Label-based Tree Representation

Reuven Cohen¹ Pierre Fraigniaud² David Ilcinkas² Amos Korman¹ David Peleg¹

¹Dept. of Computer Science, Weizmann Institute, Israel

²CNRS, LRI, Université Paris-Sud, France

LOCALITY '05 September 26, 2005

・ロト ・回ト ・ヨト ・ヨト

Brief view of the problem

Many (distributed) algorithms on graphs use spanning trees.

- Broadcast
- Convergecast
- Graph exploration
- etc.

Local knowledge of the tree.

Our goal

Minimize the total memory used to store the tree.

(ロ) (同) (三) (三)

Brief view of the problem

Many (distributed) algorithms on graphs use spanning trees.

- Broadcast
- Convergecast
- Graph exploration
- etc.

Need for locality

Local knowledge of the tree.

Minimize the total memory used to store the tree.

(a)

Brief view of the problem

Many (distributed) algorithms on graphs use spanning trees.

- Broadcast
- Convergecast
- Graph exploration
- etc.

Need for locality

Local knowledge of the tree.

Our goal

Minimize the total memory used to store the tree.

Local labeling of the edges

・ロト ・回ト ・ヨト

Tree representations (1)

- Label: all port numbers of the incident tree edges
- Two measures for a spanning tree T
 - Maximum used space: $M_{all}(T)$
 - Total used space: $S_{all}(T)$

(ロ) (同) (三) (三)

Tree representations (1)

- Label: all port numbers of the incident tree edges
- Two measures for a spanning tree T
 - Maximum used space: $M_{all}(T)$
 - Total used space: $S_{all}(T)$

(ロ) (同) (三) (三)

Tree representations (1)

- Label: all port numbers of the incident tree edges
- Two measures for a spanning tree T
 - Maximum used space: $M_{all}(T)$
 - Total used space: $S_{all}(T)$

Tree representations (1)

- Label: all port numbers of the incident tree edges
- Two measures for a spanning tree T
 - Maximum used space: $M_{all}(T)$
 - Total used space: $S_{all}(T)$

・ロト ・回ト ・ヨト

Tree representations (2)

- Label: port number leading to the root
- Two measures for a spanning tree T
 - Maximum used space: $M_{up}(T)$
 - Total used space: $S_{up}(T)$

(ロ) (同) (三) (三)

Tree representations (2)

- Label: port number leading to the root
- Two measures for a spanning tree T
 - Maximum used space: $M_{up}(T)$
 - Total used space: $S_{up}(T)$

() < </p>

Tree representations (2)

- Label: port number leading to the root
- Two measures for a spanning tree T
 - Maximum used space: $M_{up}(T)$
 - Total used space: $S_{up}(T)$

Tree representations (2)

- Label: port number leading to the root
- Two measures for a spanning tree T
 - Maximum used space: $M_{up}(T)$
 - Total used space: $S_{up}(T)$

Tree representations (2)

- Label: port number leading to the root
- Two measures for a spanning tree T
 - Maximum used space: $M_{up}(T)$
 - Total used space: $S_{up}(T)$

・ロト ・回ト ・ヨト ・ヨト

크

Applications: upcast

Goal

Applications: upcast

Goal

イロト イヨト イヨト イヨト

2

Applications: convergecast

Goal

・ロト ・回ト ・ヨト ・ヨト

Applications: convergecast

Goal

ヘロン ヘロン ヘヨン ヘヨン

Applications: convergecast

Goal

ヘロン ヘロン ヘヨン ヘヨン

Applications: convergecast

Goal

ヘロン ヘロン ヘヨン ヘヨン

Applications: convergecast

Goal

・ロト ・回ト ・ヨト ・ヨト

Applications: convergecast

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Naive upper bounds

Trivial observations

• Maximum: $M_{up}(T) \leq \lceil \log \Delta \rceil$, $\Delta = maximum$ degree

The bound on $M_{up}(T)$ is tight.

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

(ロ) (同) (目) (目)

3

Naive upper bounds

Trivial observations

- Maximum: $M_{up}(T) \leq \lceil \log \Delta \rceil$, $\Delta = maximum$ degree
- Sum: $S_{up}(T) \leq \sum_{v} \lceil \log \deg(v) \rceil \longrightarrow O(n \log \Delta)$ bits

The bound on $M_{up}(T)$ is tight.

(ロ) (四) (王) (日)

Naive upper bounds

Trivial observations

- Maximum: $M_{up}(T) \leq \lceil \log \Delta \rceil$, $\Delta = maximum$ degree
- Sum: $S_{up}(T) \leq \sum_{v} \lceil \log \deg(v) \rceil \longrightarrow O(n \log \Delta)$ bits

The bound on $M_{up}(T)$ is tight.

