Periodic Graph Exploration Using an Oblivious Agent

Jurek Czyzowicz¹ Leszek Gasieniec² David Ilcinkas³ Ralf Klasing³

¹Université du Québec en Outaouais, Canada

²University of Liverpool, United Kingdom

³CNRS and University of Bordeaux (LaBRI), France

GT Graphes et Applications October 3, 2008

イロン イヨン イヨン イヨン

Problem

Periodic graph exploration

A mobile entity, called *agent*, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency mesure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent

(ロ) (同) (E) (E) (E)

Problem

Periodic graph exploration

A mobile entity, called *agent*, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency mesure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent

イロン イヨン イヨン イヨン

Problem

Periodic graph exploration

A mobile entity, called *agent*, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency mesure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent

(日) (四) (注) (注) (三) (三)

Unknown, anonymous graphs

Jnknown

- Unknown topology
- Unknown size

Anonymous

- No node labeling
- Local port numbering at node v from 1 to deg(v)

イロト イポト イヨト イヨト 三日

Unknown, anonymous graphs

Unknown

- Unknown topology
- Unknown size

\nonymous

- No node labeling
- Local port numbering at node v from 1 to deg(v)

・ロン ・回 と ・ ヨ と ・ ヨ と

Unknown, anonymous graphs

Unknown

- Unknown topology
- Unknown size

Anonymous

- No node labeling
- Local port numbering at node v from 1 to deg(v)

伺 ト イヨト イヨト

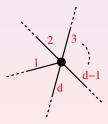
Unknown, anonymous graphs

Unknown

- Unknown topology
- Unknown size

Anonymous

- No node labeling
- Local port numbering at node v from 1 to deg(v)



() < </p>

크

Memory constraint

Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Model

The agent is modeled as a finite Mealy automaton.

J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

- 4 回 ト - モト - モト

Memory constraint

Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Vlodel

he agent is modeled as a finite Mealy automaton.

J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

(日) (四) (三) (三)

Memory constraint

Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Model

The agent is modeled as a finite Mealy automaton.

Mealy automaton

Input

- S : current state
- *i* : input port number
- d : node's degree

Output

- S' : new state
- *j* : output port number

Transition function

• $f: (S, i, d) \mapsto (S', j)$

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent

900

Mealy automaton

Input

- S : current state
- *i* : input port number
- d : node's degree

Output

- S' : new state
- *j* : output port number

Transition function

• $f: (S, i, d) \mapsto (S', j)$

Oblivious agent (one single state)

• Transition functions $f_d : i \rightarrow j$ for $d \ge 1$

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent

イロン イ団ン イヨン イヨン 三日

Motivations (cont'd)

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

• L = class of problems solvable by deterministic log-space computations

 SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

(ロ) (同) (E) (E) (E)

Motivations (cont'd)

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

(ロ) (同) (E) (E) (E)

Motivations (cont'd)

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

Motivations (cont'd)

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

Reingold, STOC 2005 Undirected ST-Connectivity in Log-Space

 $\mathsf{USTCON} \in \mathsf{L} \Rightarrow \mathsf{SL}{=}\mathsf{L}$

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

m, SIAMJC, 1980

No JAG can explore all graphs.

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

, Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

m, SIAMJC, 1980

No JAG can explore all graphs.

900

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al, Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automator can jump to a vertex occupied by another automaton

, SIAMJC, 1980

No JAG can explore all graphs

J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al, Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Rollik, Acta Informatica, 1980

An agent able to explore the *n*-node graphs needs $\Omega(\log n)$ memory bits.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al, Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980

No JAG can explore all graphs.

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent

Giving advice

Providing additionnal information does help.

Model

- An oracle puts bits of advice at the graph nodes to help the agent.
- The agent can read these bits as an input of its transition function.

, ACM Trans. Algo., 2008

1 bit of advice per node: Constant memory suffices for constant-degree graphs.
2 bits of advice per node: Constant memory suffices for arbitrary graphs.

Giving advice

Providing additionnal information does help.

Model

- An oracle puts bits of advice at the graph nodes to help the agent.
- The agent can read these bits as an input of its transition function.

Cohen, Fraigniaud, I., Korman, Peleg, ACM Trans. Algo., 2008

- 1 bit of advice per node: Constant memory suffices for constant-degree graphs.
- 2 bits of advice per node: Constant memory suffices for arbitrary graphs.
- In both cases, period = O(m)

イロン 不同と 不同と 不同と

Setting port numbers

Observation

All impossibility results are based on a misleading assignment of the port numbers.

