Periodic Graph Exploration Using an Oblivious Agent

Jurek Czyzowicz¹ Leszek Gasieniec²

David Ilcinkas³ Ralf Klasing³

¹Université du Québec en Outaouais, Canada

²University of Liverpool, United Kingdom

³CNRS and University of Bordeaux (LaBRI), France

DYNAMO meeting September 26, 2008

Problem

Periodic graph exploration

A mobile entity, called agent, has to visit every node of an unknown anonymous graph infinitely often.

Problem

Periodic graph exploration

A mobile entity, called agent, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency mesure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Problem

Periodic graph exploration

A mobile entity, called agent, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency mesure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent

Unknown

- Unknown topology
- Unknown size

Unknown

- Unknown topology
- Unknown size

Anonymous

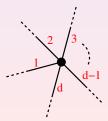
- No node labeling
- Local port numbering at node v from 1 to deg(v)

Unknown

- Unknown topology
- Unknown size

Anonymous

- No node labeling
- Local port numbering at node v from 1 to deg(v)



Memory constraint

Objective

Use agents with a memory of constant size

Memory constraint

Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

The agent is modeled as a finite Mealy automaton.

Memory constraint

Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Model

The agent is modeled as a finite Mealy automaton.

Mealy automaton

Input

- S : current state
- i : input port number
- d : node's degree

Output

- \circ S': new state
- j : output port number

Transition function

• $f:(S,i,d)\mapsto (S',j)$

Mealy automaton

Input

- 5 : current state
- *i* : input port number
- d : node's degree

Output

- \bullet 5': new state
- *j* : output port number

Transition function

• $f:(S,i,d)\mapsto(S',j)$

Oblivious agent (one single state)

• Transition functions $f_d: i \to j$ for d > 1

200

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

Motivations (cont'd)

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL ($\supset L$) = class of problems solvable by symmetric non-deterministic log-space computations

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL ($\supset L$) = class of problems solvable by symmetric non-deterministic log-space computations

Motivations (cont'd)

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL ($\supset L$) = class of problems solvable by symmetric non-deterministic log-space computations

Reingold, STOC 2005

Undirected ST-Connectivity in Log-Space

 $USTCON \in L \Rightarrow SL = L$

Intro Lower bound Upper bound Conclusion Problem Related work Our results

Impossibility results

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

SIAMIC 1000

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al., Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al., Essays in Memory of Shimon Even, 2006 Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes

Fraigniaud et al., Essays in Memory of Shimon Even, 2006 Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980

No JAG can explore all graphs.

Intro Lower bound Upper bound Conclusion Problem Related work Our results

Giving advice

Providing additionnal information does help.

Model

- An oracle puts bits of advice at the graph nodes to help the agent.
- The agent can read these bits as an input of its transition function.

- Constant memory suffices for
 - Constant memory suffices for constant-degree graphs
 - 2 bits of advice per node:
 - Constant memory suffices for arbitrary graphs.
- In both cases, period = O(m)

Giving advice

Providing additionnal information does help.

Model

- An oracle puts bits of advice at the graph nodes to help the agent.
- The agent can read these bits as an input of its transition function.

Cohen, Fraigniaud, I., Korman, Peleg, ACM Trans. Algo., 2008

- 1 bit of advice per node: Constant memory suffices for constant-degree graphs.
- 2 bits of advice per node: Constant memory suffices for arbitrary graphs.

In both cases, period = O(m)

Setting port numbers

Observation

All impossibility results are based on a misleading assignment of the port numbers.

```
A solution
```

Port numbers are set to help the automaton.

```
There exist an algorithm for setting the port numbers, and a oblivious agent using them, such that the agent explores all graphs of size n within the period 10n.
```


Setting port numbers

Observation

All impossibility results are based on a misleading assignment of the port numbers.

A solution

Port numbers are set to help the automaton.

Setting port numbers

Observation

All impossibility results are based on a misleading assignment of the port numbers.

A solution

Port numbers are set to help the automaton.

Dobrey, Jansson, Sadakane, Sung, SIROCCO, 2005

There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size n within the period 10n.

Better upper bounds are known for constant-memory agents.

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008

Length of the tour $\leq 4n$

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008

Length of the tour < 4n

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007

Length of the tour < 3.75n

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008

Length of the tour $\leq 4n$

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007

Length of the tour $\leq 3.75n$

Czyzowicz et al., under submission

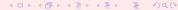
Length of the tour < 3.5n

Intro Lower bound Upper bound Conclusion Problem Related work Our results

Our results

Question

What is the mimimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size n within the period $\alpha \cdot n$?



Intro Lower bound Upper bound Conclusion Problem Related work Our results

Our results

Question

What is the mimimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size n within the period $\alpha \cdot n$?

