Computing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots

Paola Flocchini¹ David Ilcinkas²
Andrzej Pelc³ Nicola Santoro⁴

¹University of Ottawa, Canada
²CNRS, Université Bordeaux I, France
³Université du Québec en Outaouais, Canada
⁴Carleton University, Canada

OPODIS ’07
December 17, 2007
Problem

Model/context
- Team of robots
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious
- Anonymous unoriented rings.

Goal: exploration with stop
- Each node must be visited by at least one robot.
- All robots must stop after finite time.
The Look-Compute-Move cycle

Look
The robot takes an **instantaneous snapshot** of the network and its robots, with multiplicity detection ("zero", "one", or "more than one" robots).

Compute
Based on this observation, it **decides to stay idle or to move to some neighbouring node**.

Move
In the latter case it **instantaneously moves** towards its destination.
Identical oblivious asynchronous robots

Identical
Robots have **no IDs**. They execute the **same program**.

Oblivious
The robots have **no memory** of observations, computations and moves made in previous cycles.

Asynchronous
The time between Look, Compute, and Move operations is **finite but unbounded**.
Some remarks
Some remarks
Related work

In the plane

Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
Flocchini et al., ISAAC’99, asynchronous model
Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
Flocchini et al., TCS’05 - limited visibility
Agmon, Peleg, SODA’04, fault tolerant gathering
Czyzowicz et al., OPODIS’06, gathering of few fat robots

In graphs

Klasing et al., ISAAC’06, gathering in rings

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Related work

In the plane

- **Suzuki, Yamashita, SIAMJC’99, semi-synchronous model**
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP'03, gathering assuming multiplicity detection
- Prencipe, SIROCCO'05, gathering unsolvable without multiplicity detection
- Flocchini et al., TCS'05 - limited visibility
- Agmon, Peleg, SODA'04, fault tolerant gathering
- Czyzowicz et al., OPODIS'06, gathering of few fat robots

In graphs

- Klasing et al., ISAAC'06, gathering in rings
Related work

In the plane
- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
 - Cieliebak et al., ICALP'03, gathering assuming multiplicity detection
 - Prencipe, SIROCCO'05, gathering unsolvable without multiplicity detection
 - Flocchini et al., TCS'05 - limited visibility
 - Agmon, Peleg, SODA'04, fault tolerant gathering
 - Czyzowicz et al., OPODIS'06, gathering of few fat robots

In graphs
- Klasing et al., ISAAC'06, gathering in rings
Related work

In the plane

- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
 - Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
 - Flocchini et al., TCS’05 - limited visibility
 - Agmon, Peleg, SODA’04, fault tolerant gathering
 - Czyzowicz et al., OPODIS’06, gathering of few fat robots

In graphs

- Klasing et al., ISAAC’06, gathering in rings

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Related work

In the plane
- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
- Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
 - Flocchini et al., TCS’05 - limited visibility
 - Agmon, Peleg, SODA’04, fault tolerant gathering
 - Czyzowicz et al., OPODIS’06, gathering of few fat robots

In graphs
- Klasing et al., ISAAC’06, gathering in rings

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Related work

In the plane

- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
- Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
- Flocchini et al., TCS’05 - limited visibility

In graphs

- Klasing et al., ISAAC'06, gathering in rings

- Agmon, Peleg, SODA'04, fault tolerant gathering
- Czyzowicz et al., OPODIS'06, gathering of few fat robots
Related work

In the plane

- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
- Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
- Flocchini et al., TCS’05 - limited visibility
- Agmon, Peleg, SODA’04, fault tolerant gathering

In graphs

- Klasing et al., ISAAC’06, gathering in rings
Related work

In the plane

- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
- Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
- Flocchini et al., TCS’05 - limited visibility
- Agmon, Peleg, SODA’04, fault tolerant gathering
- Czyzowicz et al., OPODIS’06, gathering of few fat robots

In graphs

- Klasing et al., ISAAC’06, gathering in rings
Related work

In the plane

- Suzuki, Yamashita, SIAMJC’99, semi-synchronous model
- Flocchini et al., ISAAC’99, asynchronous model
- Cieliebak et al., ICALP’03, gathering assuming multiplicity detection
- Prencipe, SIROCCO’05, gathering unsolvable without multiplicity detection
- Flocchini et al., TCS’05 - limited visibility
- Agmon, Peleg, SODA’04, fault tolerant gathering
- Czyzowicz et al., OPODIS’06, gathering of few fat robots

In graphs

- Klasing et al., ISAAC’06, gathering in rings

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Smallest exploring team

The minimum number of robots that can explore a n-node ring is denoted by $\rho(n)$.

Definition

We say that exploration of a n-node ring is possible with k robots, if there exists an algorithm enabling the robots to perform exploration with stop starting from any initial configuration of the k robots without multiplicity (at most one robot per node).
Smallest exploring team

The **minimum number of robots** that can explore a n-node ring is denoted by $\rho(n)$.