A solution

Port numbers are set to help the automaton.

SIROCCO, 2005

There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size *n* within the period 10*n*.

Setting port numbers

Observation

All impossibility results are based on a misleading assignment of the port numbers.

A solution

Port numbers are set to help the automaton.

SIROCCO, 2005

・ロン ・回 と ・ ヨ と ・ ヨ と

There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size *n* within the period 10*n*.

・ロン ・回 と ・ ヨ と ・ ヨ と

Setting port numbers

Observation

All impossibility results are based on a misleading assignment of the port numbers.

A solution

Port numbers are set to help the automaton.

Dobrev, Jansson, Sadakane, Sung, SIROCCO, 2005

There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size n within the period 10n.

The non-oblivious case

Better upper bounds are known for constant-memory agents.

Length of the tour $\leq 4n$

, JCSS, 2007

Length of the tour $\leq 3.75n$

, under submission

Length of the tour $\leq 3.5n$

The non-oblivious case

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008

Length of the tour $\leq 4n$

, JCSS, 2007

Length of the tour ≤ 3.75 *n*

, under submission

Length of the tour $\leq 3.5n$

The non-oblivious case

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008

Length of the tour $\leq 4n$

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007

Length of the tour $\leq 3.75n$

der submission

Length of the tour $\leq 3.5n$

J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

The non-oblivious case

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008

Length of the tour $\leq 4n$

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007

Length of the tour $\leq 3.75n$

Czyzowicz et al., under submission

Length of the tour $\leq 3.5n$

J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

(ロ) (同) (E) (E) (E)

Our results

Question

What is the minimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size *n* within the period $\alpha \cdot n$?

Main result $2.8 \le \alpha \le 4.333$

Complementary result

If there exists a spanning tree T of G = (V, E) such that none of the nodes is saturated (i.e. $\forall v \in V \quad \deg_T(v) \neq \deg_G(v)$), then period 2*n* can be achieved by an oblivious agent.

(ロ) (同) (E) (E) (E)

Our results

Question

What is the minimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size *n* within the period $\alpha \cdot n$?

Main result

 $2.8 \le \alpha \le 4.333 \dots$

Complementary result

If there exists a spanning tree T of G = (V, E) such that none of the nodes is saturated (i.e. $\forall v \in V \quad \deg_T(v) \neq \deg_G(v)$), then period 2*n* can be achieved by an oblivious agent.

Our results

Question

What is the minimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size *n* within the period $\alpha \cdot n$?

Main result

 $2.8 \leq \alpha \leq 4.333\ldots$

Complementary result

If there exists a spanning tree T of G = (V, E) such that none of the nodes is saturated (i.e. $\forall v \in V \quad \deg_T(v) \neq \deg_G(v)$), then period 2n can be achieved by an oblivious agent.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Э

A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i ightarrow i+1$ for $d \ge 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.

A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \rightarrow i+1$ for $d \ge 1$

For any degree *d*, the transition function *f_d* has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d : i \rightarrow i + 1$ for $d \ge 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.

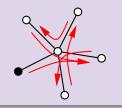
Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \rightarrow i+1$ for $d \ge 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.



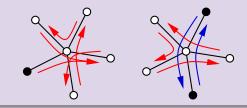
Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \rightarrow i+1$ for $d \ge 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.



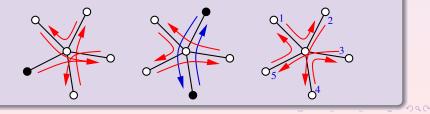
Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \rightarrow i+1$ for $d \ge 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.



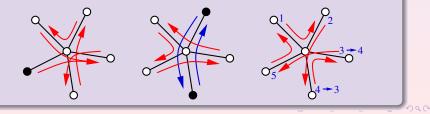
Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d: i \rightarrow i+1$ for $d \ge 1$

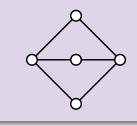
Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.

