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Rooted shortest-path tree

(Framework: distributed computing in networks.)

Basically, local knowledge of a shortest path to a fixed node.
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Bellman-Ford Algorithm
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Count-to-infinity problem

The network may be dynamic.
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A self-stabilizing version

Self-stabilizing: Correct whatever the initial configuration
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To be pretty cautious. . . . . . but not too much.
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Pretty cautious. . .

root r
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1 wave (1 error state) gives a correct but exponential algorithm
[Glacet, Hanusse, I., Johnen, 2014]

Two waves allow a polynomial number of steps.
[Devismes, I., Johnen, 2016]
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. . . but not too much
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Not directly improving distances leads to a quadratic number
of rounds, instead of linear for the previous two algorithms.
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Formal algorithm

Length of the proofs: approximately 12 pages
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More generally in distributed computing

Usually

Rather small algorithms

Importance of details

Rather long proofs

Specificities in distributed computing

Local algorithm vs. global behavior

Non-determinism

Asynchrony
Dynamicity
Crashes
Byzantines

Computing entities only have partial knowledge
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Confidence becomes an issue

More and more complex and/or tedious proofs

Full version of DISC 2019 best paper: 221 pages

Conferences became more prestigious than journals,
leading to less journal versions:

Year 2000 2005 2010 2015
Number of PODC papers 32 36 39 45
% having a journal version 66% 47% 36% 31%

(97% of the journal versions appear within 5 years)

None (0, 10] (10, 25] (25, 50] (50, 75] >75
4–10 years 4 6 4 6 3 1
> 10 years 0 4 7 12 14 5

(% of journal versions w.r.t. activity in the field)
(thanks to Christoph Lenzen and Yuval Emek for the data)
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Errare humanum est

Classical

Holes/shortcuts in the reasoning

Missing case(s)

Multivariate Omega (to match O(n ·m), use of a sparse
graph to show an Ω(n ·m) lower bound)

More specific to D.C.

Missing case(s) again!
(because of the non-determinism)

Imprecise model/algorithm (details really matter)

Reasoning about knowledge (“need to know n”)
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Detecting and preventing issues

Possible research directions to improve confidence

Distributed decision / Distributed verification

Model-checking

Certification via a proof assistant
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Distributed decision/verification

Distributed local checking of the system at runtime:
a process can raise an alarm if needed

Distributed decision

Based on local knowledge

Typical example: node-coloring

Distributed verification

Enhancing the local knowledge with a certificate

Still local checking

Typical example: rooted spanning tree

A whole research field behind these concepts:
See surveys by L. Feuilloley and P. Fraigniaud
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Formal verification / model-checking

Model-checking

Automated verification based on a formalization of

the system model

the algorithm

the properties to be satisfied

Pros:

Automatic verification

If verification fails, generally gives a counter-example

May sometimes be able to synthesize algorithms

Cons:

Subject to decidability and tractability issues
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Peregrine – A tool for population protocols

Population protocols: model
in which anonymous agents
interact stochastically

Peregrine:
Automated verification of
protocols, and much more. . .

J. Esparza,’s team, TU Munich (Germany)
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Certification

Proof assistant

Also called Interactive theorem prover

Checks whether a given proof of a given statement is
correct

Provides an interactive proof editor

Pros:

More or less as powerful as paper proofs

Provides some automation

Cons:

Mainly manual

Sometimes tedious even for simple proofs
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Examples of French active projects in Coq

PACTOLE

Framework for distributed computing by mobile robots

Large variety of models and settings

Both positive and negative results

T. Balabonski, P. Courtieu, L. Rieg, S. Tixeuil, X. Urbain, . . .

PADEC

Framework for self-stabilizing algorithms

Complex algorithms

Complete analysis up to time complexities

K. Altisen, P. Corbineau, S. Devismes
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Conclusion

Tending to more reliable research results

(Theoretical) research directions

Write full version

Submit full version (for reviewing)

Specify the problem and the algorithm in a formal
language

Model-checking (at least particular cases)

Prove in some proof assistant

Develop new model-checker

Develop libraries in proof assistant
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A final note from L. Lamport

Quote about the Temporal Logic of Actions

TLA does have the following disadvantages:

It can describe only a real algorithm, not a vague,
incomplete sketch of an algorithm.

You can specify an algorithm’s correctness condition in
TLA only if you understand what the algorithm is
supposed to do.

TLA makes it harder to cover gaps in a proof with
handwaving.

Some researchers may find these drawbacks insurmountable.

By the way, Amazon started to use formal specification and model

checking in 2011, year of a major disruption in their systems. . .
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Thank you

for your attention
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