Label-Guided Graph Exploration by a Finite Automaton

Reuven Cohen¹ Pierre Fraigniaud² David Ilcinkas³ Amos Korman¹ David Peleg¹

¹Dept. of Computer Science, Weizmann Institute, Israel ²CNRS, LRI, Université Paris-Sud, France ³LRI, Université Paris-Sud, France

> DYNAMO, Les Ménuires January 16, 2006

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Motivations (1)

Exploration by mobile agents

- Physical robot: exploration of environments unreachable by humans
- Software agent: network maintenance
- (Engelfriet, Hoogeboom)
- i hrough characterization of string, tree or graph languages
- Automata with nested pebbles
- First-order logic with transitive closure

Motivations (1)

Exploration by mobile agents

- Physical robot: exploration of environments unreachable by humans
- Software agent: network maintenance

Equivalence between logic and automata (Engelfriet, Hoogeboom)

Through characterization of string, tree or graph languages

- Automata with nested pebbles
- First-order logic with transitive closure

Motivations (2)

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

Motivations (2)

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL ($\supset L$) = class of problems solvable by symmetric non-deterministic log-space computations

Motivations (2)

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL ($\supset L$) = class of problems solvable by symmetric non-deterministic log-space computations

Motivations (2)

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

Reingold, STOC 2005 Undirected ST-Connectivity in Log-Space

 $USTCON \in I \Rightarrow SI = I$

Unknown, anonymous

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

usion Unknown, anonymous Mealy automaton Example

Unknown, anonymous

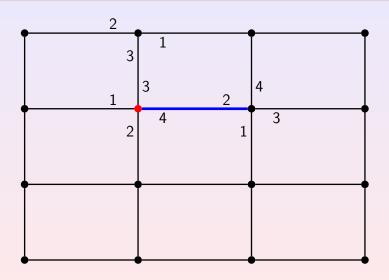
Unknown

- Unknown topology
- Unknown size (no upper bound)

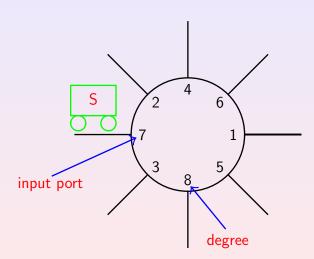
Anonymous

- No node labeling
- Local edge labeling

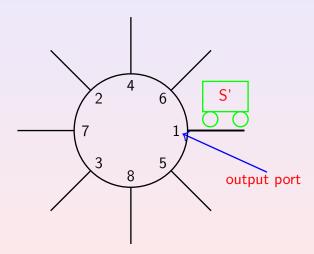
Example of an anonymous graph



Mealy automaton (1)



Mealy automaton (1)



Mealy automaton (2)

Input

- 5 : current state
- i : input port number
- d : node's degree

Output

- S': new state
- *j* : output port number

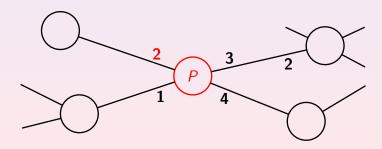
Transition function

• f(S, i, d) = (S', i)

Exploration of the neighborhood

Star

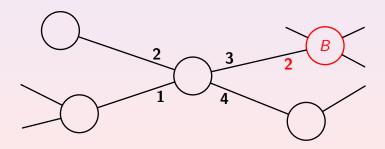
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

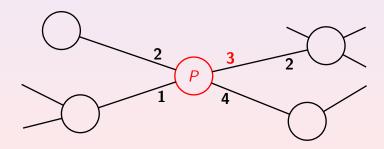
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

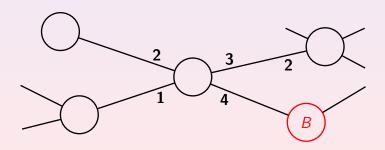
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

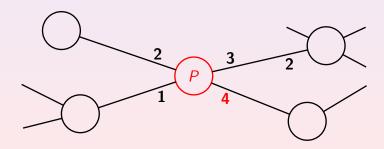
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