Definition

We say that exploration of a n-node ring is possible with k robots, if there exists an algorithm enabling the robots to perform exploration with stop starting from any initial configuration of the k robots **without multiplicity** (at most one robot per node).
Our results

Lemma

Exploration of a n-node ring by k robots is

- impossible if $k|n$ but $k \neq n$;
- possible if $\gcd(n, k) = 1$, for $k \geq 17$.

Main result

- $\rho(n) \in \Theta(\log n)$
- There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.
- $\rho(n) \in O(\log n)$
Our results

Lemma

Exploration of a n-node ring by k robots is

- impossible if $k | n$ but $k \neq n$;
- possible if $gcd(n, k) = 1$, for $k \geq 17$.

Main result

$\rho(n) \in \Theta(\log n)$

- There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.
- $\rho(n) \in O(\log n)$
Lemma

Impossible to stop (and sometimes to explore) when $k|n$.
Lemma

Impossible to stop (and sometimes to explore) when $k|n$.

Introducing... Lower bound. Upper bound. Conclusion.
Theorem

There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.

Proof

- Let n be the least common multiple of integers $1, 2, \ldots, q$.
- From the previous slide, we have $\rho(n) \geq q + 1$.
- The Prime Number Theorem implies $\frac{\ln n}{q} \to 1$.
- This implies the existence of a constant c such that, for infinitely many n, $\rho(n) \geq c \log n$.

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Lower bound (2/2)

Theorem

There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.

Proof

Let n be the least common multiple of integers $1, 2, \ldots, q$. From the previous slide, we have $\rho(n) \geq q + 1$.

The Prime Number Theorem implies $\ln n \sim q \to 1$. This implies the existence of a constant c such that, for infinitely many n, $\rho(n) \geq c \log n$.

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Theorem

There exists a constant \(c \) such that, for infinitely many \(n \), we have \(\rho(n) \geq c \log n \).

Proof

- Let \(n \) be the least common multiple of integers 1, 2, \ldots, \(q \).
- From the previous slide, we have \(\rho(n) \geq q + 1 \).
- The Prime Number Theorem implies \(\frac{\ln n}{q} \rightarrow 1 \).
- This implies the existence of a constant \(c \) such that, for infinitely many \(n \), \(\rho(n) \geq c \log n \).
Theorem

There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.

Proof

- Let n be the least common multiple of integers $1, 2, \ldots, q$.
- From the previous slide, we have $\rho(n) \geq q + 1$.
 - The Prime Number Theorem implies $\frac{\ln n}{q} \to 1$.
 - This implies the existence of a constant c such that, for infinitely many n, $\rho(n) \geq c \log n$.
Theorem

There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.

Proof

- Let n be the least common multiple of integers $1, 2, \ldots, q$.
- From the previous slide, we have $\rho(n) \geq q + 1$.
- The Prime Number Theorem implies $\frac{\ln n}{q} \to 1$.
- This implies the existence of a constant c such that, for infinitely many n, $\rho(n) \geq c \log n$.

P. Flocchini, D. Ilcinkas, A. Pelc et N. Santoro

Ring Exploration by Asynchronous Oblivious Robots
Theorem

There exists a constant c such that, for infinitely many n, we have $\rho(n) \geq c \log n$.

Proof

Let n be the least common multiple of integers $1, 2, \ldots, q$.

From the previous slide, we have $\rho(n) \geq q + 1$.

The Prime Number Theorem implies $\frac{\ln n}{q} \to 1$.

This implies the existence of a constant c such that, for infinitely many n, $\rho(n) \geq c \log n$.
Upper bound

Lemma

Exploration is possible if $\gcd(n, k) = 1$, for $k \geq 17$.

Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

Proof

Let p_j be the j-th prime, and $p_j\# = \prod_{i=1}^{j} p_i$ the p_j-primorial.

- Take j such that $\frac{p_j\#}{13\#} \leq n < \frac{p_{j+1}\#}{13\#}$. We have $\rho(n) \leq p_{j+1}$.

 (all primes in $\{17, \ldots, p_{j+1}\}$ divide $n \implies n \geq \frac{p_{j+1}\#}{13\#}$)

- From [Ruiz, Math. Gaz. '97], we have $\frac{\ln(p_j\#)}{p_j} \to 1$.

- Hence $\rho(n) \leq p_{j+1} \in O(\log n)$.
Lemma

Exploration is possible if $\gcd(n, k) = 1$, for $k \geq 17$.

Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

Proof

Let p_j be the j-th prime, and $p_j# = \prod_{i=1}^{j} p_i$ the p_j-primorial.

- Take j such that $\frac{p_j#}{13#} \leq n < \frac{p_{j+1}#}{13#}$. We have $\rho(n) \leq p_{j+1}$.
 (all primes in $\{17, \ldots, p_{j+1}\}$ divide $n \implies n \geq \frac{p_{j+1}#}{13#}$)

- From [Ruiz, Math. Gaz. '97], we have $\frac{\ln(p_j#)}{p_j} \to 1$.

- Hence $\rho(n) \leq p_{j+1} \in O(\log n)$.

Upper bound

Lemma

Exploration is possible if \(\gcd(n, k) = 1 \), for \(k \geq 17 \).

