Oracle size: a new measure of difficulty

Pierre Fraigniaud¹ David Ilcinkas² Andrzej Pelc³

¹CNRS, LRI, Université Paris-Sud, France

²LRI, Université Paris-Sud, France

³Département d'informatique, Université du Québec en Outaouais, Canada

FRAGILE meeting May 23, 2006

1/26

Oracle

Framework

- Distributed computing
- Mobile computing

Observation

The quality of the algorithmic solutions often depends on the given amount of knowledge about the topology.

Oracle

Model the amount of knowledge about the topology that is given to the nodes and/or the mobile agents.

(a)

```
Exploration by a robot using one pebble
(pebble = node-marker that the robot can drop at and remove
from nodes during its traversal)
```

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information Impossible in polynomial time (possible with $\Theta(\log \log n)$ pebbles)

Knowledge of an upper bound *'n* on the number of nodes Possible in time polynomial in *'n*

3/26

Exploration by a robot using one pebble (pebble = node-marker that the robot can drop at and remove from nodes during its traversal)

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information Impossible in polynomial time (possible with $\Theta(\log \log n)$ pebbles)

Knowledge of an upper bound *'n* on the number of nodes Possible in time polynomial in *'n*

3/26

・ロン ・回 と ・ ヨ と ・ ヨ と

Exploration by a robot using one pebble (pebble = node-marker that the robot can drop at and remove from nodes during its traversal)

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information

Impossible in polynomial time (possible with $\Theta(\log \log n)$ pebbles)

Knowledge of an upper bound \hat{n} on the number of nodes Possible in time polynomial in \hat{n}

3/26

・ロト ・ 同ト ・ ヨト ・ ヨト

Exploration by a robot using one pebble (pebble = node-marker that the robot can drop at and remove from nodes during its traversal)

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information

Impossible in polynomial time (possible with $\Theta(\log \log n)$ pebbles)

Knowledge of an upper bound \hat{n} on the number of nodes

Possible in time polynomial in \hat{n}

・ロト ・ 同ト ・ ヨト ・ ヨト

Broadcast in radio networks

Synchronous deterministic broadcast in n-node networks of diameter D

only its own identity)

[Clementi, Monti, Silvestri, SODA 2001] : time $\Omega(n \log D)$

lea of the network

[Kowalski, Pelc, to appear] : time $O(D + \log^2 n)$

4/26

Broadcast in radio networks

Synchronous deterministic broadcast in n-node networks of diameter D

No information (only its own identity)

[Clementi, Monti, Silvestri, SODA 2001] : time $\Omega(n \log D)$

of the network

[Kowalski, Pelc, to appear] : time $\mathit{O}(\mathit{D} + \log^2 \mathit{n})$

4/26

Broadcast in radio networks

Synchronous deterministic broadcast in n-node networks of diameter D

No information (only its own identity)

[Clementi, Monti, Silvestri, SODA 2001] : time $\Omega(n \log D)$

Complete knowledge of the network

[Kowalski, Pelc, to appear] : time $O(D + \log^2 n)$

4/26

Knowledge of the topology within radius ho

Wakeup in arbitrary networks

[Awerbuch, Goldreich, Peleg, Vainish, J. of ACM, 1990]: $\Theta(\min\{m, n^{1+\Theta(1)/\rho}\})$ messages of bounded length

Routing in Kleinberg's model [Fraigniaud, Gavoille, Paul, PODC 2004]: Expected number of steps of greedy routing = $f(\rho)$

5/26

Knowledge of the topology within radius ho

Wakeup in arbitrary networks

[Awerbuch, Goldreich, Peleg, Vainish, J. of ACM, 1990]: $\Theta(\min\{m, n^{1+\Theta(1)/\rho}\})$ messages of bounded length

Routing in Kleinberg's model

[Fraigniaud, Gavoille, Paul, PODC 2004]: Expected number of steps of greedy routing = f(
ho)

5/26

Knowledge of the topology within radius ρ

Wakeup in arbitrary networks

[Awerbuch, Goldreich, Peleg, Vainish, J. of ACM, 1990]: $\Theta(\min\{m, n^{1+\Theta(1)/\rho}\})$ messages of bounded length

Routing in Kleinberg's model

[Fraigniaud, Gavoille, Paul, PODC 2004]: Expected number of steps of greedy routing $= f(\rho)$

5/26

Definition of the oracle

Definition

- The oracle provides a binary string O(G) to the nodes and/or to the mobile agents
- Size of an oracle: $|\mathcal{O}(G)|$

Interesting questions

What is the minimum size of an oracle permitting to solve problem ${\mathcal P}$ (in a given amount of time) ?

Quantitative questions about the required knowledge, regardless of what kind of knowledge is supplied.