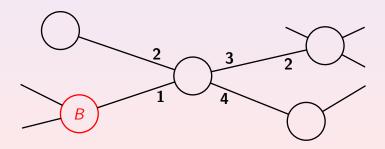
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

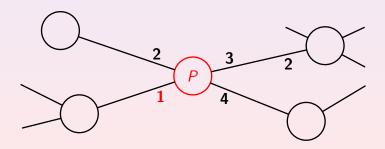
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

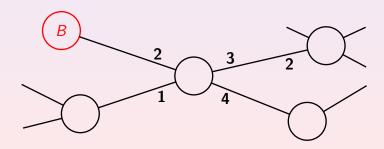
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

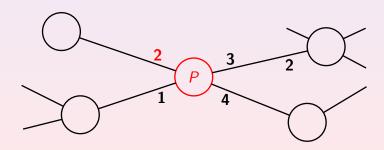
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

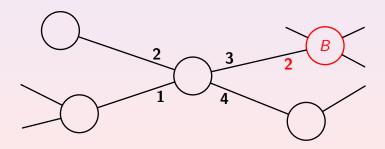
- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Exploration of the neighborhood

Star

- PlusOne P: $f(i, d, P) = (i + 1 \mod d, B)$
- Backtrack B: f(i, d, B) = (i, P)



Outline

- Introduction
- 2 Related work
 - Impossibility results
 - Exploration of trees
- Our model and results
- 4 Coloring algorithms
- Conclusion

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

Impossibility results (1)

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

A pebble is a node-marker that can be dropped at and removed from nodes.

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

A pebble is a node-marker that can be dropped at and removed from nodes.

Rabin, Seminar talk at Berkeley, 1967

Maze threading automata

No finite automaton with a finite number of pebbles can explore all graphs.

Impossibility results (2)

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all (cubic planar) graphs.

Impossibility results (2)

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all (cubic planar) graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Impossibility results (2)

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all (cubic planar) graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

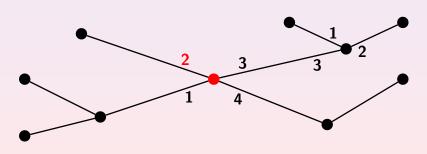
Cook, Rackoff, SIAMJC, 1980

Space lower bounds for maze threadability on restricted machines

No JAG can explore all graphs.

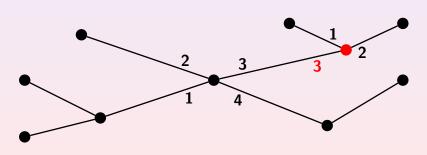
Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory



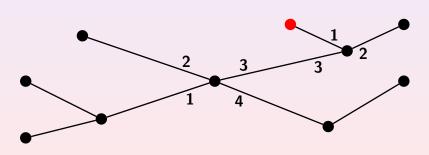
Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory



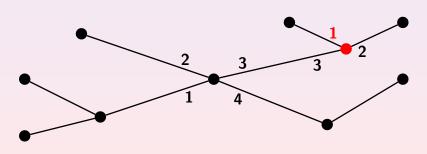
Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory



Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory

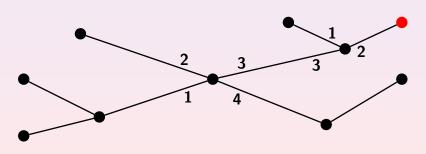


o Related work Model & results Algorithms Conclusion Impossibilities Exploration of trees

Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory

An oblivious automaton (one single state) can explore all trees.

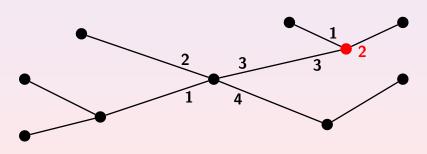


o Related work Model & results Algorithms Conclusion Impossibilities Exploration of trees

Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory

An oblivious automaton (one single state) can explore all trees.

