On mobile agents verifiable problems
(published in LATIN'16)

Evangelos Bampas' David llcinkas?

LAix-Marseille Univ. (LIF), France
2CNRS & Univ. Bordeaux (LaBRI), France

Micro MAC
September 26, 2016

E. Bampas and D. licinkas On mobile agents verifiable problems

Decision problems

In centralized computing

@ Decision: the Turing Machine must answer yes/no
e Example: Is the graph 3-colorable?

E. Bampas and D. licinkas On mobile agents verifiable problems

Decision problems

In centralized computing

@ Decision: the Turing Machine must answer yes/no
e Example: Is the graph 3-colorable?

In classical distributed computing

@ Decision: local computations and decisions by the nodes

e For yes instances, all nodes must answer yes
e For no instances, at least one node must answer no

@ Example: Is the graph properly 3-colored?

E. Bampas and D. licinkas On mobile agents verifiable problems

Decision problems

In centralized computing

@ Decision: the Turing Machine must answer yes/no
e Example: Is the graph 3-colorable?

In classical distributed computing

@ Decision: local computations and decisions by the nodes

e For yes instances, all nodes must answer yes
e For no instances, at least one node must answer no

@ Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

@ The topic of this talk.

E. Bampas and D. licinkas On mobile agents verifiable problems

Mobile agent computational model

Network

@ Connected.
@ Anonymous.

@ Local port numbering.

E. Bampas and D. licinkas On mobile agents verifiable problems

Mobile agent computational model

Network 4 5 4]
L]
@ Connected. 3
@ Anonymous.
@ Local port numbering. 2
195 —% 1°

Agents

@ Copies of a Turing Machine moving in the network.

@ Agent / initially receives unique identifier id; and input
string x;.

@ Execute synchronous steps as follows:

e Perform finite local computation based on current
memory state, degree, incoming port number,
configurations of collocated agents.

o Halt (yes/no), stay idle, or exit through one of the ports.

E. Bampas and D. licinkas On mobile agents verifiable problems

Mobile agent decision problems

[Fraigniaud and Pelc, LATIN 2012]

A decision problem is a set of instances (G, s, x).
e G: graph.
@ s: list of nodes (starting positions).

@ x: list of strings (inputs).

path = {(G,s,x) : G is a path}
teamsize = {(G, s, x) : Vi x; = |s| = |x|}
graphsize = {(G,s,x) : Vi x; = |V(G)|}

E. Bampas and D. licinkas On mobile agents verifiable problems

Decidability...

[Fraigniaud and Pelc, LATIN 2012]

A problem I1 is decidable if IM V(G, s, x):
if (G,s,x) €, then Vid M(id, G,s, x) = all-yes
if (G,s,x) ¢ I, then Vid M(id, G, s, x) = some-no

E. Bampas and D. licinkas On mobile agents verifiable problems

Verification

Verification: thanks to a certificate, the Turing Machine must an-
swer yes/no

@ In yes instances, there exists a certificate such that the
machine answers yes

@ In no instances, for all certificates, the machine answers no

E. Bampas and D] On mobile agents verifiable problems

Verification

Verification: thanks to a certificate, the Turing Machine must an-
swer yes/no

@ In yes instances, there exists a certificate such that the
machine answers yes

@ In no instances, for all certificates, the machine answers no

Verification: local computations with local certificates

@ In yes instances, there exists a certificate such that all
computing entities must answer yes

@ In no instances, for all certificates, at least one node must
answer no

E. Bampas and D] On mobile agents verifiable problems

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

A problem I1 is decidable if IM V(G, s, x):
if (G,s,x) €I, then Vid M(id, G, s, x) = all-yes
if (G,s,x) ¢ I, then Vid M(id, G, s, x) = some-no

E. Bampas and D. licinkas On mobile agents verifiable problems

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

A problem I1 is decidable if IM V(G, s, x):
if (G,s,x) €I, then Vid M(id, G, s, x) = all-yes
if (G,s,x) ¢ I, then Vid M(id, G, s, x) = some-no

A problem I1 is verifiable if IM V(G,s, x):
if (G,s,x) €I, then Jy Vid M(id, G, s, (x,y)) = all-yes
if (G,s,x) ¢ [, then Yy Vid M(id, G,s, (x,y)) = some-no

E. Bampas and D. licinkas On mobile agents verifiable problems

SEIES

Each agent tests its input and accepts iff x; = €.

E. Bampas and D. licinkas On mobile agents verifiable problems

Each agent tests its input and accepts iff x; = e.

Certificate: path leading from s; to a degree-x; node.

E. Bampas and D. licinkas On mobile agents verifiable problems

Each agent tests its input and accepts iff x; = e.
Certificate: path leading from s; to a degree-x; node.

