On mobile agents verifiable problems (published in LATIN'16)

Evangelos Bampas¹ David Ilcinkas²

¹Aix-Marseille Univ. (LIF), France ²CNRS & Univ. Bordeaux (LaBRI), France

> Micro MAC September 26, 2016

Decision problems

In centralized computing

- Decision: the Turing Machine must answer yes/no
 - Example: Is the graph 3-colorable?

In classical distributed computing

- Decision: local computations and decisions by the nodes
 For yes instances, all nodes must answer yes
 For no instances, at least one node must answer no
- Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

• The topic of this talk.

(ロ) (同) (E) (E) (E)

In centralized computing

- Decision: the Turing Machine must answer yes/no
 - Example: Is the graph 3-colorable?

In classical distributed computing

- Decision: local computations and decisions by the nodes
 - For yes instances, all nodes must answer yes
 - For no instances, at least one node must answer no
- Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

• The topic of this talk.

・ロン ・回 と ・ ヨン ・ ヨン

In centralized computing

- Decision: the Turing Machine must answer yes/no
 - Example: Is the graph 3-colorable?

In classical distributed computing

- Decision: local computations and decisions by the nodes
 - For yes instances, all nodes must answer yes
 - For no instances, at least one node must answer no
- Example: Is the graph properly 3-colored?

In distributed computing by mobile agents

• The topic of this talk.

A (1) > A (2) > A (2) >

Mobile agent computational model

Network

- Connected.
- Anonymous.
- Local port numbering.

Agents

- Copies of a Turing Machine moving in the network.
- Agent *i* initially receives unique identifier id_i and input string x_i.
- Execute synchronous steps as follows:
 - Perform finite local computation based on current memory state, degree, incoming port number, configurations of collocated agents.

Mobile agent computational model

Network

- Connected.
- Anonymous.
- Local port numbering.

- Copies of a Turing Machine moving in the network.
- Agent *i* initially receives unique identifier id_i and input string x_i.
- Execute synchronous steps as follows:
 - Perform finite local computation based on current memory state, degree, incoming port number, configurations of collocated agents.
 - Halt (yes/no), stay idle, or exit through one of the ports.

Mobile agent decision problems

Definition [Fraigniaud and Pelc, LATIN 2012]

A decision problem is a set of instances $(G, \mathbf{s}, \mathbf{x})$.

- G: graph.
- s: list of nodes (starting positions).
- **x**: list of strings (inputs).

Examples

$$path = \{(G, \mathbf{s}, \mathbf{x}) : G \text{ is a path}\}$$
$$teamsize = \{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |\mathbf{s}| = |\mathbf{x}|\}$$
$$graphsize = \{(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |V(G)|\}$$

・ロン ・回 と ・ ヨン ・ ヨン

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if $\exists M \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \text{id } M(\text{id}, G, \mathbf{s}, \mathbf{x}) = \text{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \text{id } M(\text{id}, G, \mathbf{s}, \mathbf{x}) = \text{some-no}$

Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must answer yes/no

- In yes instances, there exists a certificate such that the machine answers yes
- In no instances, for all certificates, the machine answers no

In distributed computing

Verification: local computations with local certificates

- In yes instances, there exists a certificate such that all computing entities must answer yes
- In no instances, for all certificates, at least one node must answer no

Verification

In centralized computing

Verification: thanks to a certificate, the Turing Machine must answer yes/no

- In yes instances, there exists a certificate such that the machine answers yes
- In no instances, for all certificates, the machine answers no

In distributed computing

Verification: local computations with local certificates

- In yes instances, there exists a certificate such that all computing entities must answer yes
- In no instances, for all certificates, at least one node must answer no

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if $\exists M \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \text{id } M(\text{id}, G, \mathbf{s}, \mathbf{x}) = \text{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \text{id } M(\text{id}, G, \mathbf{s}, \mathbf{x}) = \text{some-no}$

A problem Π is verifiable if $\exists M \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\exists \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-no}$

(4回) (日) (日) (日)

... and verifiability

[Fraigniaud and Pelc, LATIN 2012]

Mobile Agent Decidable problems (class MAD)

A problem Π is decidable if $\exists M \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \text{id } M(\text{id}, G, \mathbf{s}, \mathbf{x}) = \text{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \text{id } M(\text{id}, G, \mathbf{s}, \mathbf{x}) = \text{some-no}$

Mobile Agent Verifiable problems (class MAV)

A problem Π is verifiable if $\exists M \forall (G, \mathbf{s}, \mathbf{x})$: if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\exists \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\forall \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-no}$

allempty = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon$ } \in MAD

Each agent tests its input and accepts iff $x_i = \epsilon$.

Certificate: path leading from s_i to a degree- x_i node.

pathsize = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \ \mathbf{x}_i = |V(G)|$ and G path} $\in MAD$.