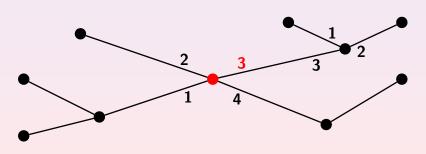


o Related work Model & results Algorithms Conclusion Impossibilities Exploration of trees

Universality for trees

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory

An oblivious automaton (one single state) can explore all trees.



- Related work
- Our model and results
 - Our model
 - Results

Model

- An oracle colors (labels) the graph to help the automaton.
- The finite automaton can read the color of the node as an input of its transition function.

Goal

Use the smallest possible number of colors.

Intro Related work Model & results Algorithms Conclusion Model Results

Our results

Theorem 1: Three colors

There exist a finite automaton and an algorithm coloring in three colors such that the automaton can explore all graphs.

There exist an automaton of $O(log\Delta)$ memory bits and an algorithm coloring in only two colors such that the automatom can explore all graphs of maximum degree Δ

Intro Related work Model & results Algorithms Conclusion Model Results

Our results

Theorem 1: Three colors

There exist a finite automaton and an algorithm coloring in three colors such that the automaton can explore all graphs.

Theorem 2: Two colors

There exist an automaton of $O(log\Delta)$ memory bits and an algorithm coloring in only two colors such that the automaton can explore all graphs of maximum degree Δ .

Outline

- Introduction
- 2 Related work
- Our model and results
- 4 Coloring algorithms
 - Spanning tree
 - Three colors
 - Two colors
- Conclusion

Spanning tree

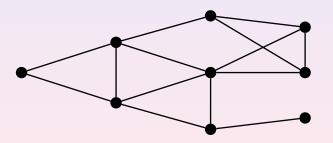
Basic idea

spanning tree: the label tells which edges are in the tree

Spanning tree

Basic idea

spanning tree: the label tells which edges are in the tree

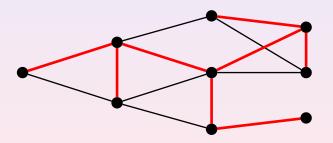


Use the tree exploration algorithm

Spanning tree

Basic idea

spanning tree: the label tells which edges are in the tree

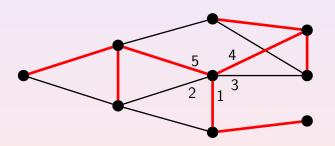


Use the tree exploration algorithm

Spanning tree

Basic idea

spanning tree: the label tells which edges are in the tree

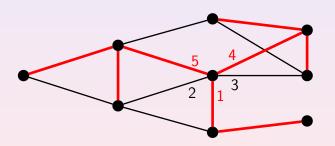


Use the tree exploration algorithm

Spanning tree

Basic idea

spanning tree: the label tells which edges are in the tree

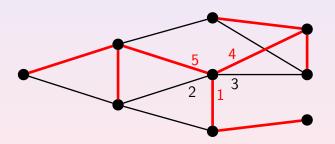


Use the tree exploration algorithm

Spanning tree

Basic idea

spanning tree: the label tells which edges are in the tree



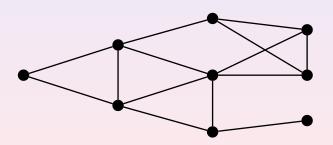
Use the tree exploration algorithm

Rooted tree

Enhanced labeling

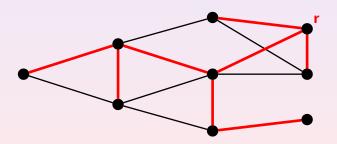
Rooted tree

Enhanced labeling



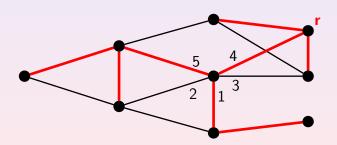
Rooted tree

Enhanced labeling



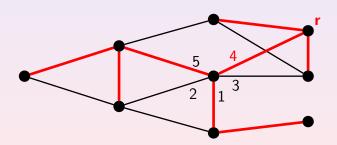
Rooted tree

Enhanced labeling



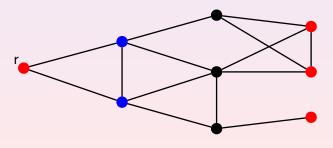
Rooted tree

Enhanced labeling



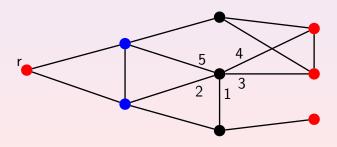
Three colors are enough

- choose arbitrarily a node as the root
- color all nodes according to their distance d to the root
 - distance $d \cong 0[n]$ red
 - distance $d \cong 1[n]$ blue
 - distance $d \cong 2[n]$ black



