Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

Stéphane Devismes¹ David Ilcinkas² Colette Johnen²

¹Univ. Grenoble Alpes, France ²CNRS & Univ. Bordeaux, France

GT Algorithmique Distribuée, Bordeaux March 20, 2017

1/16

A (1) > A (2) > A (2) >

Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

Stéphane Devismes¹ David Ilcinkas² Colette Johnen²

¹Univ. Grenoble Alpes, France ²CNRS & Univ. Bordeaux, France

GT Algorithmique Distribuée, Bordeaux March 20, 2017

1/16

(4月) (4日) (4日)

(Framework: distributed computing in networks.)

Basically, local knowledge of a shortest path to a fixed node.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

2/16

(4月) (4日) (4日)

(Framework: distributed computing in networks.)

Basically, local knowledge of a shortest path to a fixed node.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

2/16

(Framework: distributed computing in networks.)

Basically, local knowledge of a shortest path to a fixed node.

2/16

root r

Distributed propagation of distances from the root.

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Distributed propagation of distances from the root.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

3/16

Motivations

Classical building block for routing in networks ...

- In shortest-path routing schemes (like BGP)
- In compact routing schemes
- ... and in distributed algorithms in general.

• The network may change

The network may be even disconnected

4/16

(a)

Motivations

Classical building block for routing in networks ...

- In shortest-path routing schemes (like BGP)
- In compact routing schemes
- ... and in distributed algorithms in general.

In practice

- The network may change over time (faults, updates, etc.)
- The network may be even disconnected

4/16

() < </p>

● Bandwidth is uselessly consumed.
● Basic update mechanism may fail
⇒ useless control messages.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

5/16

臣

・ロン ・回 と ・ヨン ・ ヨン

5/16

Bandwidth is uselessly consumed.

Basic update mechanism may fai \Rightarrow useless control messages.

5/16

Bandwidth is uselessly consumed.

Basic update mechanism may fai \Rightarrow useless control messages.

・ロト ・回ト ・ヨト ・ヨト

5/16

Bandwidth is uselessly consumed.

Basic update mechanism may tai \Rightarrow useless control messages.

(日) (同) (三) (三)

5/16

Bandwidth is uselessly consumed.

Basic update mechanism may fai \Rightarrow useless control messages.

- Bandwidth is uselessly consumed.
- ② Basic update mechanism may fail ⇒ useless control messages.

<u>D</u>isconnected <u>C</u>omponents <u>D</u>etection and rooted <u>S</u>hortest-<u>P</u>ath tree <u>M</u>aintenance (DCDSPM)

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

6/16

向下 イヨト イヨト

<u>Disconnected Components Detection and</u> rooted <u>Shortest-Path tree Maintenance</u> (DCDSPM)

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

6/16

向下 イヨト イヨト

<u>Disconnected Components Detection and</u> rooted <u>Shortest-Path tree Maintenance</u> (DCDSPM)

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

6/16

Self-Stabilization

Definition

A self-stabilizing distributed system will eventually behave correctly no matter its initialization.

Self-Stabilization

Definition

A self-stabilizing distributed system will eventually behave correctly no matter its initialization.

- Transient faults
- Low-rate dynamics

Stéphane Devismes, David Ilcinkas, and Colette Johnen

<ロト イヨト イヨト イヨト ヨークの Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

Classical model, introduced by Dijkstra [Commun. ACM, 1974]

Locally shared memory model...

Each node *u* has local variables that can be

- <u>read</u> by *u* and its neighbors,
- written only by u

with composite atomicity

The state of a node is updated based on the local neighborhood in an atomic step.

8/16

() < </p>

Classical model, introduced by Dijkstra [Commun. ACM, 1974]

Locally shared memory model...

Each node u has local variables that can be

- read by u and its neighbors,
- written only by u

.. with composite atomicity

The state of a node is **updated** based on the local neighborhood in an **atomic step**.