Each agents checks independently if it is in a path of size x_i .

n fact all agents can always decide correctly for pathsize.

allempty = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon$ } \in MAD

Each agent tests its input and accepts iff $x_i = \epsilon$.

degree = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \exists v \ d_v = x_i$ } \in MAV

Certificate: path leading from s_i to a degree- x_i node.

Each agents checks independently if it is in a path of size x_i .

n fact all agents can always decide correctly for pathsize.

(ロ) (同) (E) (E) (E)

Examples

allempty = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon$ } \in MAD

Each agent tests its input and accepts iff $x_i = \epsilon$.

degree = {
$$(G, \mathbf{s}, \mathbf{x}) : \forall i \exists v \ d_v = x_i$$
} \in MAV

Certificate: path leading from s_i to a degree- x_i node.

pathsize = { $(G, \mathbf{s}, \mathbf{x})$: $\forall i \ x_i = |V(G)|$ and G path} \in MAD

Each agents checks independently if it is in a path of size x_i .

n fact all agents can always decide correctly for pathsize.

(ロ) (同) (E) (E) (E)

Examples

allempty = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = \epsilon$ } \in MAD

Each agent tests its input and accepts iff $x_i = \epsilon$.

degree = {
$$(G, \mathbf{s}, \mathbf{x}) : \forall i \exists v \ d_v = x_i$$
} \in MAV

Certificate: path leading from s_i to a degree- x_i node.

pathsize = { $(G, \mathbf{s}, \mathbf{x}) : \forall i \ x_i = |V(G)| \text{ and } G \text{ path}$ } $\in MAD$

Each agents checks independently if it is in a path of size x_i .

In fact all agents can always decide correctly for pathsize.

(日) (종) (종) (종) (종)

Strict decidability

• We introduce the "strict" version of MAD, MAD_s:

Definition

 $\Pi \in \mathsf{MAD}_{\mathsf{s}} \text{ if } \exists M \ \forall (G, \mathsf{s}, \mathsf{x}):$ if $(G, \mathsf{s}, \mathsf{x}) \in \Pi$, then $\forall \mathsf{id} \ M(\mathsf{id}, G, \mathsf{s}, \mathsf{x}) = \mathsf{all-yes}$ if $(G, \mathsf{s}, \mathsf{x}) \notin \Pi$, then $\forall \mathsf{id} \ M(\mathsf{id}, G, \mathsf{s}, \mathsf{x}) = \mathsf{all-no}$

• pathsize $\in \mathsf{MAD}_{\mathsf{s}}$, but allempty $\notin \mathsf{MAD}_{\mathsf{s}}$.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Strict decidability

• We introduce the "strict" version of MAD, MAD_s :

Definition

 $\begin{aligned} \Pi \in \mathsf{MAD}_{\mathsf{s}} \text{ if } \exists M \ \forall (G,\mathsf{s},\mathsf{x}): \\ \text{ if } (G,\mathsf{s},\mathsf{x}) \in \Pi, \text{ then } \forall \text{id } M(\text{id},G,\mathsf{s},\mathsf{x}) = \text{ all-yes} \\ \text{ if } (G,\mathsf{s},\mathsf{x}) \notin \Pi, \text{ then } \forall \text{id } M(\text{id},G,\mathsf{s},\mathsf{x}) = \text{ all-no} \end{aligned}$

• pathsize $\in MAD_s$, but allempty $\notin MAD_s$.

Our contributions

- New computability classes below MAV and co-MAV.
- Closure properties with respect to set operations.
- Meta-protocol for parallel execution of mobile agent protocols.

* Reminder

If X is a class of mobile agent decision problems, then

$$\mathsf{co-X} = \{\Pi : \overline{\Pi} \in \mathsf{X}\}$$

A (B) > A (B) > A (B) >

Verifiability classes

<u>MAV def.</u>: \exists cert. that leads to acceptance for yes instances. In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV)

 $\Pi \in \text{co-MAV if } \exists M \forall (G, \mathbf{s}, \mathbf{x}):$ if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\exists \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-no}$

"No" cert. with the same acceptance mechanism as in MAV: Definition (co-MAV') $\Pi \in$ co-MAV' if $\exists M \forall (G, s, x)$: if $(G, s, x) \in \Pi$, then $\forall y \forall id M(id, G, s, \langle x, y \rangle) =$ all-yes if $(G, s, x) \notin \Pi$, then $\exists y \forall id M(id, G, s, \langle x, y \rangle) =$ some-no

NURSERSES ER E

Verifiability classes

<u>MAV def.</u>: \exists cert. that leads to acceptance for yes instances. In co-MAV, the acceptance mechanism is reversed:

Definition (co-MAV) $\Pi \in \text{co-MAV} \text{ if } \exists M \forall (G, \mathbf{s}, \mathbf{x}):$

if $(G, \mathbf{s}, \mathbf{x}) \in \Pi$, then $\forall \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-yes}$ if $(G, \mathbf{s}, \mathbf{x}) \notin \Pi$, then $\exists \mathbf{y} \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-no}$