Optimal algorithm

Remark

There is a polynomial time algorithm that given a graph G and a port numbering, construct a spanning tree T for G minimizing $S_{up}(T)$.

Optimal algorithm

Remark

There is a polynomial time algorithm that given a graph G and a port numbering, construct a spanning tree T for G minimizing $S_{up}(T)$.

< □ > < □ > < □ >

Optimal algorithm

Remark

There is a polynomial time algorithm that given a graph G and a port numbering, construct a spanning tree T for G minimizing $S_{up}(T)$.

Use a Directed Minimum Spanning Tree algorithm.

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

(ロ) (四) (注) (注)

크

Our results (1)

Theorem 1

In complete graphs with arbitrary labeling:

• There exists T such that $S_{up}(T) = O(n)$

Theorem 2

In arbitrary graphs with symmetric port assignments:

• There exists T such that $S_{up}(T) = O(n)$

・ロン ・回 と ・ ヨン ・ ヨン

Our results (1)

Theorem 1

In complete graphs with arbitrary labeling:

• There exists T such that $S_{up}(T) = O(n)$

Theorem 2

In arbitrary graphs with symmetric port assignments:

• There exists T such that $S_{up}(T) = O(n)$

・ロン ・回 ・ ・ ヨン ・ ヨン

크

Our results (2)

Conjecture

In arbitrary graphs with arbitrary labeling:

• There exists T such that $S_{up}(T) = O(n)$

Theorem 3

n arbitrary graphs with arbitrary labeling:

• There exists T such that $S_{up}(T) = O(n \log \log n)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Our results (2)

Conjecture

In arbitrary graphs with arbitrary labeling:

• There exists T such that $S_{up}(T) = O(n)$

Theorem 3

In arbitrary graphs with arbitrary labeling:

• There exists T such that $S_{up}(T) = O(n \log \log n)$

Outline

1 Introduction

2 Complete and symmetric cases

- Complete graphs with arbitrary labeling
- Arbitrary graphs with symmetric port assignments

3 Arbitrary graphs with arbitrary labeling

4 Conclusion

(a)

Algorithm for complete graphs

Main idea

- Start with isolated vertices, the initial trees.
- Merge trees to finally obtain a spanning tree.

Description of phase *k*

(a)

Algorithm for complete graphs

Main idea

- Start with isolated vertices, the initial trees.
- Merge trees to finally obtain a spanning tree.

Description of phase k

• Identify the collection of small trees for the phase: $T_{\text{small}}(k) = \{T \mid \text{size}(T) < 2^k\}.$

For each tree $I \in \mathcal{I}_{small}(k)$, select the edge e(I) ominimum weight going from the root outside T.

Merge the trees with the edges e(T)

Erase one edge on each formed cycle to obtain trees.

(a)

Algorithm for complete graphs

Main idea

- Start with isolated vertices, the initial trees.
- Merge trees to finally obtain a spanning tree.

Description of phase k

- Identify the collection of small trees for the phase: $T_{\text{small}}(k) = \{T \mid \text{size}(T) < 2^k\}.$
- Output Provide a state of the second state

Erase one edge on each formed cycle to obtain trees

() < </p>

Algorithm for complete graphs

Main idea

- Start with isolated vertices, the initial trees.
- Merge trees to finally obtain a spanning tree.

Description of phase k

- Identify the collection of small trees for the phase: $T_{\text{small}}(k) = \{T \mid \text{size}(T) < 2^k\}.$
- For each tree $T \in T_{small}(k)$, select the edge e(T) of minimum weight going from the root outside T.

3 Merge the trees with the edges
$$e(T)$$
.

Erase one edge on each formed cycle to obtain trees.

() < </p>

Algorithm for complete graphs

Main idea

- Start with isolated vertices, the initial trees.
- Merge trees to finally obtain a spanning tree.

Description of phase k

- Identify the collection of small trees for the phase: $T_{small}(k) = \{T \mid size(T) < 2^k\}.$
- For each tree $T \in T_{small}(k)$, select the edge e(T) of minimum weight going from the root outside T.
- Merge the trees with the edges e(T).
- Erase one edge on each formed cycle to obtain trees.

Example

Example

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

Example

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

◆□> ◆□> ◆豆> ◆豆> ・豆

Analysis (1)

Claim

• The trees of a given phase form a partition of V(G);

・ロト ・同ト ・ヨト ・ヨト

3

Analysis (1)

Claim

- The trees of a given phase form a partition of V(G);
- 2 At the beginning of phase 1, all trees are of size $1 \ge 2^0$;
 - **D** At the beginning of phase k, all trees are of size $\geq 2^{n}$
 - The number of phases is at most [log n].

