Problèmes vérifiables par agents mobiles

Evangelos Bampas and David Ilcinkas

LaBRI, CNRS & Université de Bordeaux, France

Decision problems

In centralized computing

- Decision: the Turing Machine must answer yes/no
 - Example: Is the graph 3-colorable?

Decision problems

In centralized computing

- Decision: the Turing Machine must answer yes/no
 - Example: Is the graph 3-colorable?

In classical distributed computing

- Decision: local computations and decisions by the nodes
 - For yes instances, all nodes must answer yes
 - o For no instances, at least one node must answer no
- Example: Is the graph cycle-free?

Decision problems

In centralized computing

- Decision: the Turing Machine must answer yes/no
 - Example: Is the graph 3-colorable?

In classical distributed computing

- Decision: local computations and decisions by the nodes
 - For yes instances, all nodes must answer yes
 - o For no instances, at least one node must answer no
- Example: Is the graph cycle-free?

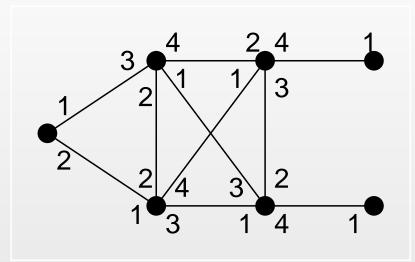
In distributed computing by mobile agents

The topic of this talk.

Mobile agent computational model

Network

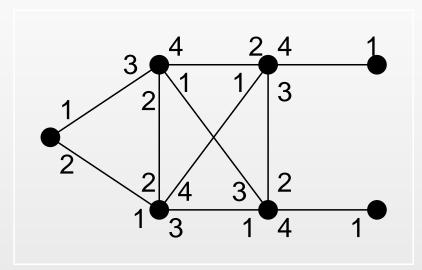
- Connected.
- Anonymous.
- Local port numbering.



Mobile agent computational model

Network

- Connected.
- Anonymous.
- Local port numbering.



Agents

- Copies of a Turing Machine moving in the network.
- Agent *i* initially receives unique identifier id_i and input string x_i .
- Execute synchronous steps as follows:
 - Perform finite local computation based on degree, incoming port number, configurations of collocated agents.
 - Halt (yes/no), stay idle, or exit through one of the ports.

Mobile agent decision problems

Definition

A decision problem is a set of instances $(G, \mathbf{s}, \mathbf{x})$.

- G: graph.
- **s**: list of nodes (starting positions).
- **x**: list of strings (inputs).

Examples

```
path = \{(G, \mathbf{s}, \mathbf{x}) : G \text{ is a path}\}
teamsize = \{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |\mathbf{s}| = |\mathbf{x}|\}
graphsize = \{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |V(G)|\}
```

Decidability...

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if $\exists M \ \forall (G, \mathbf{s}, \mathbf{x})$:

if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall id M(id, G, \mathbf{s}, \mathbf{x}) = all-yes$

if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall id M(id, G, \mathbf{s}, \mathbf{x}) =$ some-no

Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must answer yes/no

- In yes instances, there exists a certificate such that the machine answers yes
- In no instances, for all certificates, the machine answers no

Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must answer yes/no

- In yes instances, there exists a certificate such that the machine answers yes
- In no instances, for all certificates, the machine answers no

In distributed computing

Verification: local computations with local certificates

- In yes instances, there exists a certificate such that all computing entities must answer yes
- In no instances, for all certificates, at least one node must answer no

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if $\exists M \ \forall (G, \mathbf{s}, \mathbf{x})$:

if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall id M(id, G, \mathbf{s}, \mathbf{x}) = all-yes$

if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall id M(id, G, \mathbf{s}, \mathbf{x}) =$ some-no

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if $\exists M \ \forall (G, \mathbf{s}, \mathbf{x})$:

if
$$(G, \mathbf{s}, \mathbf{x}) \in \Pi$$
, then $\forall id M(id, G, \mathbf{s}, \mathbf{x}) = all-yes$

if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall id M(id, G, \mathbf{s}, \mathbf{x}) =$ some-no