"No" cert. with the same acceptance mechanism as in MAV:

Definition (co-MAV')

 $\begin{aligned} \Pi &\in \text{co-MAV' if } \exists M \ \forall (G, \mathbf{s}, \mathbf{x}): \\ \text{if } (G, \mathbf{s}, \mathbf{x}) &\in \Pi, \text{ then } \forall \mathbf{y} \ \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{all-yes} \\ \text{if } (G, \mathbf{s}, \mathbf{x}) \notin \Pi, \text{ then } \exists \mathbf{y} \ \forall \text{id } M(\text{id}, G, \mathbf{s}, \langle \mathbf{x}, \mathbf{y} \rangle) = \text{some-no-} \end{aligned}$

	"yes	"instances	"n	o" instances
MAD_{s}	(∀ y)) all-yes	(∀ y]) all-no
MAD	(∀y)) all-yes	(∀y)) some-no
co-MAD	(∀y)) some-yes	(∀y)) all-no
MAV _s	∃ y	all-yes	∀ y	all-no
co-MAV _s	∀y	all-yes	∃ y	all-no
MAV	∃y	all-yes	∀ y	some-no
co-MAV	∀y	some-yes	∃ y	all-no
MAV′	∃ y	some-yes	∀y	all-no
co-MAV′	∀y	all-yes	∃y	some-no

Inclusions by definition

(ロ) (同) (E) (E) (E)

(日) (四) (E) (E) (E)

E. Bampas and <u>D. Ilcinkas</u> On mobile agents verifiable problems

(ロ) (同) (E) (E) (E)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

イロン イヨン イヨン イヨン

E

- All inclusions are strict.
- We can separate all pairs of classes in the diagram.

Another point of view

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

Characterization of decidability classes

Theorem [Fraigniaud and Pelc 2012]

 $MAD_1 = MAV_1 \cap \text{co-MAV}_1.$

Our decidability class characterizations

$$\begin{split} \mathsf{MAD}_s &= \mathsf{MAV}_s \cap \mathsf{co}\text{-}\mathsf{MAV}_s \\ \mathsf{MAD} &= \mathsf{MAV} \cap \mathsf{co}\text{-}\mathsf{MAV}_s \\ \mathsf{co}\text{-}\mathsf{MAD} &= \mathsf{MAV}_s \cap \mathsf{co}\text{-}\mathsf{MAV} \end{split}$$

can be seen as generalizations of the above Theorem for multi-agent protocols.

・ロト ・ 同ト ・ ヨト ・ ヨト

Closure under standard set-theoretic operations:

	Union	Intersection	Complement
MAD_{s}	✓	✓	✓
MAD	×	✓	×
co-MAD	✓	×	×
MAV_s	1	✓	×
$co\text{-}MAV_s$	1	✓	×
MAV	×	✓	×
co-MAV	1	×	×

(4回) (三) (三)

Main tool: our meta-protocol

Meta-protocol for parallel execution of mobile agent protocols.

- Possibly infinite number of mobile agent protocols
- Mobile agent computing analogue of the classical dovetailing technique

E. Bampas and <u>D. Ilcinkas</u> On mobile agents verifiable problems

Meta-protocol for parallel execution of mobile agent protocols.

- Possibly infinite number of mobile agent protocols
- Mobile agent computing analogue of the classical dovetailing technique

Example	e of use			
$MAD_s =$	$MAD\capco\text{-}MAD$			
	"yes" instances	"no" instances		
MAD _s	all-yes	all-no		
MAD	all-yes	some-no		
co-MAD	some-yes	all-no	. =	
	E. Bampas and D. Ilcinkas	On mobile agents verifiable problems	· =	

◆□ → ◆□ → ◆ □ → ◆ □ → ●

æ

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

・ロシ ・日 ・ ・ ヨ ・ ・ 日 ・

æ

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Meta-protocol

- Permits the execution of a number of mobile agent protocols essentially in parallel.
- The agents accept or reject depending on the outcome of the executions of the individual protocols.

Parameters

- \$\mathcal{N} = (\mathcal{N}_1, \mathcal{N}_2, \ldots)\$: list of protocols to execute (possibly infinite).
- Global decider f(id, G, s, x): yes or no with full knowledge of the instance.
- Local decider g(H₁,..., H_σ): yes or no or indecisive based on the executions of the protocols.

イロト イポト イヨト イヨト

Meta-protocol

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

Meta-protocol

E. Bampas and D. Ilcinkas On mobile agents verifiable problems

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- $\bullet~{\sf Extend}$ the hierarchy ${\sf MAD} \to {\sf MAV} \to \ldots$
- Resource-bounded computations
- Asynchronous computations

- Extend the hierarchy MAD \rightarrow MAV $\rightarrow \ldots$
- Resource-bounded computations
- Asynchronous computations

Thank you!