Theorem

The size \(\rho(n) \) of the smallest exploring team is in \(O(\log n) \).

Proof

Let \(p_j \) be the \(j \)-th prime, and \(p_j\# = \prod_{i=1}^{j} p_i \) the \(p_j \)-primorial.
Upper bound

Lemma

Exploration is possible if $\gcd(n, k) = 1$, for $k \geq 17$.

Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

Proof

Let p_j be the j-th prime, and $p_j\# = \prod_{i=1}^{j} p_i$ the p_j-primorial.
Upper bound

Lemma

Exploration is possible if \(\gcd(n, k) = 1 \), for \(k \geq 17 \).

Theorem

The size \(\rho(n) \) of the smallest exploring team is in \(O(\log n) \).

Proof

Let \(p_j \) be the \(j \)-th prime, and \(p_j\# = \prod_{i=1}^{j} p_i \) the \(p_j \)-primorial.

- Take \(j \) such that \(\frac{p_j\#}{13\#} \leq n < \frac{p_{j+1}\#}{13\#} \). We have \(\rho(n) \leq p_{j+1} \).

 (all primes in \(\{17, \ldots, p_{j+1}\} \) divide \(n \implies n \geq \frac{p_{j+1}\#}{13\#} \))

- From [Ruiz, Math. Gaz. '97], we have \(\frac{\ln(p_j\#)}{p_j} \to 1 \).

- Hence \(\rho(n) \leq p_{j+1} \in O(\log n) \).
Upper bound

Lemma

Exploration is possible if $\gcd(n, k) = 1$, for $k \geq 17$.

Theorem

The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

Proof

Let p_j be the j-th prime, and $p_j\# = \prod_{i=1}^{j} p_i$ the p_j-primorial.

- Take j such that $\frac{p_j\#}{13\#} \leq n < \frac{p_{j+1}\#}{13\#}$. We have $\rho(n) \leq p_{j+1}$.

 (all primes in $\{17, \ldots, p_{j+1}\}$ divide $n \implies n \geq \frac{p_{j+1}\#}{13\#}$)

- From [Ruiz, Math. Gaz. '97], we have $\frac{\ln(p_j\#)}{p_j} \to 1$.

Hence $\rho(n) \leq p_{j+1} \in O(\log n)$.
Lemma
Exploration is possible if $\gcd(n, k) = 1$, for $k \geq 17$.

Theorem
The size $\rho(n)$ of the smallest exploring team is in $O(\log n)$.

Proof
Let p_j be the j-th prime, and $p_j\# = \prod_{i=1}^{j} p_i$ the p_j-primorial.

- Take j such that $\frac{p_j\#}{13\#} \leq n < \frac{p_{j+1}\#}{13\#}$. We have $\rho(n) \leq p_{j+1}$.
 - (all primes in $\{17, \ldots, p_{j+1}\}$ divide $n \implies n \geq \frac{p_{j+1}\#}{13\#}$)
- From [Ruiz, Math. Gaz. '97], we have $\frac{\ln(p_j\#)}{p_j} \to 1$.
- Hence $\rho(n) \leq p_{j+1} \in O(\log n)$.
Some definitions

Interdistance
Minimum distance taken over all pairs of distinct robots.

Here interdistance=2.

Block
Maximal set of robots, of size at least 2, forming a line with a robot every \(d \) nodes. \((d = \text{interdistance}) \)
Some definitions

Interdistance
Minimum distance taken over all pairs of distinct robots.

Here interdistance $= 2$.

Block
Maximal set of robots, of size at least 2, forming a line with a robot every d nodes. ($d =$ interdistance)
Some definitions

Interdistance
Minimum distance taken over all pairs of distinct robots.

Here interdistance=2.

Block
Maximal set of robots, of size at least 2, forming a line with a robot every d nodes. ($d=$interdistance)
Our algorithm

Set-Up Phase

Goal: to transform the (arbitrary) initial configuration into a configuration of interdistance 1 where there is a single block or two blocks of the same size.

Method: decrease the number of blocks whenever possible. Otherwise, decrease the interdistance.

Tower-Creation Phase

Goal: to create one or two multiplicities inside each block; furthermore a number of robots become uniquely identified as explorers.

Exploration Phase

Goal: to perform exploration thanks to the explorers until reaching an identified final configuration.
An example
Conclusion and perspectives

Open problem

- Cycles: $\Theta(\log n)$
- Trees of maximum degree 3: $\Theta(\log n / \log \log n)$
- Arbitrary trees: $\Theta(n)$

What about arbitrary graphs (of maximum degree 3)?

Perspectives

- Limited visibility
- Fault tolerant protocols
Conclusion and perspectives

Open problem

- Cycles: $\Theta(\log n)$
- Trees of maximum degree 3: $\Theta(\log n / \log \log n)$
- Arbitrary trees: $\Theta(n)$

What about **arbitrary graphs** (of maximum degree 3)?

Perspectives

- Limited visibility
- Fault tolerant protocols
Thank You
for your attention