Mobile Agent Verifiable problems (class MAV)

A problem Π is verifiable if $\exists M \ \forall (G, \mathbf{s}, \mathbf{x})$:

if
$$(G, \mathbf{s}, \mathbf{x}) \in \Pi$$
, then $\exists \mathbf{y} \ \forall \mathsf{id} \ M(\mathsf{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \mathsf{all-yes}$

if
$$(G, \mathbf{s}, \mathbf{x}) \notin \Pi$$
, then $\forall \mathbf{y} \forall id M(id, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = some-no$

 $\overline{\text{allempty}} = \{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon\} \in \mathsf{MAD}$

Each agent tests its input and accepts iff $x_i = \epsilon$.

allempty = $\{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon\} \in \mathsf{MAD}$

Each agent tests its input and accepts iff $x_i = \epsilon$.

treesize = $\{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |V(G)| \ \mathbf{and} \ G \ \mathbf{is} \ \mathbf{a} \ \mathbf{tree}\} \in \mathsf{MAD}$

Each agents checks independently if it is in a tree of size x_i (DFS traversal).

allempty = $\{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon\} \in \mathsf{MAD}$

Each agent tests its input and accepts iff $x_i = \epsilon$.

treesize = $\{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |V(G)| \ \mathbf{and} \ G \ \mathbf{is} \ \mathbf{a} \ \mathbf{tree}\} \in \mathsf{MAD}$

Each agents checks independently if it is in a tree of size x_i (DFS traversal).

degree = $\{(G, \mathbf{s}, \mathbf{x}) : \forall i \; \exists v \; d_v = x_i\} \in \mathsf{MAV}$

Certificate: path leading from s_i to the node with degree x_i .

allempty =
$$\{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon\} \in \mathsf{MAD}$$

Each agent tests its input and accepts iff $x_i = \epsilon$.

treesize =
$$\{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |V(G)| \ \mathbf{and} \ G \ \mathbf{is} \ \mathbf{a} \ \mathbf{tree}\} \in \mathsf{MAD}$$

Each agents checks independently if it is in a tree of size x_i (DFS traversal).

degree =
$$\{(G, \mathbf{s}, \mathbf{x}) : \forall i \; \exists v \; d_v = x_i\} \in \mathsf{MAV}$$

Certificate: path leading from s_i to the node with degree x_i .

In fact all agents can always decide correctly for treesize.

Strict decidability

We introduce the "strict" version of MAD, MAD_s:

Definition

$$\Pi \in \mathsf{MAD_s}$$
 if $\exists M \ \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \mathsf{id} \ M(\mathsf{id}, G, \mathbf{s}, \mathbf{x}) = \mathsf{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \mathsf{id} \ M(\mathsf{id}, G, \mathbf{s}, \mathbf{x}) = \mathsf{all-no}$

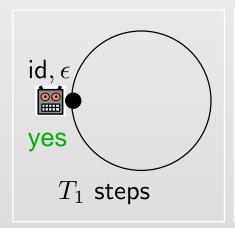
Strict decidability

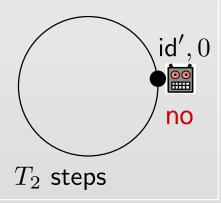
• We introduce the "strict" version of MAD, MAD_s:

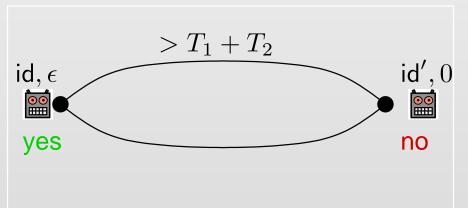
Definition

 $\Pi \in \mathsf{MAD_s}$ if $\exists M \ \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \mathsf{id} \ M(\mathsf{id}, G, \mathbf{s}, \mathbf{x}) = \mathsf{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \mathsf{id} \ M(\mathsf{id}, G, \mathbf{s}, \mathbf{x}) = \mathsf{all-no}$

treesize ∈ MAD_s, but allempty ∉ MAD_s.







Our contributions

- New computability classes below MAV and co-MAV. *
- Closure properties with respect to set operations.
- Metaprotocol for parallel execution of mobile agent protocols.

