
On mobile agents verifiable problems

(published in LATIN’16)

Evangelos Bampas1 David Ilcinkas2

1Aix-Marseille Univ. (LIF), France
2CNRS & Univ. Bordeaux (LaBRI), France

Micro MAC
September 26, 2016

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Decision problems

In centralized computing

Decision: the Turing Machine must answer yes/no

Example: Is the graph 3-colorable?

In classical distributed computing

Decision: local computations and decisions by the nodes

For yes instances, all nodes must answer yes
For no instances, at least one node must answer no

Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

The topic of this talk.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Decision problems

In centralized computing

Decision: the Turing Machine must answer yes/no

Example: Is the graph 3-colorable?

In classical distributed computing

Decision: local computations and decisions by the nodes

For yes instances, all nodes must answer yes
For no instances, at least one node must answer no

Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

The topic of this talk.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Decision problems

In centralized computing

Decision: the Turing Machine must answer yes/no

Example: Is the graph 3-colorable?

In classical distributed computing

Decision: local computations and decisions by the nodes

For yes instances, all nodes must answer yes
For no instances, at least one node must answer no

Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

The topic of this talk.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Mobile agent computational model

Network

Connected.

Anonymous.

Local port numbering.

1

2

3
4 2 1

2

4

2

14131

234

1 31

Agents

Copies of a Turing Machine moving in the network.

Agent i initially receives unique identifier idi and input
string xi .
Execute synchronous steps as follows:

Perform finite local computation based on current
memory state, degree, incoming port number,
configurations of collocated agents.
Halt (yes/no), stay idle, or exit through one of the ports.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Mobile agent computational model

Network

Connected.

Anonymous.

Local port numbering.

1

2

3
4 2 1

2

4

2

14131

234

1 31

Agents

Copies of a Turing Machine moving in the network.

Agent i initially receives unique identifier idi and input
string xi .
Execute synchronous steps as follows:

Perform finite local computation based on current
memory state, degree, incoming port number,
configurations of collocated agents.
Halt (yes/no), stay idle, or exit through one of the ports.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Mobile agent decision problems

Definition [Fraigniaud and Pelc, LATIN 2012]

A decision problem is a set of instances (G , s, x).

G : graph.

s: list of nodes (starting positions).

x: list of strings (inputs).

Examples

path = {(G , s, x) : G is a path}
teamsize = {(G , s, x) : ∀i xi = |s| = |x|}
graphsize = {(G , s, x) : ∀i xi = |V (G)|}

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Decidability...

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = some-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must an-
swer yes/no

In yes instances, there exists a certificate such that the
machine answers yes

In no instances, for all certificates, the machine answers no

In distributed computing

Verification: local computations with local certificates

In yes instances, there exists a certificate such that all
computing entities must answer yes

In no instances, for all certificates, at least one node must
answer no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must an-
swer yes/no

In yes instances, there exists a certificate such that the
machine answers yes

In no instances, for all certificates, the machine answers no

In distributed computing

Verification: local computations with local certificates

In yes instances, there exists a certificate such that all
computing entities must answer yes

In no instances, for all certificates, at least one node must
answer no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = some-no

Mobile Agent Verifiable problems (class MAV)

A problem Π is verifiable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = all-yes

if (G , s, x) /∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = some-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = some-no

Mobile Agent Verifiable problems (class MAV)

A problem Π is verifiable if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = all-yes

if (G , s, x) /∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = some-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Examples

allempty = {(G , s, x) : ∀i xi = ε} ∈ MAD

Each agent tests its input and accepts iff xi = ε.

degree = {(G , s, x) : ∀i ∃v dv = xi} ∈ MAV

Certificate: path leading from si to a degree-xi node.

pathsize = {(G , s, x) : ∀i xi = |V (G)| and G path} ∈ MAD

Each agents checks independently if it is in a path of
size xi .

In fact all agents can always decide correctly for pathsize.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Examples

allempty = {(G , s, x) : ∀i xi = ε} ∈ MAD

Each agent tests its input and accepts iff xi = ε.

degree = {(G , s, x) : ∀i ∃v dv = xi} ∈ MAV

Certificate: path leading from si to a degree-xi node.

pathsize = {(G , s, x) : ∀i xi = |V (G)| and G path} ∈ MAD

Each agents checks independently if it is in a path of
size xi .

