R(ci) does
not depend on the values jl and tl+1, for l ≥ i.

The family Gn,p,k is defined as the set of all PV-graphs G((j1, t2), (j2, t3), . . . ,
(jk−1, tk)) with, for every 1 ≤ i ≤ k− 1, (i− 1)bn−1k c+ 2 ≤ ji ≤ ibn−1k c+ 1 and
1 ≤ ti+1 ≤ p. All these PV-graphs are labeled homogeneous PV-graphs with n
sites, k carriers and period p.

Let A be any exploring agent (i.e. executing any exploration algorithm).
Given 1 ≤ i ≤ k and G a PV-graph of Gn,p,k, let Ti(G) be the first time at
which the agent A, starting at s1 at time 0 in G, sees the carrier ci. Given q,
1 ≤ q ≤ k, and j1, j2, . . . , jq−1 and t2, t3, . . . , tq in the usual ranges, we define
Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) as the set of all the PV-graphs G((j1, t2),
(j2, t3), . . . , (jk−1, tk)) with, for every q ≤ i ≤ k − 1, (i − 1)bn−1k c + 2 ≤ ji ≤
ibn−1k c+ 1 and 1 ≤ ti+1 ≤ p.

Claim. For every q, 1 ≤ q ≤ k, and every i, 1 ≤ i ≤ q − 1, there exist ji and
ti+1 satisfying (i − 1)bn−1k c + 2 ≤ ji ≤ ibn−1k c + 1 and 1 ≤ ti+1 ≤ p such
that for every graph G ∈ Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) we have Tq(G) ≥
(q − 1)(pbn−1k c − 1).

Proof of the Claim: We prove the claim by induction on q. The base case
q = 1 is trivially true. Fix any q such that 1 ≤ q ≤ k − 1, and assume, by
induction hypothesis, that the claim holds for the value q.

Let Gq be the family Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) whose existence is
guaranteed by the induction hypothesis. Note that all PV-graphs in Gq have
exactly the same routes R(ci), for 1 ≤ i ≤ q. We can thus define Hq to be the
PV-graph consisting only of the carriers c1 to cq of any PV-graph in Gq. Let us
consider now the agent A starting at s1 at time 0 in Hq. By induction hypothesis
and by construction of Hq, the agent A sees cq for the first time at time t with
t ≥ (q − 1)(pbn−1k c − 1) time steps. Thus there exists jq and tq+1 satisfying
(q − 1)bn−1k c + 2 ≤ jq ≤ qbn−1k c + 1 and 1 ≤ tq+1 ≤ p such that A is never at



sjq at a time equal to tq+1 modulo p before time t+pbn−1k c− 1, and thus before
time q(pbn−1k c − 1).

Consider now the agent A starting at s1 at time 0 in any PV-graph G in
Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq), (jq, tq+1)). Before time q(pbn−1k c − 1), the
agent will behave exactly the same as in Hq and will not see the carrier cq+1.
This concludes the proof of the claim. ♦

The theorem now follows by considering the claim for the last value q = k−1,
and by noting that the agent still has to visit all sites of Sk after reaching ck,
which requires additional bn−1k c − 1 time steps. ut

Again, summarizing the previous lemma by considering the asymptotic be-
havior, we directly obtain the following theorem.

Theorem 3. The time complexity of the PV-graph exploration problem is in
Ω(n · p) in the general case. This result holds even if the agent knows n, k, and
p, has unlimited memory, and even in the labeled case.

4.3 Our algorithm

In the above part of the paper, we exhibited some necessary conditions on the
existence of a solution. We then provided lower bounds on the move and time
complexities. We now essentially prove that all these results are optimal by
describing and proving a PV-graph exploration algorithm with matching upper
bounds on the move and time complexities, provided that the agent knows a
linear upper bound B on the maximum period p. As a consequence, we show
that the ability to wait allows to decrease both the move and time complexities,
the former by a multiplicative factor at least Θ(p).

Algorithm EXPLORE-WITH-WAIT

Our algorithm stores a matrix Mat where lines correspond to (known so far)
carriers. The algorithm progressively fills in each line with the sequence of sites
visited by the corresponding carrier. In order to do that, the agent stays 2B
steps at each site, looking at each visit of the carriers at this site. From each
partially filled in line, the algorithm computes a divisor of the period of the
corresponding carrier, allowing the agent to predict the exact schedule of the
carriers at the sites already known by the agent. The algorithm also maintains
a tree of carriers, where a carrier c is a child of a carrier c′ if c was discovered
for the first time while visiting c′. The algorithm visits successively new sites
until the whole matrix is filled in. Note that the completed matrix contains the
complete schedule of all carriers. Hence one can easily extract a map of the
PV-graph from the matrix.