* Reminder

If X is a class of mobile agent decision problems, then

$$co\text{-}X = \{\Pi : \overline{\Pi} \in X\}$$

Verifiability classes

- MAV definition: \exists certificate that leads to acceptance for yes instances.
- In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV)

```
\Pi \in \text{co-MAV} \text{ if } \exists M \ \forall (G, \mathbf{s}, \mathbf{x}): if (G, \mathbf{s}, \mathbf{x}) \in \Pi, then \forall \mathbf{y} \ \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-yes} if (G, \mathbf{s}, \mathbf{x}) \notin \Pi, then \exists \mathbf{y} \ \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-no}
```

Verifiability classes

- MAV definition: ∃ certificate that leads to acceptance for yes instances.
- In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV)

```
\Pi \in \text{co-MAV} \text{ if } \exists M \ \forall (G, \mathbf{s}, \mathbf{x}): if (G, \mathbf{s}, \mathbf{x}) \in \Pi, then \forall \mathbf{y} \ \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-yes} if (G, \mathbf{s}, \mathbf{x}) \notin \Pi, then \exists \mathbf{y} \ \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-no}
```

• "No" certificate with the same acceptance mechanism as in MAV:

Definition (co-MAV')

```
\Pi \in \text{co-MAV'} if \exists M \ \forall (G, \mathbf{s}, \mathbf{x}):

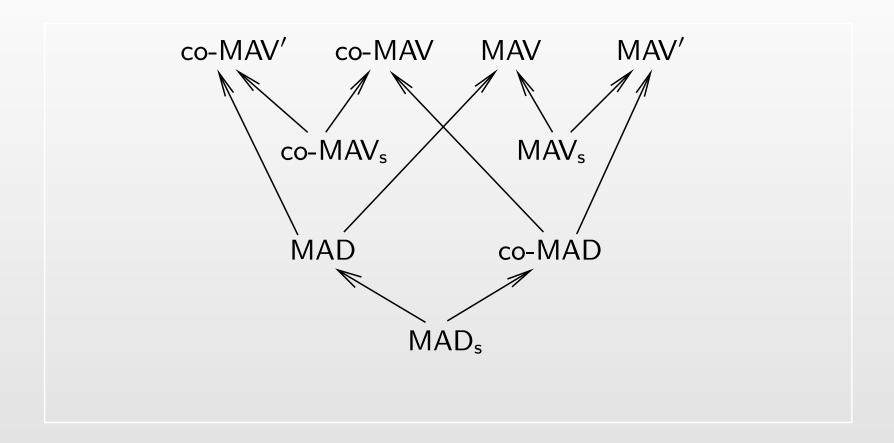
if (G, \mathbf{s}, \mathbf{x}) \in \Pi, then \forall \mathbf{y} \ \forall \text{id} \ M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-yes}

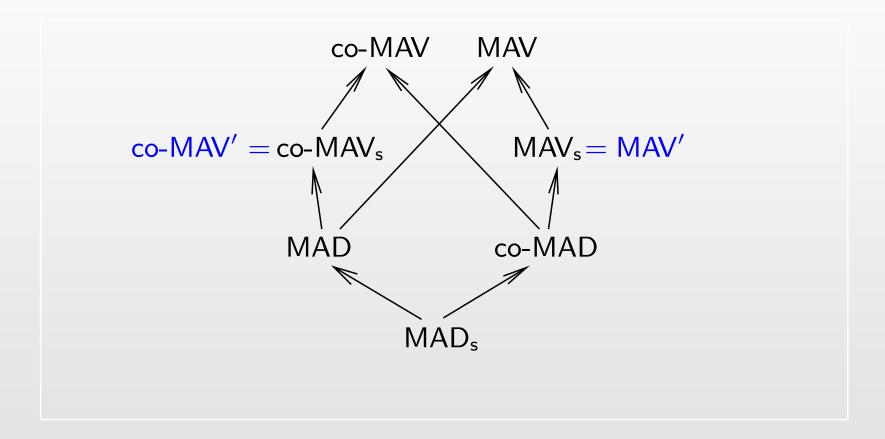
if (G, \mathbf{s}, \mathbf{x}) \notin \Pi, then \exists \mathbf{y} \ \forall \text{id} \ M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-no}
```