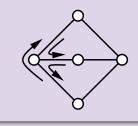


J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Lower bound: $\alpha \ge 2.4$

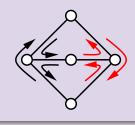


Lower bound: $\alpha \ge 2.4$



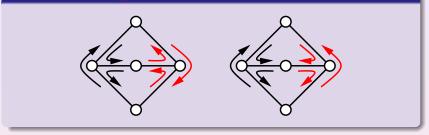
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lower bound: $\alpha \ge 2.4$



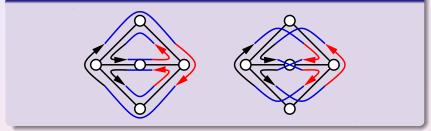
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lower bound: $\alpha \ge 2.4$



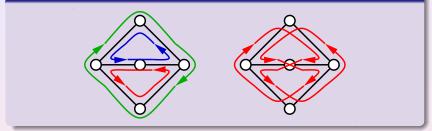
< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Lower bound: $\alpha \ge 2.4$



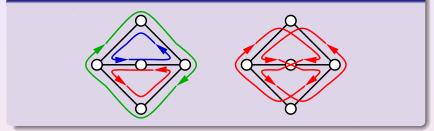
<ロ> <同> <同> <目> <日> <日</td>

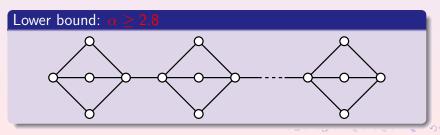
Lower bound: $\alpha \ge 2.4$



< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Lower bound: $\alpha \ge 2.4$





J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, # incoming arcs = # outgoing arcs
- for every node, either it is saturated or an arc incident to it belongs to *H* but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property From *H*, one can construct a tour spanning G

Performance

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent

200

General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, # incoming arcs = # outgoing arcs
- for every node, either it is saturated or an arc incident to it belongs to *H* but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property

From H, one can construct a tour spanning G.

200

General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, # incoming arcs = # outgoing arcs
- for every node, either it is saturated or an arc incident to it belongs to *H* but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property

From H, one can construct a tour spanning G.

Performance

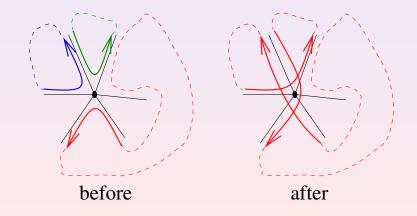
Length of the tour \leq number of arcs in *H*

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Rule Merge3

When to apply Rule Merge3

Three different cycles go through node v



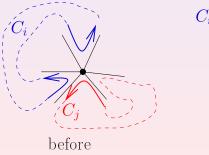
A ₽

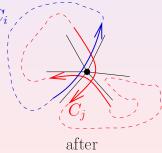
4 B K 4 B K

Rule EatSmall

When to apply Rule EatSmall

- a cycle C_i goes through node v at least twice
- another cycle C_i goes through v
- *i* < *j*



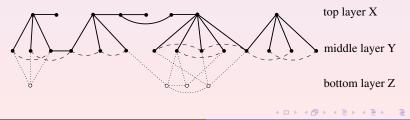


Three-layer partition

Definition

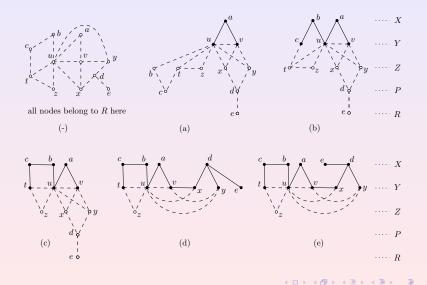
A three-layer partition of a graph G = (V, E) is a 4-uplet (X, Y, Z, T) such that

- the three sets X, Y and Z form a partition of V
- $Y = N_G(X)$ and $Z = N_G(Y) \setminus X$
- *T* is a tree of node-set *X* ∪ *Y* where all nodes in *X* are saturated



J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

How to construct it



J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Conclusion and perspectives

Open problem

Exact value for minimum α

Variant

Best tour for a given graph (NP-hard problem)

◆□> ◆□> ◆三> ◆三> 三 のへの

Conclusion and perspectives

Open problem

Exact value for minimum α

Variant

Best tour for a given graph (NP-hard problem)

(ロ) (同) (E) (E) (E)

Thank You for your attention

J. Czyzowicz, L. Gasieniec, <u>D. Ilcinkas</u> and R. Klasing Periodic Graph Exploration Using an Oblivious Agent

・ロン ・回 と ・ ヨ と ・ ヨ と …

臣