Let a start with carrier c1. Initially: Home = c1; parent(Home) := ∅;
V isited := ∅; ToExplore := {c1}; p := 1.



Algorithm 1 EXPLORE-WITH-WAIT (c)

1: if c = Home and ToExplore = ∅ then
2: Terminate
3: else
4: if c /∈ V isited then
5: VISIT(c)

6: end if
7: c′ ← NEXT(c)
8: EXPLORE-WITH-WAIT (c’)

9: end if

Algorithm 2 NEXT-EMPTY-CELL (Mat, j, c, v)

1: p = period(Mat[idC])
2: while Mat[Id(c), j] 6= v and j < B do
3: u←Mat[Id(c), j]
4: i← j + 1
5: while Mat[Id(c), i] 6= u and Mat[Id(c), i] 6= v and i < B do
6: i← i+ 1
7: end while
8: if Mat[Id(c), i]=u then
9: Get on c at its next visit at the current site u

10: j ← i
11: else
12: if Mat[Id(c), i] = v then
13: Get on c at the first time k such that k mod p = j
14: Do one move with c
15: j ← j + 1
16: if Mat[Id(c), j] 6= v then
17: Get off on the current site
18: end if
19: else
20: j ← i
21: end if
22: end if
23: end while
24: Return j



Algorithm 3 NEXT(c)

1: if (N(c)) = ∅ and (c = c0) then
2: Return c0
3: else if c 6= c0 then
4: c′ ← NEXT (parent(c))
5: else
6: c′ ← an element of N(c) ∩ ToExplore
7: end if
8: p = period(Mat[Id(c′)])
9: i← 0

10: while Mat[Id(c′), i] == ∅ do
11: i← i+ 1
12: end while
13: v=Mat[Id(c’), i]
14: j ← NEXT-EMPTY-CELL (Mat, j, c, v)
15: Stay on site v
16: Get on c′ at the first time k such that k mod p = i
17: Parent(c’) := c
18: Return c′

Algorithm 4 VISIT (c, j)

1: MyParent← parent (c); N(c) := {MyParent}
2: i← j
3: while j < B + i do
4: u← current site
5: Get off on site u
6: if Mat[Id(c), j] == ∅ then
7: Mat[Id(c), j]← u
8: while i < (2B + j) do
9: Stay on u and at each step DO

10: i← i+ 1
11: if c visits u at this step then
12: Mat[Id(c), i mod 2B]← u
13: else
14: if the agent sees c′ /∈ (ToExplore ∩ V isit) then
15: Mat[Id(c′), i mod 2B]← u
16: ToExplore := ToExplore ∪ {c’}
17: N(c) := N(c) ∪ {c′}
18: end if
19: end if
20: p = period(Mat[Id(c)])
21: end while
22: else
23: j ← NEXT− EMPTY− CELL(Mat, j, c, ∅)
24: end if
25: end while
26: V isit← V isit ∪ {c}
27: ToExplore← ToExplore− {c}



Correctness

Theorem 4. Algorithm EXPLORE-WITH-WAIT correctly explores and maps
in finite time any PV-graph, even anonymous, but provided that an upper bound
on the maximum period is known.

Proof. First observe that when an agent stays at a site for 2B steps, where B is
the known upper bound on the maximum period, it sees all the carriers visiting
that site. Moreover, after filling in the matrix with that information, it is able
to predict at any point in the future which carrier will be at that site. Since the
PV-graph is connected, the agent will miss no carriers and thus no sites either.
At the end of the algorithm, the matrix will be completely filled in and it will
be equivalent to a map of the PV-graph. ut

Move and time complexities

Theorem 5. With the algorithm EXPLORE-WITH-WAIT, the agent makes at
most O(min{k · p, n · p, n2}) moves to explore any n-site k-carrier PV-graph of
maximum period p.

Proof. Let us first prove that the move complexity is in O(n2). Obviously, the
agent only moves when looking for the next empty cell. Since an empty cell
always corresponds to a new unvisited site, looking for the next empty cell is
done at most n times. The algorithm is done in such a way that, during the
travel from the last visited site u to the following new site v, each site w is
visited at most once. Indeed, it is always possible for the agent to wait on w for
the appropriate carrier to come at w. Hence the number of moves is bounded
by n2.