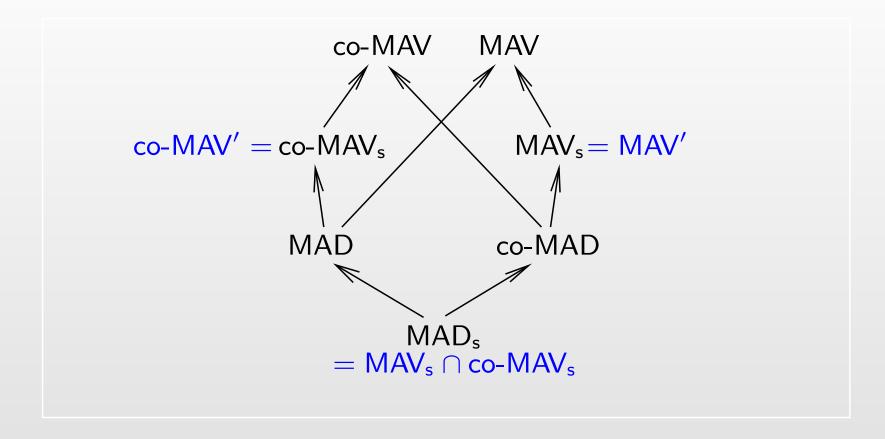
Class overview

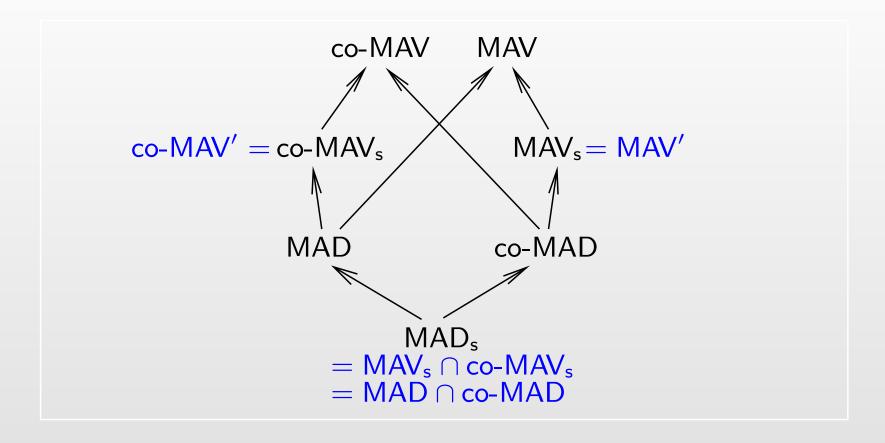
	"yes" instances	"no" instances	
MADs	(∀y) all-yes	(∀y) all-no	
MAD co-MAD	(∀y) all-yes $(∀y)$ some-yes	$(\forall y)$ some-no $(\forall y)$ all-no	
MAV _s	∃y all-yes	∀y all-no	
co-MAV _s	∀y all-yes	∃y all-no	
MAV	∃y all-yes	∀y some-no	
co-MAV	∀y some-yes	∃y all-no	
MAV'	∃y some-yes	∀y all-no	
co-MAV'	∀y all-yes	∃y some-no	