8/16

・ロト ・同ト ・ヨト ・ヨト

Model (2/2)

Program of a node

List of rules **Guard** \rightarrow **Action** for node *u*

- Guard: function of the variables of *u* and its neighbors
- Action: update of the local variables

Enabled

A rule is enabled if its guard evaluates to true.A node is enabled if at least one of its rules is enabled

Step and daemon (asynchrony)

Stéphane Devismes, David Ilcinkas, and Colette Johnen

At each step, the daemon must select at least one enabled node to be executed.

Model (2/2)

Program of a node

List of rules Guard \rightarrow Action for node u

- Guard: function of the variables of *u* and its neighbors
- Action: update of the local variables

Enabled

- A rule is enabled if its guard evaluates to true.
- A node is enabled if at least one of its rules is enabled.

Step and daemon (asynchrony)

At each step, the daemon must select at least one enabled node to be executed.

9/16

Model (2/2)

Program of a node

List of rules Guard \rightarrow Action for node u

- Guard: function of the variables of *u* and its neighbors
- Action: update of the local variables

Enabled

- A rule is enabled if its guard evaluates to true.
- A node is enabled if at least one of its rules is enabled.

Step and daemon (asynchrony)

At each step, the daemon must select at least one enabled node to be executed.

9/16

・ロト ・回ト ・ヨト ・ヨト

Our results

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D)
- Linear in rounds: $3n_{\text{maxCC}} + D$.
- Polynomial in steps: O(W_{max}n_{maxCC}³n)
- *n*: total number of nodes
- D: (hop-)diameter of the network.

n_{maxCC}: max. number of nodes in a connected component

イロト イポト イヨト イヨト 三国

Our results

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D
- Linear in rounds: $3n_{\text{maxCC}} + D$.
- Polynomial in steps: O(W_{max}n_{maxcc}³n)
- n: total number of nodes
- D: (hop-)diameter of the network.

n_{maxCC}: max. number of nodes in a connected component

イロト イポト イヨト イヨト 三国

Our results

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D
- Linear in rounds: $3n_{\text{maxCC}} + D$.
- Polynomial in steps: O(W_{max}n_{maxcc}³n)
- *n*: total number of nodes
- D: (hop-)diameter of the network.

n_{maxCC}: max. number of nodes in a connected component
Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D
- Polynomial in steps: O(W_{max}n_{maxCC}³n)
- *n*: total number of nodes
- D: (hop-)diameter of the network

n_{maxCC}: max. number of nodes in a connected component

10/16

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like *n* or *D*).

• *n*: total number of nodes

• D: (hop-)diameter of the network

10/16

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like *n* or *D*).
- Linear in rounds: $3n_{\text{maxCC}} + D$.
- *n*: total number of nodes
- D: (hop-)diameter of the network
- n_{maxCC}: max. number of nodes in a connected component

10/16

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like *n* or *D*).
- Linear in rounds: $3n_{maxCC} + D$.
- Polynomial in steps: $O(W_{\max}n_{\max CC}^3n)$.
- n: total number of nodes
- D: (hop-)diameter of the network
- n_{maxCC}: max. number of nodes in a connected component
- W_{max}: maximum integer weight

Stéphane Devismes, David Ilcinkas, and Colette Johnen

SIIL 《□▶ 《큔▶ 《콜▶ 《콜▶ 콜 》이 Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

10/16

<u>DCDSPM</u>

- Shortest-path spanning tree (no analyses for <code>#steps)</code>
 - [Many papers]
- Disjunction
 - [Datta, Devismes, Larmore, 2012]
 ≈ DCDSPM with uniform weights but exponential #steps
- BFS-tree (restricted to polynomial #steps)
 - [Cournier, Devismes, Villain, 2009] Not silent, O(Δn³) steps
 - [Cournier, Rovedakis, Villain, 2011]

11/16

(ロ) (同) (E) (E) (E)

<u>DCDSPM</u>

Shortest-path spanning tree (no analyses for #steps)

- [Many papers]
- Disjunction
 - [Datta, Devismes, Larmore, 2012]
 ≈ DCDSPM with uniform weights but exponential #steps
- BFS-tree (restricted to polynomial <code>#steps</code>)
 - [Cournier, Devismes, Villain, 2009] Not silent, O(Δn³) steps
 - [Cournier, Rovedakis, Villain, 2011]