We now prove that the move complexity is in O(k · p). During a single travel
to go to the next empty cell, the agent may have to use several carriers. However,
we visit the carriers following a DFS traversal of the tree of carriers. Hence in
total the agent uses at most 2k carriers. When using a carrier, the agent does at
most p moves. Hence the number of moves is bounded by 2k · p.

We finally prove that the move complexity is in O(n · p). This is done by
refining the previous argument. A carrier is always added as a leaf to the tree
of carriers. Moreover, a carrier is used only if the agent goes to an empty cell
of this carrier. Since the agent goes to at most n empty cells, it means that at
most n carriers of the tree are used. Hence the number of moves is bounded by
2n · p. ut

Theorem 6. The algorithm EXPLORE-WITH-WAIT allows to explore any n-
node PV-graph in O(nB) time steps, where B is a known upper bound on p.

Proof. A lot of time is spent by the agent by staying O(B) steps on a site to
note all passing carriers. Since there are n sites to visit, the agent spends at
most O(nB) time steps doing this. It turns out that this is the main cost of the
algorithm in terms of time complexity. Indeed, as noticed in the previous proof,



the agent uses at most 2 min{k, n} carriers when traveling. On each carrier, the
agent uses not only at most p moves but also at most p time steps. Hence the
completion time of the algorithm is at most O(nB)+2 min{k, n} ·p. This proves
the theorem. ut

As noticed before, we have the following corollary.

Corollary 1. Given the a priori knowledge of an upper bound B = O(p) on the
maximum period p, Algorithm EXPLORE−WITH−WAIT is asymptotically
optimal in the general case with respect to both the move and the time complexi-
ties. The optimal move complexity is in Θ(min{k · p, n · p, n2}) while the optimal
time complexity is in Θ(n · p).

5 Specific cases

We showed in the previous section the optimal move and time complexities for
the PV-graph exploration problem in the general case. This section is devoted to
the specific cases of homogeneous or highly-connected PV-graphs. In both cases,
we prove that the move and time complexities remain the same as in the general
case. Note, however, that when considering PV-graphs being both homogeneous
and highly-connected, we know from [FMS09] that the optimal time complexity
is at most O(k · p), even when n is large.

5.1 The homogeneous case

If we consider the homogeneous PV-graphs (but possibly not highly-connected),
the time and move complexities remain the same as in the general case.

Theorem 7. Given the a priori knowledge of an upper bound B = O(p) on the
maximum period p, Algorithm EXPLORE−WITH−WAIT is asymptotically
optimal in the homogeneous case with respect to both the move and the time
complexities. The optimal move complexity is in Θ(min{k ·p, n ·p, n2}) while the
optimal time complexity is in Θ(n · p).

Proof. The result directly follows from Lemma 2 and Corollary 1. ut

5.2 The highly-connected case

If we consider the highly-connected PV-graphs (but possibly not homogeneous),
the time and move complexities remain the same as in the general case.

Lemma 3. Consider any n, k, and p, with n ≥ 6, 2 ≤ k ≤ n−1
3 , p ≥ bn−1k c+ 2.

There exists a family G′n,p,k of labeled highly-connected PV-graphs with n sites,
k carriers and maximum period p such that, for any algorithm, there exists a
PV-graph in this family which cannot be explored by the algorithm using less
than dk−12 e(pb

n−1
k c − 1) + bk−12 c((p− 1)bn−1k c − 1) + bn−1k c − 1 time steps.



Proof. Fix any n, k, and p such that n ≥ 6, 2 ≤ k ≤ n−1
3 , p ≥ bn−1k c + 2. Fix

any j1, j2, . . . , jk−1 and t2, t3, . . . , tk such that, for every 1 ≤ i ≤ k − 1, we have
(i−1)bn−1k c+2 ≤ ji ≤ ibn−1k c+1 and 1 ≤ ti+1 ≤ p, if i is odd, 1 ≤ ti+1 ≤ p−1,
if i is even. The PV-graph G((j1, t2), (j2, t3), . . . , (jk−1, tk)) is defined as follows.

Let S = {s1, s2, . . . , sn} be the set of its sites and let C = {c1, c2, . . . , ck} be
the set of its carriers. Let us partition S into k + 1 subsets S0, S1, . . . , Sk−1, Sk

such that S0 = {s1}, Si = {s(i−1)bn−1
k c+2, . . . , sibn−1

k c+1}, for 1 ≤ i ≤ k− 1, and

Sk contains all the remaining sites.