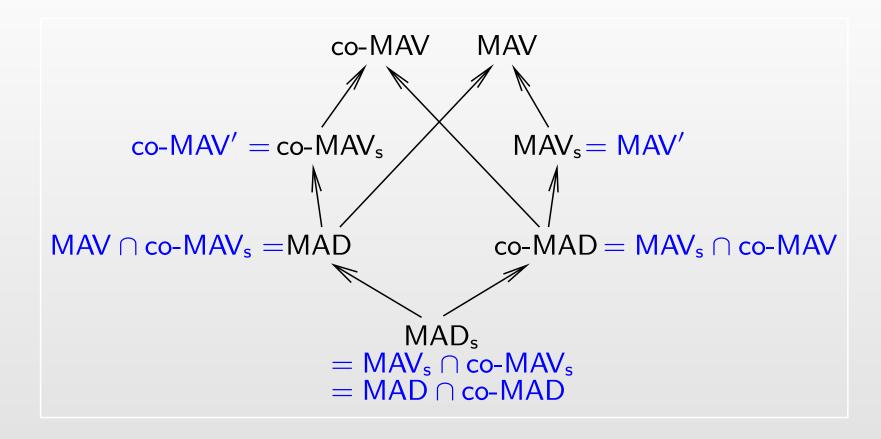
Inclusions by definition

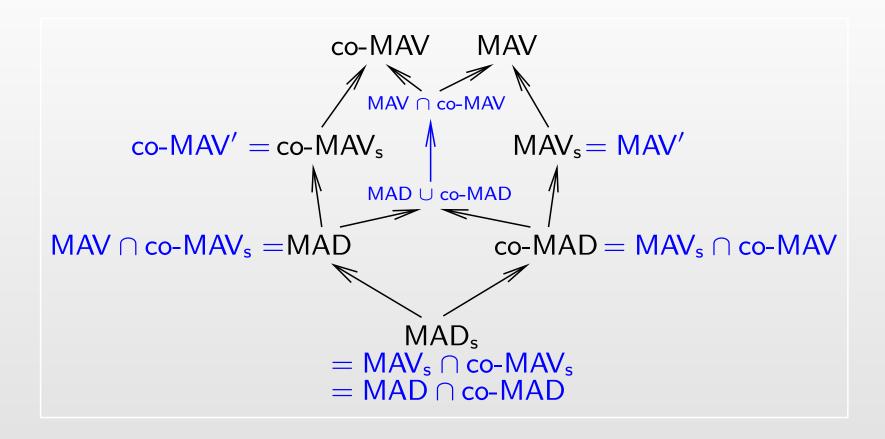






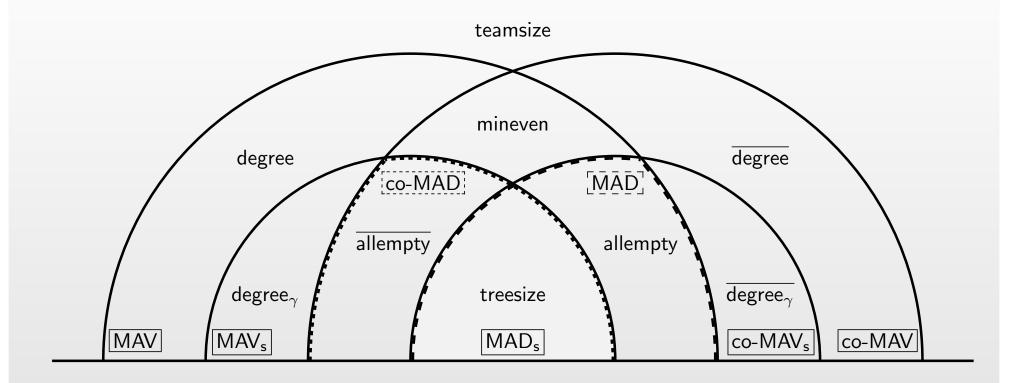






- All inclusions are strict.
- We can separate all pairs of classes in the diagram.

Another point of view



Characterization of decidability classes

Theorem [Fraigniaud and Pelc 2012]

 $MAD_1 = MAV_1 \cap co-MAV_1$.

