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Graph exploration

Graph exploration

A mobile entity has to visit every node of an unknown
anonymous graph.

Periodic exploration by a finite automaton

A finite automaton has to visit every node infinitely often.

Performance criterion

To minimize the period
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Motivations (1)

Exploration by mobile agents

Physical robot: exploration of environments unreachable
by humans

Software agent: network maintenance

Equivalence between logic and automata
[Engelfriet, Hoogeboom, STACS 2006]

Through characterization of string, tree or graph languages

Automata with nested pebbles

First-order logic with transitive closure
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Motivations (2)

USTCON (undirected st-connectivity)

G = {V , E} an undirected graph

s, t ∈ V two vertices of G

Are s and t in the same connected component of G?

L = class of problems solvable by deterministic log-space
computations

SL (⊇ L) = class of problems solvable by symmetric
non-deterministic log-space computations

Reingold, STOC 2005
Undirected ST-Connectivity in Log-Space

USTCON ∈ L ⇒ SL=L
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Unknown, anonymous

Unknown

Unknown topology

Unknown size (no upper bound)

Anonymous

No node labeling

Local edge labeling
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Example of an anonymous graph
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Mealy automaton (1)
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Mealy automaton (1)
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Mealy automaton (2)

Input

S : current state

i : input port number

d : node’s degree

Output

S ′ : new state

j : output port number

Transition function

f (S , i , d) = (S ′, j)
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Outline

1 Introduction

2 Related work
Impossibility results
Exploration of trees
Exploration with assistance

3 Our model and results

4 Algorithm/automaton

5 Conclusion
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Impossibility results (1)

Budach, Math. Nachrichten, 1978
Automata and Labyrinths

No finite automaton can explore all graphs.

A pebble is a node-marker that can be dropped at and
removed from nodes.

Rabin, Seminar talk at Berkeley, 1967
Maze threading automata

No finite automaton with a finite number of pebbles can
explore all graphs.
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Impossibility results (2)

Rollik, Acta Informatica, 1980
Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all
(cubic planar) graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite
automata that cooperate constantly. Moreover an automaton
can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980
Space lower bounds for maze threadability on restricted
machines

No JAG can explore all graphs.
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Universality for trees

An oblivious automaton (one single state) using the
right-hand-on-the-wall rule (i 7→ i + 1) explores all the trees.
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Coloring nodes

Model

An oracle colors (labels) the graph to help the automaton.

The finite automaton can read the color of the node as
an input of its transition function.

Cohen, Fraigniaud, Ilcinkas, Korman, Peleg, ICALP, 2005
Label-Guided Graph Exploration by a Finite Automaton

There exist a finite automaton and an algorithm coloring
in three colors such that the automaton can explore all
graphs.

There exist a automaton of O(log∆) memory bits and an
algorithm coloring in only two colors such that the
automaton can explore all graphs of maximum degree ∆.
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Setting port numbers

Model

Port numbers are set to help the automaton.

The automaton is ultimately simple : it is memoryless

Dobrev, Jansson, Sadakane, Sung, SIROCCO, 2005
Finding Short Right-Hand-on-the-Wall Walks in Graphs

There exist an algorithm for setting the port numbers, and an
oblivious automaton using them, such that the automaton
explores all graphs of size n within the period 10n.
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Outline

1 Introduction

2 Related work

3 Our model and results
Our model
Results

4 Algorithm/automaton

5 Conclusion
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Our model

Model

An algorithm sets the port numbers to help the
automaton.

The automaton is restricted to be finite (but not
necessarily oblivious).

Question

What is the mimimum function π(n) such that there exist an
algorithm for setting the local orientation, and a finite
automaton using it, such that the automaton explores all
graphs of size n within the period π(n)?

Dobrev et al.

π(n) ≤ 10n
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Our results

Theorem

π(n) ≤ 4n − 2

More precisely

Very simple algorithm based on a spanning tree

Three-state automaton

Performance independent from the initial state and initial
position of the automaton

Additional properties

Distributed algorithm

Dynamic environment

David Ilcinkas Setting Port Numbers for Fast Graph Exploration



17/23

Intro Related work Model & results Algorithm Conclusion Model Results

Our results

Theorem

π(n) ≤ 4n − 2

More precisely

Very simple algorithm based on a spanning tree

Three-state automaton

Performance independent from the initial state and initial
position of the automaton

Additional properties

Distributed algorithm

Dynamic environment

David Ilcinkas Setting Port Numbers for Fast Graph Exploration



17/23

Intro Related work Model & results Algorithm Conclusion Model Results

Our results

Theorem

π(n) ≤ 4n − 2

More precisely

Very simple algorithm based on a spanning tree

Three-state automaton

Performance independent from the initial state and initial
position of the automaton

Additional properties

Distributed algorithm

Dynamic environment

David Ilcinkas Setting Port Numbers for Fast Graph Exploration



18/23

Intro Related work Model & results Algorithm Conclusion

Outline

1 Introduction

2 Related work

3 Our model and results

4 Algorithm/automaton

5 Conclusion

David Ilcinkas Setting Port Numbers for Fast Graph Exploration



19/23

Intro Related work Model & results Algorithm Conclusion

Algorithm

Port numbers compatible with a spanning tree T

edge e is in T ⇐⇒ at least one of its port numbers is 1;

the edges belonging to T have the smallest port numbers.
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Automaton

States

N: Normal

T: Test

B: Backtrack

Transition function

f (N , i , d) =

{
(N , 1) if i = d
(T , i + 1) if i 6= d

f (T , i , d) =


(N , 1) if i = 1 and d = 1
(T , i + 1) if i = 1 and d 6= 1
(B , i) if i 6= 1

f (B , i , d) = (N , 1)
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Example

If on a tree-edge: right-hand-on-the-wall

If not on a tree-edge: backtrack
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Open problem

Conclusion

π(n) ≤ 4n − 2

Conjecture

π(n) = 4n − O(1)

Open problems

π(n) when the automaton is restricted to be oblivious?

Find a fully self-stabilizing pair algorithm/automaton
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