Let j0 = 1 and t1 = 0. Consider any i such that 1 ≤ i ≤ k. The route R(ci) is
any route going through (and only through) all the sites in Si∪{sji−1

} satisfying
the following three conditions. First, ci is of period p−1 if i is odd, and of period
p if i is even. Second, ci visits sji−1 only once per period, at all times equal to ti
modulo its period. Third, the route R(ci) does not depend on the values jl and
tl+1, for l ≥ i.

The family G′n,p,k is defined as the set of all PV-graphs G((j1, t2), (j2, t3), . . . ,
(jk−1, tk)) with, for every 1 ≤ i ≤ k − 1, (i − 1)bn−1k c + 2 ≤ ji ≤ ibn−1k c + 1
and 1 ≤ ti+1 ≤ p, if i is odd, 1 ≤ ti+1 ≤ p− 1, if i is even. All these PV-graphs
are labeled highly-connected PV-graphs with n sites, k carriers and maximum
period p. (Indeed, note that, for every 1 ≤ i ≤ k− 1, ci and ci+1 meets at sji at
most every p(p− 1) steps.)

Let A be any exploring agent (i.e. executing any exploration algorithm).
Given 1 ≤ i ≤ k and G a PV-graph of G′n,p,k, let Ti(G) be the first time at
which the agent A, starting at s1 at time 0 in G, sees the carrier ci. Given q,
1 ≤ q ≤ k, and j1, j2, . . . , jq−1 and t2, t3, . . . , tq in the usual ranges, we define
G′n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) as the set of all the PV-graphs G((j1, t2),
(j2, t3), . . . , (jk−1, tk)) with, for every q ≤ i ≤ k − 1, (i − 1)bn−1k c + 2 ≤ ji ≤
ibn−1k c+ 1 and 1 ≤ ti+1 ≤ p, if i is odd, 1 ≤ ti+1 ≤ p− 1, if i is even.

Claim. For every q, 1 ≤ q ≤ k, and every i, 1 ≤ i ≤ q− 1, there exist ji and ti+1

satisfying (i−1)bn−1k c+2 ≤ ji ≤ ibn−1k c+1 and 1 ≤ ti+1 ≤ p (ti+1 ≤ p−1 when
i is even) such that for every graph G ∈ G′n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) we
have Tq(G) ≥ d q−12 e(pb

n−1
k c − 1) + b q−12 c((p− 1)bn−1k c − 1).

Proof of the Claim: We prove the claim by induction on q. The base case
q = 1 is trivially true. Fix any q such that 1 ≤ q ≤ k − 1, and assume, by
induction hypothesis, that the claim holds for the value q.

Let G′q be the family G′n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) whose existence
is guaranteed by the induction hypothesis. Note that all PV-graphs in G′q have
exactly the same routes R(ci), for 1 ≤ i ≤ q. We can thus define H ′q to be the
PV-graph consisting only of the carriers c1 to cq of any PV-graph in G′q. Let us
consider now the agent A starting at s1 at time 0 in H ′q. By induction hypothesis
and by construction of H ′q, the agent A sees cq for the first time at time t with

t ≥ d q−12 e(pb
n−1
k c − 1) + b q−12 c((p− 1)bn−1k c − 1) time steps. Thus there exists

jq and tq+1 satisfying (q − 1)bn−1k c + 2 ≤ jq ≤ qbn−1k c + 1 and 1 ≤ tq+1 ≤ p,
if q is odd, 1 ≤ tq+1 ≤ p − 1, if q is even, such that A is never at sjq at a time



equal to tq+1 modulo the period p′ of cq+1 before time t+ p′bn−1k c− 1, and thus
before time d q2e(pb

n−1
k c − 1) + b q2c((p− 1)bn−1k c − 1).

Consider now the agent A starting at s1 at time 0 in any PV-graph G in
G′n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq), (jq, tq+1)). Before time d q2e(pb

n−1
k c − 1) +

b q2c((p− 1)bn−1k c − 1), the agent will behave exactly the same as in H ′q and will
not see the carrier cq+1. This concludes the proof of the claim. ♦

The theorem now follows by considering the claim for the last value q = k−1,
and by noting that the agent still has to visit all sites of Sk after reaching ck,
which requires additional bn−1k c − 1 time steps. ut

Again, summarizing the previous lemma, using Corollary 1, and considering
the asymptotic behavior, we obtain the following theorem.

Theorem 8. Given the a priori knowledge of an upper bound B = O(p) on the
maximum period p, Algorithm EXPLORE−WITH−WAIT is asymptotically
optimal in the highly-connected case with respect to both the move and the time
complexities. The optimal move complexity is in Θ(min{k ·p, n ·p, n2}) while the
optimal time complexity is in Θ(n · p).
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