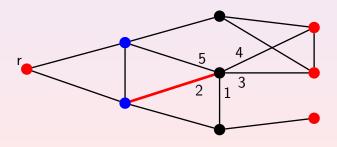
Three colors are enough

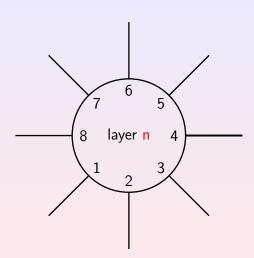
- choose arbitrarily a node as the root
- color all nodes according to their distance d to the root
 - distance $d \cong 0[n]$ red
 - distance $d \cong 1[n]$ blue
 - distance $d \cong 2[n]$ black

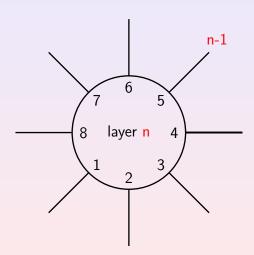


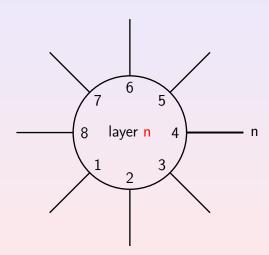
Three colors are enough

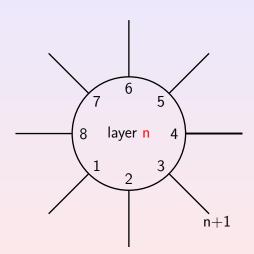
- choose arbitrarily a node as the root
- color all nodes according to their distance d to the root
 - distance $d \cong 0[n]$ red
 - distance $d \cong 1[n]$ blue
 - distance $d \cong 2[n]$ black

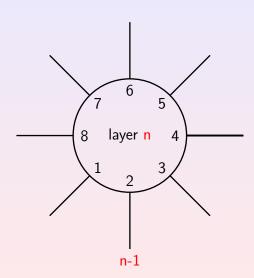


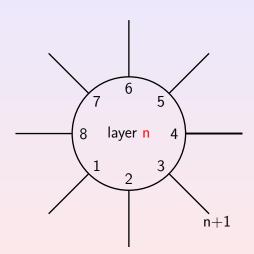


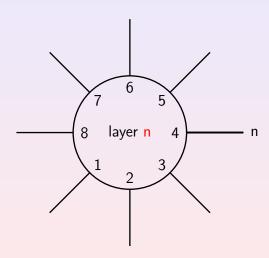


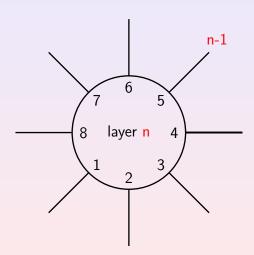












- Layer 1: red
- Layer 2: blue
- Layer 3: red
- Layer 4: red
- Layer 5: red
- Layer 6: blue
- Layer 7: blue
- Layer 8: blue

Outline

- Introduction
- 2 Related work
- Our model and results
- 4 Coloring algorithms
- Conclusion

Open problem

Conclusion

- Three colors are sufficient for arbitrary graphs.
- Two colors are necessary and sufficient for graphs of constant degree.

Open problem

Are two colors sufficient for arbitrary graphs?

Open problem

Conclusion

- Three colors are sufficient for arbitrary graphs.
- Two colors are necessary and sufficient for graphs of constant degree.

Open problem

Are two colors sufficient for arbitrary graphs?