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2CNRS & Université de Bordeaux (LaBRI)

3Alcatel-Lucent Bell Labs (LINCS)

ANR meeting DISPLEXITY
September 18, 2014

H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu Distributedly Testing Cycle-Freeness



Framework

Objective

Monitoring properties in large-scale distributed networks:

Some nodes (possibly all) are queried

Queried nodes execute a O(1)-round local distributed
algorithm, producing a (small) local output

A central authority gathers these local outputs and takes
a global decision

Contexts of use

Sensor networks with a base station

Complexity theory in distributed computing
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Property / Distributed language

We consider:

Properties

Graph properties: large expansion, cycle-freeness

Properties on labels: existence of a unique leader

Mixed properties: (∆ + 1)-coloring, existence of a
spanning tree

More formally, distributed languages

A distributed language L is a set of labeled graphs (G , `)

G is a connected graph

` : V (G )→ {0, 1}∗ is a function that labels each node v
with the label `(v).
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Types of decision

#queried type of decision gap error certificates
nodes output mechanism

property testing o(n) O(log n) bits algorithm ε-far yes no
dist. decision n yes/no ∀ yes / ∃ no none no no
dist. testing n O(log n) bits algorithm none no no
dist. verification n yes/no ∀ yes / ∃ no none no yes
dist. certification n O(log n) bits algorithm none no yes
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Distributed decision (cycle-freeness)
#queried type of decision success certificates

nodes output mechanism probability
dist. decision n yes/no ∀ yes / ∃ no impossible no
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Distributed testing (cycle-freeness)

#queried type of decision success certificates
nodes output mechanism probability

dist. testing n ≤ dlog ∆e bits algorithm deterministic no

Local algorithm:

outputs the degree of the node

Decision mechanism:

YES⇐⇒∑
outputs = 2n − 2

Main question answered by this work

Are log ∆ bits really necessary?

(The answer is essentially “yes”.)
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Distributed verification (cycle-freeness)

#queried type of decision success certificates
nodes output mechanism probability

dist. verification n yes/no ∀ yes / ∃ no deterministic Θ(log n) bits

Certificates:

choose an arbitrary node r

node v ’s certificate is its distance to r

Local algorithm:

YES⇐⇒ both are true

if cert. = 0, then all neighbors have cert. 1
if cert. is x 6= 0, then exactly one neighbor has cert.
x − 1 and all others have cert. x + 1
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Distributed certification (cycle-freeness)
#queried type of decision success certificates

nodes output mechanism probability
dist. certification n 2 bits algorithm deterministic 2 bits

Certificates:
choose an arbitrary node r ; node v ’s certificate is

if v = r , then 3
if v 6= r , then its distance to r modulo 3

Local algorithm:
outputs the pair (b, b′) where

if cert. = 3, then b = 1 and, b′ = 1 iff all neighbors
have cert. 1
if cert. is x 6= 3, then b = 0 and, b′ = 1 iff exactly one
neighbor has cert. x − 1 and all others have cert. x + 1

Decision mechanism:

YES⇐⇒∑
b = 1 and

∧
b′ = 1
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Our main result

For the cycle-freeness decision problem:

#queried type of decision success certificates
nodes output mechanism probability

dist. decision n yes/no ∀ yes / ∃ no impossible no
dist. testing n ≤ dlog ∆e bits algorithm deterministic no
dist. verification n yes/no ∀ yes / ∃ no deterministic Θ(log n) bits
dist. certification n 2 bits algorithm deterministic 2 bits
dist. testing

n
≥ dlog ∆e − 1

algorithm deterministic no
[this paper] bits
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Model

LOCAL model

Pairwise distincts IDs

Synchronous fault-free rounds (& simultaneous wake-up)

Messages of unlimited size

Distributed testing

All nodes execute a t-round local distributed algorithm,
producing a local output

A central authority gathers the outputs as a multiset to
produce a global decision

Theorem to be proved

Every distributed tester for cycle-freeness in connected
max.-degree-∆ graphs has output size at least dlog ∆e − 1
bits.
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Usefulness of the identifiers

ID-oblivious

The algorithm’s output does not depend on the IDs.

Order-invariant

The algorithm’s output only depends on the relative order of
the IDs.

ID-dependent

The algorithm’s output freely depends on the IDs.
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ID-oblivious, t = 0

Sketch of the proof

< dlog ∆e− 1 bits ⇒ same output for degrees i and j > i

construction of two almost identical graphs

a tree with x + 2, resp. y , nodes of degree i , resp. j
a non-tree with x , resp. y + 2, nodes of degree i , resp. j

H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu Distributedly Testing Cycle-Freeness



ID-oblivious, t = 0

Sketch of the proof

< dlog ∆e− 1 bits ⇒ same output for degrees i and j > i

construction of two almost identical graphs

a tree with x + 2, resp. y , nodes of degree i , resp. j
a non-tree with x , resp. y + 2, nodes of degree i , resp. j

H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu Distributedly Testing Cycle-Freeness



Generalizing to arbitrary (constant) t

Use of subdivided trees:

replace each edge by a path of length 2t + 1

consider the vector of outputs from the ball
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The case of the subdivided graphs

Lemma

Only four outputs are sufficient in subdivided graphs!

+1 +1

+1

+1

0 0
3 3

Nodes of degree different from 2 distribute their degree.
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A solution

Hiding the trees into the forest!

(d− 1) · d = d · (d− 1)

2 · (2πR) = 2π(2 ·R)
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ID-oblivious solution
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Towards an order-invariant solution

Definition: free group (wikipedia)

The free group FS over a given set S consists
of all expressions (a.k.a. words, or terms) that
can be built from members of S , considering
two expressions different unless their equality
follows from the group axioms (e.g.
st = suu−1t, but s 6= t for s, t, u ∈ S). The
members of S are called generators of FS .

Definition: linearly ordered group (wikipedia)

A linearly ordered group is a group G equipped with a total
order “≤”, that is translation-invariant: Let x , y , z ∈ G , we
say that (G ,≤) is a left-ordered group if x ≤ y implies
z x ≤ z y .
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An order-invariant solution

Theorem (at least from the 1940’s)

Every free group is left-orderable.
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The final argument

Theorem (of independent interest)

∃ a solution =⇒ ∃ an order-invariant solution
For every non-negative integers k , t,∆, and every language L
defined on connected graphs with maximum degree ∆, and
k-valued domain, if there exists a t-round construction
algorithm A for L, then there is a t-round order-invariant
construction algorithm A′ for L.

H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu Distributedly Testing Cycle-Freeness



Thank you

for your attention
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