Analysis (1)

Claim

- The trees of a given phase form a partition of V(G);
- 2 At the beginning of phase 1, all trees are of size $1 \ge 2^0$;
- 3 At the beginning of phase k, all trees are of size $\geq 2^{k-1}$;

The number of phases is at most [log n]

・ロン ・回 と ・ヨン ・ヨン

Analysis (1)

Claim

- The trees of a given phase form a partition of V(G);
- 2 At the beginning of phase 1, all trees are of size $1 \ge 2^0$;
- 3 At the beginning of phase k, all trees are of size $\geq 2^{k-1}$;
- There are $m_k \leq n/2^{k-1}$ trees at the beginning of phase k.

The number of phases is at most | log n |

・ロン ・回 と ・ ヨ と ・ ヨ と

Analysis (1)

Claim

- The trees of a given phase form a partition of V(G);
- 2 At the beginning of phase 1, all trees are of size $1 \ge 2^0$;
- 3 At the beginning of phase k, all trees are of size $\geq 2^{k-1}$;
- There are $m_k \leq n/2^{k-1}$ trees at the beginning of phase k.
- The number of phases is at most $\lceil \log n \rceil$.

큰

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

◆□ → ◆□ → ◆三 → ◆三 →

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

・ロト ・同ト ・ヨト ・ヨト

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

・ロン ・回 と ・ ヨ と ・ ヨ と …

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

Cost of the algorithm

• At the beginning of phase 1: no cost

• Total cost at most $\sum_{k\geq 1} kn/2^{k-1} \leq 4n = O(n)$

・ロン ・回 と ・ ヨン ・ ヨン

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

Cost of the algorithm

- At the beginning of phase 1: no cost
- During phase k:

t most $n/2^{-1}$ new edges

at most k bits per edge

• Total cost at most $\sum_{k>1} kn/2^{k-1} \leq 4n = O(n)$

・ロン ・回 と ・ ヨン ・ ヨン

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

Cost of the algorithm

- At the beginning of phase 1: no cost
- During phase k:
 - at most $n/2^{k-1}$ new edges

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg Label-based Tree Representation

・ロン ・回 と ・ ヨ と ・ ヨ と …

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

- At the beginning of phase 1: no cost
- During phase k:
 - at most $n/2^{k-1}$ new edges
 - at most k bits per edge

・ロン ・回 と ・ ヨ と ・ ヨ と …

3

Analysis (2)

Observation

- Consider the root r of a small tree T of x nodes.
- There are at most x 1 outgoing edges from r leading to nodes inside T.
- The port number of e(T) is at most x 1.

- At the beginning of phase 1: no cost
- During phase k:
 - at most $n/2^{k-1}$ new edges
 - at most k bits per edge

• Total cost at most
$$\sum_{k\geq 1} kn/2^{k-1} \leq 4n = O(n)$$

→ @ → → 注 → → 注 →

Arbitrary graphs with symmetric port assignments

Remark

- The root of a small tree may have no edges going outside the tree.
- But some node of the tree has.

Arbitrary graphs with symmetric port assignments

Remark

- The root of a small tree may have no edges going outside the tree.
- But some node of the tree has.

▲ □ ► ▲ □ ►

Outline

Introduction

2 Complete and symmetric cases

3 Arbitrary graphs with arbitrary labeling

4 Conclusion

・ロト ・回ト ・ヨト ・ヨト

Arbitrary graphs with arbitrary labeling

Main ideas

- Consider the nodes with edges going outside the tree.
- Choose the closest to the root according to the distance in hops in the tree.

(1日) (日) (日)

Arbitrary graphs with arbitrary labeling

Main ideas

- Consider the nodes with edges going outside the tree.
- Choose the closest to the root according to the distance in hops in the tree.

▲ □ ► ▲ □ ►

Outline

1 Introduction

- 2 Complete and symmetric cases
- 3 Arbitrary graphs with arbitrary labeling

4 Conclusion

・ロト ・回ト ・ヨト ・ヨト

Conclusion

Open problem

Lower bound

•
$$S_{up} = \Omega(n)$$

Upper bounds

•
$$S_{up} = O(n \log \Delta)$$

•
$$S_{up} = O(n \log \log n)$$

Close the gap.

For further information

An extended version of this paper will appear in the Proceedings of IWDC 2005.

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

3

Conclusion

Open problem

Lower bound

•
$$S_{up} = \Omega(n)$$

Upper bounds

•
$$S_{up} = O(n \log \Delta)$$

•
$$S_{up} = O(n \log \log n)$$

Close the gap.

For further information

An extended version of this paper will appear in the Proceedings of IWDC 2005.

イロト イヨト イヨト イヨト