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Distributed computing

Usually

Rather small algorithms

Importance of details

Rather long proofs

Specificities in distributed computing

Local algorithm vs. global behavior

Non-determinism

Asynchrony
Dynamicity
Crashes
Byzantines

Computing entities only have partial knowledge
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Confidence in distributed computing

Proofs: artifact to convince oneself of the validity of a
statement
From [Lamport, How to Write a 21st Century Proof, 2012]

Proofs are still written in prose pretty much the way
they were in the 17th century. [...]
Proofs are unnecessarily hard to understand, and they
encourage sloppiness that leads to errors.

[Concurrent (multiprocess)] algorithms can be quite
subtle and hard to get right; their correctness proofs
require a degree of precision and rigor unknown to
most mathematicians (and many computer scientists).
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Detecting and preventing issues

Possible research directions to improve confidence

Distributed decision / Distributed verification

cf. Laurent Feuilloley, self-stabilization

Experiments

Difficult to tackle non-determinism

Model-checking

Certification via a proof assistant
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Formal verification / model-checking

Model-checking

Automated verification based on a formalization of

the system model

the algorithm

the properties to be satisfied

Pros:

Automatic verification

If verification fails, generally gives a counter-example

May sometimes be able to synthesize algorithms

Cons:

Subject to decidability and tractability issues
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Certification

Proof assistant

Also called Interactive theorem prover

Checks whether a given proof of a given statement is
correct

Provides an interactive proof editor

Pros:

More or less as powerful as paper proofs

Provides some automation

Cons:

Mainly manual

Sometimes tedious even for simple proofs
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Big (french) projects about DC in Coq

PADEC

Dedicated to self-stabilizing algorithms

Complex algorithms

Precise analyses, including time complexities

K. Altisen, P. Corbineau, S. Devismes

PACTOLE

Dedicated to distributed computing by mobile robots

Large variety of models and parameters

Positive and negative results

T. Balabonski, P. Courtieu, L. Rieg, S. Tixeuil, X. Urbain, . . .
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Problem: Ring exploration with stop

Model/context

Team of robots

sensing the environment by taking a snapshot of it
that do not communicate
that are anonymous and oblivious

Anonymous unoriented rings.

Goal: exploration with stop

Each node must be visited by at least one robot.

All robots must stop after finite time.
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The Look-Compute-Move cycle

Look

The robot takes an instantaneous egocentric snapshot of the
network and its robots, with strong multiplicity detection
(exact number of robots at each node).

Compute

Based on this observation, it decides to stay idle or to move to
some neighboring node.

Move

In the latter case it instantaneously moves towards its
destination.
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Identical oblivious semi-synchronous robots

Identical

Robots have no IDs. They execute the same program.

Oblivious

The robots have no memory of observations, computations
and moves made in previous cycles.

Semi-Synchronous

Look/Compute/Move cycles are synchronized, but robots may
sleep during some cycles.
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Some precisions

A
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Problem definitions

Goal: exploration with stop

Each node must be visited by at least one robot.

All robots must stop after finite time.

Definition: Explo(k , n)

We say that exploration of a n-node ring is possible with k < n

robots if there exists an algorithm enabling the robots to perform

exploration with stop starting from any initial configuration of the

k robots without multiplicity (at most one robot per node).

More formal definition: Explo(k , n), with k < n

exists Algo, forall Adv, Config,
if is cycle(n,Config) and has robots(k ,Config) and is flat(Config)

then exploStop(Algo, Adv, Config)
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Results in PACTOLE

Already in PACTOLE

not Explo(1, n)

not Explo(k , n) if k divides n

Our “new” result

for every positive integer m,
not Explo(k , n) =⇒ not Explo(k ∗m, n ∗m)
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Sébastien Bouchard and David Ilcinkas Proving in Coq (Pactole): A user perspective



14

When k divides n

Lemma

Impossible to stop
(and sometimes to
explore) when k |n.

Sébastien Bouchard and David Ilcinkas Proving in Coq (Pactole): A user perspective



14

When k divides n

Lemma

Impossible to stop
(and sometimes to
explore) when k |n.
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Key ingredient: expansion

Proved via: Explo(k ∗m, n ∗m) =⇒ Explo(k , n)

Transformations between small 1 and big m

From 1 to m: i → {n or k} ∗ j + i , for 0 ≤ j < m

From m to 1: i → i modulo {n or k}
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“Expanding” a “small” configuration
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“Similarity” of the two executions
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Sketch of proof (1/2)

1 Let Im and I1 be any “corresponding big and small
instances”.

2 We assume that there exists an algorithm Am which
achieves exploration with stop in Im regardless of the
demon and of the initial configuration.

3 Let d1 be any demon that A1 could face when trying to
explore I1 and let c1 be any initial configuration for the
execution of A1.

4 Let cm be the “expansion” of c1.
5 Let dm be the demon which at any round, for any class c ,

activates all the robots of c iff d1 activates the
representative of c

6 Algorithm Am achieves exploration with stop in particular
when facing dm from the initial configuration cm.
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Sketch of proof (2/2)

7 We build the algorithm A1 which gives the same
instructions as Am facing dm from cm but only to the
robots which appear in I1.

8 Let Em be the execution of Am facing dm from cm.

9 Let E1 be the execution of A1 facing d1 from c1.

10 Let E ′m be the execution composed of the “expansions” of
the configurations of E1.

11 We prove that Em and E ′m are “the same”.

12 We deduce that A1 achieves exploration with stop in I1
regardless of the demon and of the initial configuration.
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“Similarity” of the two executions
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Challenges

1 Coq basics: definitions (Gallina) and proofs (tactics)

2 Constructive logics

3 Setoids (sets equipped with an equivalence relation)

4 Type classes (allows to make parameters implicit)

5 Induction and coinduction

6 Trying to prove statements that are indeed true!
7 Prove all the

Clearly [. . . ]
It is easy to see that [. . . ]
Similarly, [. . . ]
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Some facts/numbers

Preliminary expertise

David: The Coq working group (since 2018) and PADEC

Sébastien: No experience with Coq

Total of 1800 lines of code

200 lines of definitions

400 lines related to Setoids (compatibility)

200 lines for Exploration and Stop properties

1000 lines for the “easy” commutativity lemma and the
other “obvious” things

Duration: 3 months, a few hours a week
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A final note from L. Lamport

Quote about the Temporal Logic of Actions

TLA does have the following disadvantages:

It can describe only a real algorithm, not a vague,
incomplete sketch of an algorithm.

You can specify an algorithm’s correctness condition in
TLA only if you understand what the algorithm is
supposed to do.

TLA makes it harder to cover gaps in a proof with
handwaving.

Some researchers may find these drawbacks insurmountable.

By the way, Amazon started to use formal specification and model

checking in 2011, year of a major disruption in their systems. . .
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