Definition of the oracle

Definition

- The oracle provides a binary string $\mathcal{O}(G)$ to the nodes and/or to the mobile agents
- Size of an oracle: $|\mathcal{O}(G)|$

Interesting questions

What is the minimum size of an oracle permitting to solve problem ${\mathcal P}$ (in a given amount of time) ?

Quantitative questions about the required knowledge, regardless of what kind of knowledge is supplied.

Definition of the oracle

Definition

- The oracle provides a binary string $\mathcal{O}(G)$ to the nodes and/or to the mobile agents
- Size of an oracle: $|\mathcal{O}(G)|$

Interesting questions

What is the minimum size of an oracle permitting to solve problem \mathcal{P} (in a given amount of time) ?

Quantitative questions about the required knowledge, regardless of what kind of knowledge is supplied.

6/26

Examples

Mobile computing

Tree exploration with small competitive ratio

Distributed computing

Wakeup and broadcast in a linear number of messages

7/26

<ロ> (四) (四) (三) (三) (三)

Examples

Mobile computing

Tree exploration with small competitive ratio

Distributed computing

Wakeup and broadcast in a linear number of messages

7/26

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Examples

Mobile computing

Tree exploration with small competitive ratio

Distributed computing

Wakeup and broadcast in a linear number of messages

7/26

크

・ロン ・回 と ・ヨン ・ヨン

Outline

1 Introduction

2 Mobile computing: tree exploration

3 Distributed computing: wakeup and broadcast

4 Conclusion and perspectives

8/26

・ 同 ト ・ ヨ ト ・ ヨ ト

Application to mobile computing

9/26

Application to mobile computing

Tree exploration by a robot

Goal To visit all nodes and traverse all edges as fast as possible

9/26

イロン イヨン イヨン イヨン

Application to mobile computing

Tree exploration by a robot

Goal

To visit all nodes and traverse all edges as fast as possible

Measure

Competitive ratio of an algorithm \mathcal{A} (cf. online algorithms):

length of the path followed by ${\cal A}$

length of the shortest path covering the tree

(maximized over all graphs and all starting nodes)

・ロト ・同ト ・ヨト ・ヨト

Example

Example

Example

Remarks

- Shortest covering walk has length 2(n-1) ecc(u)
- Worst case length of a DFS traversal is 2(n-1)-1

・ロン ・回 と ・ ヨ と ・ ヨ と

[Dessmark, Pelc, TCS, 2004] DFS has competitive ratio 2 (holds for arbitrary graphs)

No information

No algorithm can have competitive ratio smaller than 2

Knowledge of the graph (without any label)

One can achieve competitive ratio smaller than 2 (this is not the case for arbitrary graphs)

Statement of our problem

What is the minimum size of an oracle permitting to obtain a competitive ratio smaller than 2?

11/26

[Dessmark, Pelc, TCS, 2004] DFS has competitive ratio 2 (holds for arbitrary graphs)

No information

No algorithm can have competitive ratio smaller than 2

Knowledge of the graph (without any label)

One can achieve competitive ratio smaller than 2 (this is not the case for arbitrary graphs)

Statement of our problem

What is the minimum size of an oracle permitting to obtain a competitive ratio smaller than 2?

11/26

・ロン ・回 と ・ ヨ と ・ ヨ と

[Dessmark, Pelc, TCS, 2004] DFS has competitive ratio 2 (holds for arbitrary graphs)

No information

No algorithm can have competitive ratio smaller than 2

Knowledge of the graph (without any label)

One can achieve competitive ratio smaller than 2 (this is not the case for arbitrary graphs)

Statement of our problem

What is the minimum size of an oracle permitting to obtain a competitive ratio smaller than 2?

11/26

・ロト ・ 同ト ・ ヨト ・ ヨト

[Dessmark, Pelc, TCS, 2004] DFS has competitive ratio 2 (holds for arbitrary graphs)

No information

No algorithm can have competitive ratio smaller than 2

Knowledge of the graph (without any label)

One can achieve competitive ratio smaller than 2 (this is not the case for arbitrary graphs)

Statement of our problem

What is the minimum size of an oracle permitting to obtain a competitive ratio smaller than 2?