Our decidability class characterizations

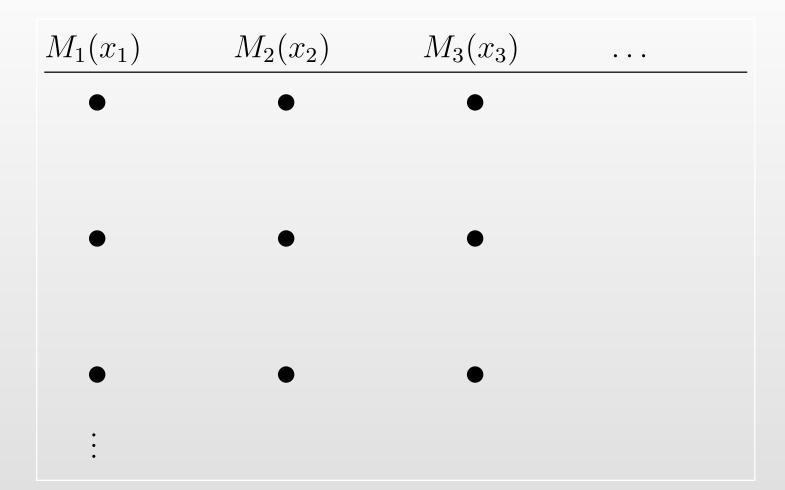
 $MAD_s = MAV_s \cap co-MAV_s$ $MAD = MAV \cap co-MAV_s$

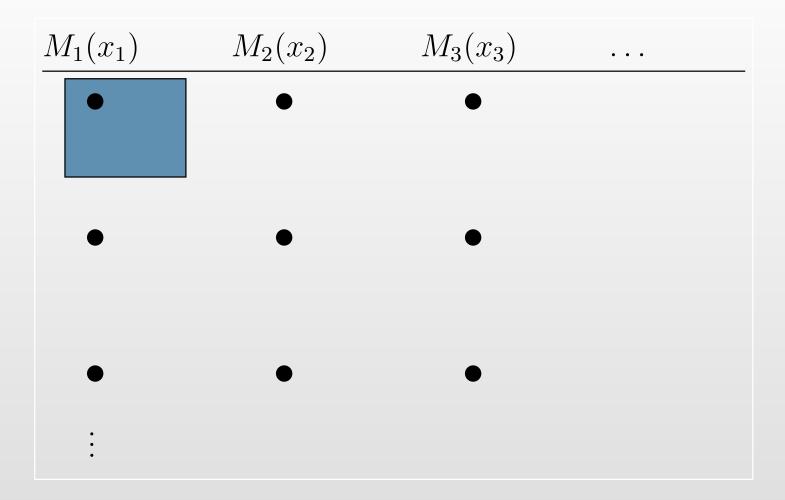
 $co-MAD = MAV_s \cap co-MAV$

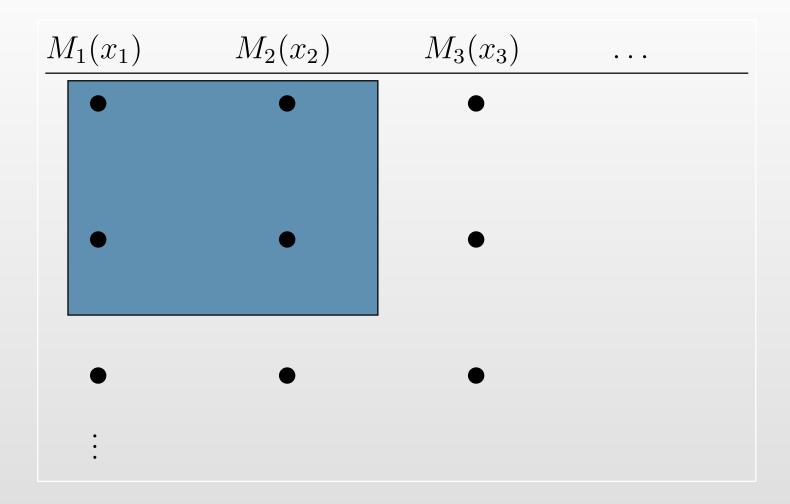
can be seen as generalizations of the above Theorem for multi-agent protocols.

