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Decision problems

In centralized computing

Decision: the Turing Machine must answer yes/no

Example: Is the graph 3-colorable?

In classical distributed computing

Decision: local computations and decisions by the nodes

For yes instances, all nodes must answer yes
For no instances, at least one node must answer no

Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

The topic of this talk.
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Mobile agent computational model

Network

Connected.

Anonymous.

Local port numbering.
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Agents

Copies of a Turing Machine moving in the network.

Agent i initially receives unique identifier idi and input
string xi .
Execute synchronous steps as follows:

Perform finite local computation based on current
memory state, degree, incoming port number,
configurations of collocated agents.
Halt (yes/no), stay idle, or exit through one of the ports.
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Mobile agent decision problems

Definition [Fraigniaud and Pelc, LATIN 2012]

A decision problem is a set of instances (G , s, x).

G : graph.

s: list of nodes (starting positions).

x: list of strings (inputs).

Examples

path = {(G , s, x) : G is a path}
teamsize = {(G , s, x) : ∀i xi = |s| = |x|}
graphsize = {(G , s, x) : ∀i xi = |V (G )|}
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Decidability...

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = some-no
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Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must an-
swer yes/no

In yes instances, there exists a certificate such that the
machine answers yes

In no instances, for all certificates, the machine answers no

In distributed computing

Verification: local computations with local certificates

In yes instances, there exists a certificate such that all
computing entities must answer yes

In no instances, for all certificates, at least one node must
answer no
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... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = some-no

Mobile Agent Verifiable problems (class MAV)

A problem Π is verifiable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = all-yes

if (G , s, x) /∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = some-no
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Examples

allempty = {(G , s, x) : ∀i xi = ε} ∈ MAD

Each agent tests its input and accepts iff xi = ε.

degree = {(G , s, x) : ∀i ∃v dv = xi} ∈ MAV

Certificate: path leading from si to a degree-xi node.

pathsize = {(G , s, x) : ∀i xi = |V (G )| and G path} ∈ MAD

Each agents checks independently if it is in a path of
size xi .

In fact all agents can always decide correctly for pathsize.
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Strict decidability

We introduce the “strict” version of MAD, MADs:

Definition

Π ∈ MADs if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = all-no

pathsize ∈ MADs, but allempty /∈ MADs.

yes

id, ǫ

T1 steps

no

id′, 0

T2 steps

yes no

> T1 + T2

id, ǫ id′, 0
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Our contributions

New computability classes below MAV and co-MAV. *
Closure properties with respect to set operations.

Meta-protocol for parallel execution of mobile agent
protocols.

* Reminder

If X is a class of mobile agent decision problems, then

co-X = {Π : Π ∈ X}
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Verifiability classes

MAV def.: ∃ cert. that leads to acceptance for yes instances.

In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV)

Π ∈ co-MAV if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = some-yes

if (G , s, x) /∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = all-no

“No” cert. with the same acceptance mechanism as in MAV:

Definition (co-MAV′)

Π ∈ co-MAV′ if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = all-yes

if (G , s, x) /∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = some-no
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Class overview

“yes” instances “no” instances

MADs (∀y) all-yes (∀y) all-no

MAD (∀y) all-yes (∀y) some-no
co-MAD (∀y) some-yes (∀y) all-no

MAVs ∃y all-yes ∀y all-no
co-MAVs ∀y all-yes ∃y all-no

MAV ∃y all-yes ∀y some-no
co-MAV ∀y some-yes ∃y all-no

MAV′ ∃y some-yes ∀y all-no
co-MAV′ ∀y all-yes ∃y some-no
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Inclusions by definition

co-MAVco-MAV′

co-MADMAD

MADs

MAV MAV′

MAVsco-MAVs
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Our results (I)

MAVsco-MAVs

co-MAV

co-MADMAD

MADs

MAV

= MAV′co-MAV′ =

All inclusions are strict.

We can separate all pairs of classes in the diagram.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems



Our results (I)

MAVsco-MAVs

co-MAV

co-MADMAD

MADs

MAV

= MAV′co-MAV′ =

= MAVs ∩ co-MAVs
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Our results (I)

MAV ∩ co-MAV

MAD ∪ co-MAD

= MAVs ∩ co-MAVMAV ∩ co-MAVs =

MAVsco-MAVs

co-MAV

= MAD ∩ co-MAD

MAD

MADs

MAV
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Another point of view

MADsMAV co-MAVMAVs co-MAVs

co-MAD MAD

teamsize

degree degree

degreeγ degreeγtreesize

allemptyallempty

mineven
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Characterization of decidability classes

Theorem [Fraigniaud and Pelc 2012]

MAD1 = MAV1 ∩ co-MAV1.

Our decidability class characterizations

MADs = MAVs ∩ co-MAVs

MAD = MAV ∩ co-MAVs

co-MAD = MAVs ∩ co-MAV

can be seen as generalizations of the above Theorem for
multi-agent protocols.
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Our results (II)

Closure under standard set-theoretic operations:

Union Intersection Complement

MADs 3 3 3

MAD 7 3 7

co-MAD 3 7 7

MAVs 3 3 7

co-MAVs 3 3 7

MAV 7 3 7

co-MAV 3 7 7
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Main tool: our meta-protocol

Meta-protocol for parallel execution of mobile agent protocols.

Possibly infinite number of mobile agent protocols

Mobile agent computing analogue of the classical
dovetailing technique

Example of use

MADs = MAD ∩ co-MAD

“yes” instances “no” instances

MADs all-yes all-no

MAD all-yes some-no

co-MAD some-yes all-no
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Classical dovetailing

M1(x1) M2(x2) M3(x3) . . .

...
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Meta-protocol

Permits the execution of a number of mobile agent
protocols essentially in parallel.

The agents accept or reject depending on the outcome of
the executions of the individual protocols.

Parameters

N = (N1,N2, . . . ): list of protocols to execute
(possibly infinite).

Global decider f (id,G , s, x): yes or no with full
knowledge of the instance.

Local decider g(H1, . . . ,Hσ): yes or no or indecisive
based on the executions of the protocols.
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Meta-protocol

knowledge about instance
Execute RDV sharing

Attempt map construction

otherwise

other starting positions

Execute g Execute f

Execute T steps of
protocols N1, . . . , NT

T ← 1

assuming n ≤ T

failure success

found
halted
agent

T ← T + 1 otherwise

2T -ball clear

Check if 2T -ball has
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Meta-protocol
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Future research

Extend the hierarchy MAD→ MAV→ . . .

Resource-bounded computations

Asynchronous computations

Thank you!
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