11/26

イロト イヨト イヨト

Our results (1)

Main result

Threshold $\approx \log \log D$ bits (D = diameter)

Notations

- f(D) = maximum size of the oracle for trees of diameter at most D
- $f(D) = \log \log D g(D)$

Precise statement

competitive ratio < 2 possible \Leftrightarrow g bounded from above

12/26

Our results (1)

Main result

Threshold $\approx \log \log D$ bits (D = diameter)

Notations

 f(D) = maximum size of the oracle for trees of diameter at most D

•
$$f(D) = \log \log D - g(D)$$

Precise statement

competitive ratio < 2 possible \Leftrightarrow g bounded from above

12/26

Our results (1)

Main result

Threshold $\approx \log \log D$ bits (D = diameter)

Notations

 f(D) = maximum size of the oracle for trees of diameter at most D

•
$$f(D) = \log \log D - g(D)$$

Precise statement

competitive ratio < 2 possible $\Leftrightarrow g$ bounded from above

Our results (2)

Interpretation

 $\log \log D - c \text{ bits} \longleftrightarrow D_0 \leq D \leq c' D_0$

Complementary result

Exact value of D, but without any other information \Rightarrow competitive ratio at least 2

13/26

Our results (2)

Interpretation

 $\log \log D - c$ bits $\longleftrightarrow D_0 \le D \le c' D_0$

Complementary result

Exact value of D, but without any other information \Rightarrow competitive ratio at least 2

13/26

Upper bound

Remark

DFS is efficient when

- diameter *D* is small
- number n of nodes is small
- D significantly smaller than n

Oracle

• bit *b*:

- $0 \rightarrow \text{DFS}$ (if *D* significantly smaller than *n*)
- ullet 1 ightarrow much more subtle algorithm (otherwise
- integer k: approximation of D using log log D c bits

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Upper bound

Remark

DFS is efficient when

- diameter D is small
- number n of nodes is small
- D significantly smaller than n

Oracle

```
• bit b:
```

• 0 \rightarrow DFS (if *D* significantly smaller than *n*)

ullet 1
ightarrow much more subtle algorithm (otherwise

• integer k: approximation of D using log log D - c bits

14/26

・ロン ・回 と ・ ヨ と ・ ヨ と

Upper bound

Remark

DFS is efficient when

- diameter D is small
- number *n* of nodes is small
- D significantly smaller than n

Oracle

- bit *b*:
 - $0 \rightarrow \text{DFS}$ (if *D* significantly smaller than *n*)
 - $1 \rightarrow$ much more subtle algorithm (otherwise)

• integer k: approximation of D using $\log \log D - c$ bits

イロト イポト イヨト イヨト

Main ideas of the algorithm

Main ideas of the algorithm

• Local exploration to handle the small subtrees pending from the main path

Exploration at probing distance $0.3D_0$ to succeed in the line, where D_0 is an approximation of D

15/26

Main ideas of the algorithm

- Local exploration to handle the small subtrees pending from the main path
- Exploration at probing distance 0.3D₀ to succeed in the line, where D₀ is an approximation of D

Sketch of the proof

Proved for the lines

P. Fraigniaud, D. Ilcinkas and A. Pelc Oracle size: a new measure of difficulty

16/26

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Sketch of the proof

Proved for the lines

• $\log \log D - g(D)$ bits, where g is unbounded from above

 \Rightarrow competitive ratio at least 2 in the lines

16/26

Sketch of the proof

Proved for the lines

- $\log \log D g(D)$ bits, where g is unbounded from above
- \Rightarrow no good approximation of D

 \Rightarrow competitive ratio at least 2 in the lines.

16/26

イロン イ団ン イヨン イヨン 三連

Sketch of the proof

Proved for the lines

- $\log \log D g(D)$ bits, where g is unbounded from above
- \Rightarrow no good approximation of D
- \Rightarrow competitive ratio at least 2 in the lines

16/26

イロン イヨン イヨン イヨン

Outline

1 Introduction

- 2 Mobile computing: tree exploration
- 3 Distributed computing: wakeup and broadcast
- 4 Conclusion and perspectives

17/26

・ロン ・回 と ・ヨン ・ヨン

Application to distributed computing

Goal

To disseminate a message M from a source to all the nodes of the network

- Wakeup: A node cannot transmit before receiving the message *M*
- Broadcast: A node can transmit without restriction

Efficiency constraint

Number of messages must be linear in *n*

18/26

Application to distributed computing

Goal

To disseminate a message M from a source to all the nodes of the network

- Wakeup: A node cannot transmit before receiving the message *M*
- Broadcast: A node can transmit without restriction

Efficiency constraint

Number of messages must be linear in n

18/26

Our results

Wakeup

Minimum oracle size is $\Theta(n \log n)$ bits.

Broadcast

• Efficient broadcast with an oracle of size O(n)

19/26

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Our results

Wakeup

Minimum oracle size is $\Theta(n \log n)$ bits.

Broadcast

• Efficient broadcast with an oracle of size O(n)

No oracle of size o(n) can permit to broadcast efficiently

19/26

3

Our results

Wakeup

Minimum oracle size is $\Theta(n \log n)$ bits.