11/16

(ロ) (同) (E) (E) (E)

<u>DCDSPM</u>

Shortest-path spanning tree (no analyses for #steps)

- [Many papers]
- Disjunction

<u>BFS-tree</u> (restricted to polynomial ‡steps)

- [Cournier, Devismes, Villain, 2009 Not silent, O(Δn³) steps
- [Cournier, Rovedakis, Villain, 2011]

11/16

(ロ) (同) (E) (E) (E)

<u>DCDSPM</u>

Shortest-path spanning tree (no analyses for #steps)

[Many papers]

Disjunction

BFS-tree (restricted to polynomial #steps)

- [Cournier, Devismes, Villain, 2009] Not silent, O(Δn³) steps
- [Cournier, Rovedakis, Villain, 2011]
 O(D²) rounds, O(n⁶) steps

11/16

Ideas behind the algorithm

To be pretty cautious.

... but not too much.

・ロン ・回 と ・ ヨン ・ ヨン

12/16

크

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

Ideas behind the algorithm

To be pretty cautious...

.. but not too much.

- 4 回 2 - 4 □ 2 - 4 □

12/16

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

Ideas behind the algorithm

To be pretty cautious...

... but not too much.

12/16

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

Э

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

Э

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

Э

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxee} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

Э

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxee} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxee} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

(日) (종) (종) (종) (종)

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxee} additional rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

13/16

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

・ 同 ト ・ ヨ ト ・ ヨ ト

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxCC} additional rounds.

13/16

... but not too much

Not directly improving distances leads to $\Omega(D^2)$ rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

14/16

イロン イヨン イヨン イヨン

... but not too much

Not directly improving distances leads to $\Omega(D^2)$ rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

14/16

イロン イヨン イヨン イヨン

... but not too much

Not directly improving distances leads to $\Omega(D^2)$ rounds.

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

14/16

イロン イヨン イヨン イヨン
Algorithm 2: Code of RSP for any process $u \neq r$ Variables: st_u \in $\{I, C, EB, EF\}$ par_u \in Ĺbl \mathbb{N}^* d_{m} \subseteq Predicates: $\equiv st_u = EF \wedge abRoot(u)$ $P \ reset(u)$ $P \quad correction(u) \equiv (\exists v \in \Gamma(u) \mid st_v = C \land d_v + \omega(u, v) < d_u)$ Macro: computePath(u) : $par_u := \operatorname{argmin}_{(v \in \Gamma(u) \land st_v = C)} (d_v + \omega(u, v));$ $d_u := d_{par_u} + \omega(u, par_u);$ $st_n := \hat{C}$ Bules : $st_u = C \wedge P$ correction(u) computePath(u) $\mathbf{R}_{\mathbf{C}}(u)$ $\mathbf{R}_{\mathbf{EB}}(u)$: $st_u = C \wedge \neg P$ correction(u) \wedge $st_u := EB$ \rightarrow $(abRoot(u) \lor st_{par_u} = EB)$ $st_u = EB \land (\forall v \in children(u) \mid st_v = EF)$ $\rightarrow st_u := EF$ $\mathbf{R}_{\mathbf{EF}}(u)$ $P \quad reset(u) \land (\forall v \in \Gamma(u) \mid st_v \neq C)$ \rightarrow st_u := I $\mathbf{R}_{\mathbf{I}}(u)$ $(P \ reset(u) \lor st_u = I) \land (\exists v \in \Gamma(u) \mid st_v = C)$ compute Path(u) $\mathbf{R}_{\mathbf{R}}(u)$ \rightarrow

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

15/16

イロト イヨト イヨト イヨト

Thank you for your attention

Stéphane Devismes, David Ilcinkas, and Colette Johnen Self-Stab. Shortest-Path Tree Maintenance in Poly. Steps

16/16

- 4 回 2 - 4 □ 2 - 4 □