In fact all agents can always decide correctly for pathsize.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Examples

allempty = {(G , s, x) : ∀i xi = ε} ∈ MAD

Each agent tests its input and accepts iff xi = ε.

degree = {(G , s, x) : ∀i ∃v dv = xi} ∈ MAV

Certificate: path leading from si to a degree-xi node.

pathsize = {(G , s, x) : ∀i xi = |V (G)| and G path} ∈ MAD

Each agents checks independently if it is in a path of
size xi .

In fact all agents can always decide correctly for pathsize.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Examples

allempty = {(G , s, x) : ∀i xi = ε} ∈ MAD

Each agent tests its input and accepts iff xi = ε.

degree = {(G , s, x) : ∀i ∃v dv = xi} ∈ MAV

Certificate: path leading from si to a degree-xi node.

pathsize = {(G , s, x) : ∀i xi = |V (G)| and G path} ∈ MAD

Each agents checks independently if it is in a path of
size xi .

In fact all agents can always decide correctly for pathsize.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Strict decidability

We introduce the “strict” version of MAD, MADs:

Definition

Π ∈ MADs if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = all-no

pathsize ∈ MADs, but allempty /∈ MADs.

yes

id, ǫ

T1 steps

no

id′, 0

T2 steps

yes no

> T1 + T2

id, ǫ id′, 0

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Strict decidability

We introduce the “strict” version of MAD, MADs:

Definition

Π ∈ MADs if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀id M(id,G , s, x) = all-yes

if (G , s, x) /∈ Π, then ∀id M(id,G , s, x) = all-no

pathsize ∈ MADs, but allempty /∈ MADs.

yes

id, ǫ

T1 steps

no

id′, 0

T2 steps

yes no

> T1 + T2

id, ǫ id′, 0

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our contributions

New computability classes below MAV and co-MAV. *
Closure properties with respect to set operations.

Meta-protocol for parallel execution of mobile agent
protocols.

* Reminder

If X is a class of mobile agent decision problems, then

co-X = {Π : Π ∈ X}

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Verifiability classes

MAV def.: ∃ cert. that leads to acceptance for yes instances.

In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV)

Π ∈ co-MAV if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = some-yes

if (G , s, x) /∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = all-no

“No” cert. with the same acceptance mechanism as in MAV:

Definition (co-MAV′)

Π ∈ co-MAV′ if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = all-yes

if (G , s, x) /∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = some-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Verifiability classes

MAV def.: ∃ cert. that leads to acceptance for yes instances.

In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV)

Π ∈ co-MAV if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = some-yes

if (G , s, x) /∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = all-no

“No” cert. with the same acceptance mechanism as in MAV:

Definition (co-MAV′)

Π ∈ co-MAV′ if ∃M ∀(G , s, x):

if (G , s, x) ∈ Π, then ∀y ∀id M(id,G , s, 〈x, y〉) = all-yes

if (G , s, x) /∈ Π, then ∃y ∀id M(id,G , s, 〈x, y〉) = some-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Class overview

“yes” instances “no” instances

MADs (∀y) all-yes (∀y) all-no

MAD (∀y) all-yes (∀y) some-no
co-MAD (∀y) some-yes (∀y) all-no

MAVs ∃y all-yes ∀y all-no
co-MAVs ∀y all-yes ∃y all-no

MAV ∃y all-yes ∀y some-no
co-MAV ∀y some-yes ∃y all-no

MAV′ ∃y some-yes ∀y all-no
co-MAV′ ∀y all-yes ∃y some-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Inclusions by definition

co-MAVco-MAV′

co-MADMAD

MADs

MAV MAV′

MAVsco-MAVs

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our results (I)

MAVsco-MAVs

co-MAV

co-MADMAD

MADs

MAV

= MAV′co-MAV′ =

All inclusions are strict.

We can separate all pairs of classes in the diagram.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our results (I)

MAVsco-MAVs

co-MAV

co-MADMAD

MADs

MAV

= MAV′co-MAV′ =

= MAVs ∩ co-MAVs

All inclusions are strict.