Main result

$$2.8 < \alpha < 4.333...$$

If there exists a spanning tree T of G=(V,E) such that none of the nodes is saturated (i.e. $\forall v \in V \ \deg_T(v) \neq \deg_G(v)$), then period 2n can be achieved by an oblivious agent.

Our results

Question

What is the mimimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size n within the period $\alpha \cdot n$?

Main result

 $2.8 < \alpha < 4.333...$

Complementary result

If there exists a spanning tree T of G = (V, E) such that none of the nodes is saturated (i.e. $\forall v \in V \ \deg_T(v) \neq \deg_G(v)$), then period 2n can be achieved by an oblivious agent.

A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \to i+1$ for $d \ge 1$

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \to i+1$ for $d \ge 1$

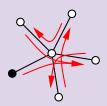
Proof

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \to i+1$ for $d \ge 1$

Proof

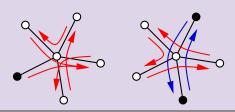


Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \rightarrow i+1$ for $d \ge 1$

Proof

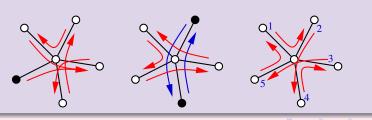


Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \to i+1$ for $d \ge 1$

Proof

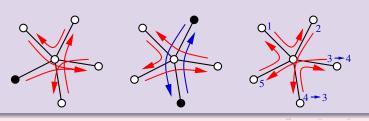


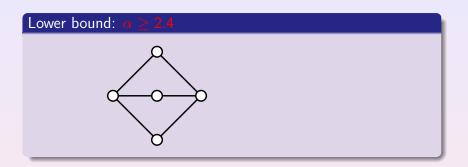
Property

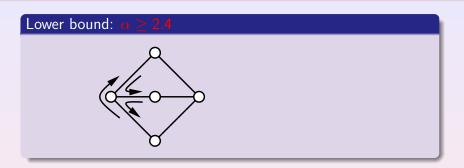
The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \to i+1$ for $d \ge 1$

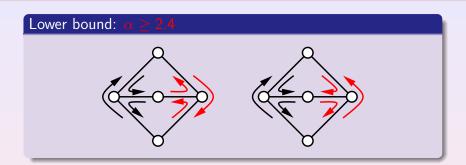
Proof

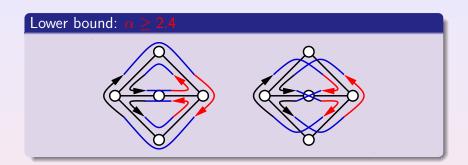


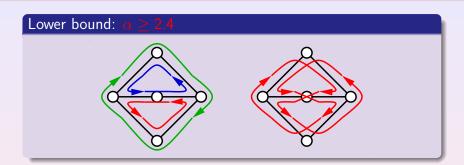


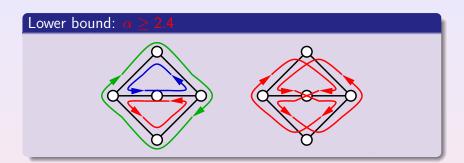


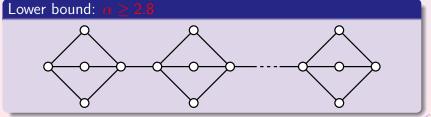
Lower bound: a ≥ 2.4











General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, # incoming arcs = # outgoing arcs
- for every node, either it is saturated or an arc incident ot it belongs to H but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, # incoming arcs = # outgoing arcs
- for every node, either it is saturated or an arc incident ot it belongs to H but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property

From H, one can construct a tour spanning G.

General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, # incoming arcs = # outgoing arcs
- for every node, either it is saturated or an arc incident ot it belongs to H but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property

From H, one can construct a tour spanning G.

Performance

Length of the tour \leq number of arcs in H

Three-layer partition

Definition

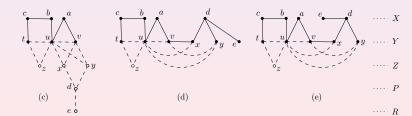
A three-layer partition of a graph G = (V, E) is a 4-uplet (X, Y, Z, T) such that

- the three sets X, Y and Z form a partition of V
- $Y = N_G(X)$ and $Z = N_G(Y) \setminus X$
- T is a tree of node-set $X \cup Y$ where all nodes in X are saturated

(-)

all nodes belong to R here

(a)



(b)

Conclusion and perspectives

Open problem

Exact value for minimum α

Variant

Best tour for a given graph (NP-hard problem)

Conclusion and perspectives

Open problem

Exact value for minimum α

Variant

Best tour for a given graph (NP-hard problem)

Thank You for your attention