Each agents checks independently if it is in a path of
size Xx;.

E. Bampas and D. licinkas On mobile agents verifiable problems

Each agent tests its input and accepts iff x; = e.
Certificate: path leading from s; to a degree-x; node.

Each agents checks independently if it is in a path of
size Xx;.

In fact all agents can always decide correctly for pathsize.

E. Bampas and D. licinkas On mobile agents verifiable problems

Strict decidability

@ We introduce the “strict” version of MAD, MAD:.:

M e MAD, if 3M Y(G,s, x):
if (G,s,x) €, then Yid M(id, G, s, x) = all-yes
if (G,s,x) ¢ I, then Vid M(id, G,s, x) = all-no

E. Bampas and D. licinkas On mobile agents verifiable problems

Strict decidability

@ We introduce the “strict” version of MAD, MAD:.:

M e MAD, if 3M Y(G,s, x):
if (G,s,x) €, then Yid M(id, G, s, x) = all-yes
if (G,s,x) ¢ I, then Vid M(id, G,s, x) = all-no

@ pathsize € MADj, but allempty ¢ MAD:x.

>T) + 15
' |d |d',0

no

Ty steps T> steps

E. Bampas and D. licinkas On mobile agents verifiable problems

QOur contributions

o New computability classes below MAV and co-MAV. *
@ Closure properties with respect to set operations.

@ Meta-protocol for parallel execution of mobile agent
protocols.

*
If X is a class of mobile agent decision problems, then

co-X ={MN:MeX}

E. Bampas and D. licinkas On mobile agents verifiable problems

Verifiability classes

MAV def.: 3 cert. that leads to acceptance for yes instances.
In co-MAV, the acceptance mechanism is reversed:

M € co-MAV if IM V(G,s, x):
if (G,s,x) €11, then Yy Vid M(id, G,s, (x,y)) = some-yes
if (G,s,x) ¢ I, then Jy Vid M(id, G, s, (x,y)) = all-no

E. Bampas and D. licinkas On mobile agents verifiable problems

Verifiability classes

MAV def.: 3 cert. that leads to acceptance for yes instances.
In co-MAV, the acceptance mechanism is reversed:

M € co-MAV if IM V(G,s, x):
if (G,s,x) €11, then Yy Vid M(id, G,s, (x,y)) = some-yes
if (G,s,x) ¢ I, then Jy Vid M(id, G, s, (x,y)) = all-no

“No" cert. with the same acceptance mechanism as in MAV:
M € co-MAV' if IM V(G, s, x):

if (G,s,x) €I, then Vy Vid M(id, G,s, (x,y)) = all-yes
if (G,s,x) ¢ I, then Jy Vid M(id, G, s, (x,y)) = some-no

E. Bampas and D. licinkas On mobile agents verifiable problems

Class overview

“yes” instances “no” instances
MAD, (Vy) all-yes (Vy) all-no
MAD (Vy) all-yes (Vy) some-no
co-MAD (Vy) some-yes (Vy) all-no
MAV dy all-yes Vy all-no
co-MAV; Vy all-yes dy all-no
MAV dy all-yes Vy some-no
co-MAV Yy some-yes dJdy all-no
MAV’ Jdy some-yes Yy all-no
co-MAV/ Vy all-yes Jdy some-no

E. Bampas and D. licinkas On mobile agents verifiable problems

Inclusions by definition

co-MAV' co-MAV MAV MAV'

x/ e
S

MAD co-MAD

S

MAD;

E. Bampas and D. licinkas On mobile agents verifiable problems

Our results (1)

co-MAV MAV

/NN

co-MAV' = co-MAV, MAV;= MAV’

& |

MAD co-MAD

™~ 7

MAD;

E. Bampas and D. licinkas On mobile agents verifiable problems

Our results (1)

co-MAV MAV

/NN

co-MAV' = co-MAV, MAV;= MAV’

& |

MAD co-MAD

™~ 7

MAD;
= MAV; N co-MAV;

E. Bampas and D. licinkas On mobile agents verifiable problems

Our results (1)

co-MAV MAV

/NN

co-MAV' = co-MAV, MAV;= MAV’

& |

MAD co-MAD

™~ 7

MAD;
= MAV; N co-MAV;
= MAD N co-MAD

E. Bampas and D. licinkas On mobile agents verifiable problems

Our results (1)

co-MAV MAV

/NN

co-MAV' = co-MAV, MAV;= MAV’
MAV N co-MAVs =MAD co-MAD = MAV; N co-MAV
MAD,

= MAV; N co-MAV;
= MAD N co-MAD

E. Bampas and D. licinkas On mobile agents verifiable problems

Our results (1)

co-MAV MAV

/MAV M co-MAV

co-MAV' = co-MAV. T MAV. = MAV/

& MAD U co-MAD f
/ \
MAV N co-MAVs =MAD co-MAD = MAV N co-MAV

™~ 7

MAD;
= MAV; N co-MAV;
= MAD N co-MAD

@ All inclusions are strict.