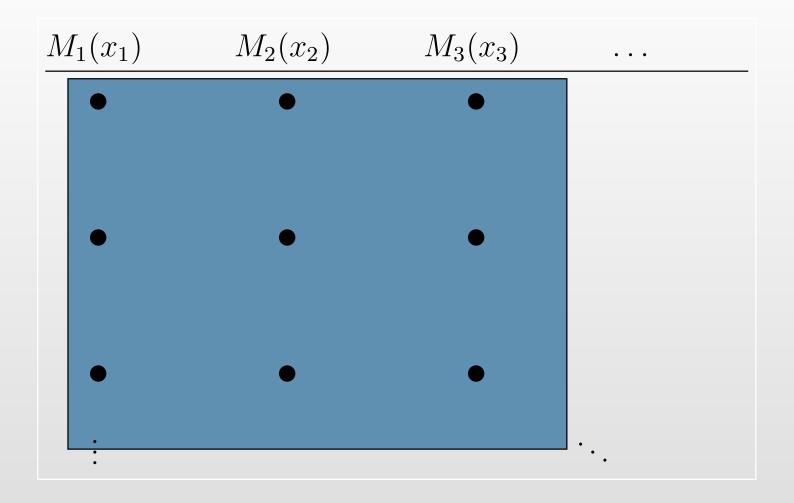
Closure under standard set-theoretic operations:

	Union	Intersection	Complement
MADs	✓	✓	√
MAD	X	✓	×
co-MAD	\checkmark	X	X
MAV_s	✓	✓	×
co-MAV _s	\checkmark	✓	X
MAV	X	✓	×
co-MAV	✓	X	X









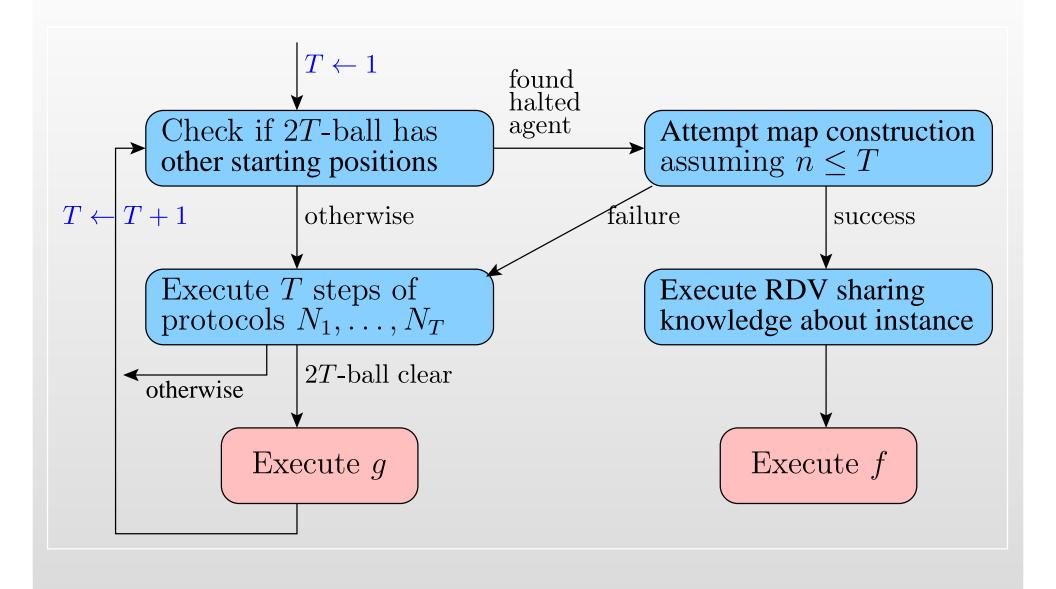
Meta-protocol

- Permits the execution of a number of mobile agent protocols essentially in parallel.
- The agents accept or reject depending on the outcome of the executions of the individual protocols.

Parameters

- $\mathcal{N} = (N_1, N_2, \dots)$: list of protocols to execute (possibly infinite).
- Global decider f(id, G, s, x): yes or no with full knowledge.
- Local decider $g(H_1, ..., H_{\sigma})$: yes or **no** or indecisive based on the executions of the protocols.

Meta-protocol



Future research

- Extend the hierarchy $MAD \rightarrow MAV \rightarrow \dots$
- Resource-bounded computations.
- Asynchronous computations.

Future research

- Extend the hierarchy $MAD \rightarrow MAV \rightarrow \dots$
- Resource-bounded computations.
- Asynchronous computations.

Thank you!