We can separate all pairs of classes in the diagram.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our results (I)

MAVsco-MAVs

co-MAV

= MAD ∩ co-MAD

co-MADMAD

MADs

MAV

= MAV′co-MAV′ =

= MAVs ∩ co-MAVs

All inclusions are strict.

We can separate all pairs of classes in the diagram.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our results (I)

= MAVs ∩ co-MAVMAV ∩ co-MAVs =

MAVsco-MAVs

co-MAV

= MAD ∩ co-MAD

MAD

MADs

MAV

= MAV′co-MAV′ =

= MAVs ∩ co-MAVs

co-MAD

All inclusions are strict.

We can separate all pairs of classes in the diagram.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our results (I)

MAV ∩ co-MAV

MAD ∪ co-MAD

= MAVs ∩ co-MAVMAV ∩ co-MAVs =

MAVsco-MAVs

co-MAV

= MAD ∩ co-MAD

MAD

MADs

MAV

= MAV′co-MAV′ =

= MAVs ∩ co-MAVs

co-MAD

All inclusions are strict.

We can separate all pairs of classes in the diagram.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Another point of view

MADsMAV co-MAVMAVs co-MAVs

co-MAD MAD

teamsize

degree degree

degreeγ degreeγtreesize

allemptyallempty

mineven

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Characterization of decidability classes

Theorem [Fraigniaud and Pelc 2012]

MAD1 = MAV1 ∩ co-MAV1.

Our decidability class characterizations

MADs = MAVs ∩ co-MAVs

MAD = MAV ∩ co-MAVs

co-MAD = MAVs ∩ co-MAV

can be seen as generalizations of the above Theorem for
multi-agent protocols.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Our results (II)

Closure under standard set-theoretic operations:

Union Intersection Complement

MADs 3 3 3

MAD 7 3 7

co-MAD 3 7 7

MAVs 3 3 7

co-MAVs 3 3 7

MAV 7 3 7

co-MAV 3 7 7

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Main tool: our meta-protocol

Meta-protocol for parallel execution of mobile agent protocols.

Possibly infinite number of mobile agent protocols

Mobile agent computing analogue of the classical
dovetailing technique

Example of use

MADs = MAD ∩ co-MAD

“yes” instances “no” instances

MADs all-yes all-no

MAD all-yes some-no

co-MAD some-yes all-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Main tool: our meta-protocol

Meta-protocol for parallel execution of mobile agent protocols.

Possibly infinite number of mobile agent protocols

Mobile agent computing analogue of the classical
dovetailing technique

Example of use

MADs = MAD ∩ co-MAD

“yes” instances “no” instances

MADs all-yes all-no

MAD all-yes some-no

co-MAD some-yes all-no

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Classical dovetailing

M1(x1) M2(x2) M3(x3) . . .

...

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Classical dovetailing

M1(x1) M2(x2) M3(x3) . . .

...

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Classical dovetailing

M1(x1) M2(x2) M3(x3) . . .

...

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Classical dovetailing

M1(x1) M2(x2) M3(x3) . . .

.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Meta-protocol

Permits the execution of a number of mobile agent
protocols essentially in parallel.

The agents accept or reject depending on the outcome of
the executions of the individual protocols.

Parameters

N = (N1,N2, . . .): list of protocols to execute
(possibly infinite).

Global decider f (id,G , s, x): yes or no with full
knowledge of the instance.

Local decider g(H1, . . . ,Hσ): yes or no or indecisive
based on the executions of the protocols.

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Meta-protocol

knowledge about instance
Execute RDV sharing

Attempt map construction

otherwise

other starting positions

Execute g Execute f

Execute T steps of
protocols N1, . . . , NT

T ← 1

assuming n ≤ T

failure success

found
halted
agent

T ← T + 1 otherwise

2T -ball clear

Check if 2T -ball has

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Meta-protocol

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Future research

Extend the hierarchy MAD→ MAV→ . . .

Resource-bounded computations

Asynchronous computations

Thank you!

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Future research

Extend the hierarchy MAD→ MAV→ . . .

Resource-bounded computations

Asynchronous computations

Thank you!

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