@ We can separate all pairs of classes in the diagram.

E. Bampas and D. licinkas On mobile agents verifiable problems

Another point of view

teamsize

degree

allempty allempty

treesize

degree,

co-MAV, \ co-MAV \

MAD,

. Bampas and D. llci On mobile agents verifiable problems

Characterization of decidability classes

MAD; = MAV; N co-MAV;.

Our decidability class characterizations

MAD, = MAV, N co-MAV,
MAD = MAV N co-MAV,
co-MAD = MAV; N co-MAV

can be seen as generalizations of the above Theorem for
multi-agent protocols.

E. Bampas and D. licinkas On mobile agents verifiable problems

Our results (1)

Closure under standard set-theoretic operations:

Union Intersection Complement

MAD, v v Ve
MAD X v X
co-MAD Ve X X
MAV, v v X
co-MAV, v v X
MAV X Ve X
co-MAV ve X X

E. Bampas and D. licinkas On mobile agents verifiable problems

Main tool: our meta-protocol

Meta-protocol for parallel execution of mobile agent protocols.

@ Possibly infinite number of mobile agent protocols

@ Mobile agent computing analogue of the classical
dovetailing technique

E. Bampas and D. licinkas On mobile agents verifiable problems

Main tool: our meta-protocol

Meta-protocol for parallel execution of mobile agent protocols.
@ Possibly infinite number of mobile agent protocols

@ Mobile agent computing analogue of the classical
dovetailing technique

MADs = MAD N co-MAD

“yes" instances “no” instances
MAD, all-yes all-no
MAD all-yes some-no
co-MAD some-yes all-no

E. Bampas and D. licinkas On mobile agents verifiable problems

Classical dovetailing

M (1) My () M3(z3)
° ° °
° ° °
° ° °

E. Bampas and D. licinkas On mobile agents verifiable problems

Classical dovetailing

M (1) My () M3(z3)
°
° ° °
° ° °

E. Bampas and D. licinkas On mobile agents verifiable problems

Classical dovetailing

M1(£E1) Mz(iﬂz) Ms(iﬁs)
[
[J
[J [) [

E. Bampas and D. licinkas On mobile agents verifiable problems

Classical dovetailing

Ml(xl) M2(1172) M3(9C3)

E. Bampas and D. licinkas On mobile agents verifiable problems

Meta-protocol

@ Permits the execution of a number of mobile agent
protocols essentially in parallel.

@ The agents accept or reject depending on the outcome of
the executions of the individual protocols.

o N = (Ny, Ny, ...): list of protocols to execute
(possibly infinite).

@ Global decider f(id, G, s, x): yes or no with full
knowledge of the instance.

@ Local decider g(Hi, ..., H,): yes or no or indecisive
based on the executions of the protocols.

E. Bampas and D. licinkas On mobile agents verifiable problems

Meta-protocol

T

T+ 1

Y

Execute T steps of
protocols Ny, ..., Np

- 27T-ball clear
otherwise

Y

Execute ¢

E. Bampas and D. licinkas

found
< halted
Check if 27-ball has agent
other starting positions)
T+1 otherwise

‘/Attempt map construction
'\assuming n<T

ailure success

Y

Execute RDV sharing
knowledge about instance

Y

Execute f

On mobile agents verifiable problems

Meta-protocol

Attempt map construction
assuming #nodes < T'

|

T+ 1
neutralized < false
accompanied <+ false

““““ % T T T T Tsynch [Dovetail T" protocols

[cautious <+ false]

synch

complete map
ofn <T
nodes

Rov(n,id;)and
excl(langeli%lfo Execute f]

mapseeker < false

cautious V

[Rov(2T,id;)] accompanied
777777777777 synch
[update flags]— — ——
- idle until implicit
4 T+ T+1)
* no

E. Bampas and D] On mobile agents verifiable problems

Future research

@ Extend the hierarchy MAD — MAV — ...
@ Resource-bounded computations

@ Asynchronous computations

E. Bampas and D. licinkas On mobile agents verifiable problems

Future research

@ Extend the hierarchy MAD — MAV — ...
@ Resource-bounded computations

@ Asynchronous computations

Thank you!

E. Bampas and D. licinkas On mobile agents verifiable problems