Broadcast

- Efficient broadcast with an oracle of size O(n)
- No oracle of size o(n) can permit to broadcast efficiently

19/26

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Strength of our results

Lower bounds

- Synchronous environment
- Node identifiers between 1 and n
- Arbitrary long messages

Jpper bounds

- Asynchronous environment
- No identifiers
- Bounded-length messages

Moreover, our upper bounds are constructive

20/26

・ロト ・同ト ・ヨト ・ヨト

Strength of our results

Lower bounds

- Synchronous environment
- Node identifiers between 1 and n
- Arbitrary long messages

Upper bounds

- Asynchronous environment
- No identifiers
- Bounded-length messages

Moreover, our upper bounds are constructive

20/26

・ロン ・回 と ・ ヨ と ・ ヨ と

Strength of our results

Lower bounds

- Synchronous environment
- Node identifiers between 1 and n
- Arbitrary long messages

Upper bounds

- Asynchronous environment
- No identifiers
- Bounded-length messages

Moreover, our upper bounds are constructive

20/26

Wakeup: upper bound

Theorem

There exists an oracle of size $O(n \log n)$ permitting the wakeup with a linear number of messages.

Proof

- Spanning tree rooted at the source
- Oracle: list of ports leading to the children

21/26

Wakeup: upper bound

Theorem

There exists an oracle of size $O(n \log n)$ permitting the wakeup with a linear number of messages.

Proof

- Spanning tree rooted at the source
- Oracle: list of ports leading to the children

21/26

・ロト ・回ト ・ヨト ・ヨト

Wakeup: lower bound

Theorem

The minimum oracle size permitting the wakeup with a linear number of messages is $\Omega(n \log n)$.

Sketch of the proof

• Complete graph K_n with n subdivided edges

22/26

3

・ロト ・同ト ・ヨト ・ヨト

Wakeup: lower bound

Theorem

The minimum oracle size permitting the wakeup with a linear number of messages is $\Omega(n \log n)$.

Sketch of the proof

• Complete graph K_n with n subdivided edges

Wakeup: lower bound

Theorem

The minimum oracle size permitting the wakeup with a linear number of messages is $\Omega(n \log n)$.

Sketch of the proof

- Complete graph K_n with n subdivided edges
- $\Omega(n \log n)$ bits are necessary to reduce the $\binom{n^2}{n}$ choices

Broadcast: upper bound

Theorem

There exists an oracle of size O(n) permitting the broadcast with a linear number of messages.

Sketch of the proof

- Spanning tree of the network
- Oracle: informs one of the two extremities of a tree edge

Technical arguments $\Rightarrow O(n)$ bits are sufficient

23/26

・ロン ・回 と ・ ヨ と ・ ヨ と

Broadcast: upper bound

Theorem

There exists an oracle of size O(n) permitting the broadcast with a linear number of messages.

Sketch of the proof

- Spanning tree of the network
- Oracle: informs one of the two extremities of a tree edge

Technical arguments $\Rightarrow O(n)$ bits are sufficient

Broadcast: lower bound

Theorem

No oracle of size o(n) can permit to broadcast efficiently.

Sketch of the proof

- Complete graph K_n with n/k special edges
- A k-node complete graph in each special edge

24/26

Broadcast: lower bound

Theorem

No oracle of size o(n) can permit to broadcast efficiently.

Sketch of the proof

- Complete graph K_n with n/k special edges
- A *k*-node complete graph in each special edge

Broadcast: lower bound

Theorem

No oracle of size o(n) can permit to broadcast efficiently.

Sketch of the proof

- Complete graph K_n with n/k special edges
- A k-node complete graph in each special edge
- Size $\Omega(n/k)$ necessary to have less than nk messages

Outline

1 Introduction

- 2 Mobile computing: tree exploration
- 3 Distributed computing: wakeup and broadcast
- 4 Conclusion and perspectives

25/26

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion and perspectives

Mobile computing

Tree exploration

• Minimum oracle size for efficient exploration: $pprox \log \log D$

Distributed computing

- Wakeup and broadcast
 - Constraint: linear number of messages
 - Wakeup: $\Theta(n \log n)$ bits
 - Broadcast: O(n) bits
 - Quantitative comparison between similar tasks

Perspectives

Tracle: new concept applicable to a broad range of problems

Conclusion and perspectives

Mobile computing

Tree exploration

• Minimum oracle size for efficient exploration: $pprox \log \log D$

Distributed computing

Wakeup and broadcast

- Constraint: linear number of messages
 - Wakeup: $\Theta(n \log n)$ bits
 - Broadcast: O(n) bits
- Quantitative comparison between similar tasks

Conclusion and perspectives

Mobile computing

Tree exploration

• Minimum oracle size for efficient exploration: $pprox \log \log D$

Distributed computing

Wakeup and broadcast

- Constraint: linear number of messages
 - Wakeup: $\Theta(n \log n)$ bits
 - Broadcast: O(n) bits
- Quantitative comparison between similar tasks

Perspectives

Oracle: new concept applicable to a broad range of problems