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In the setting described above, checking that a modelled system (say a pro-gram) has some property amounts to checking that the corresponding transitionsystem has the property. The fact that the meaning of the program is really anequivalence relation and not a transition system itself is re
ected in the fact thatthe properties we are interested in do not distinguish between equivalent systems.This motivates our claim that logics suitable for veri�cation should not distin-guish between bisimilar systems. Indeed most of the program logics proposed inthe literature have this property.Since this approach to veri�cation has been suggested [26] a big variety oflogics over transition systems has been proposed. New logics were introducedbecause they were more manageable, more expressive, or represented a betterbalance between these two kinds of properties. Manageability is concerned withaxiomatisations, the complexity of the validity problem, and the complexity ofthe model checking problem (i.e. a problem of verifying whether a given formulais satis�ed in a given transition system). These complexity issues are importantespecially for computer aided veri�cation. Of course there is no point in consid-ering even very manageable logic if it is not capable of expressing the propertieswe are interested in.The question arises: how one does decide which properties are interesting.Of course it is important to list �rst some example properties which one wouldlike to express (see [13, 10] for such lists), but how can one be sure that we havelisted all the properties of potential interest? The solution is to �nd a \yardstick"which is usually some well established logic. If we can express all the propertiesfrom our list in the \yardstick" logic then we know that the set of propertiesexpressible in the logic is complete, in a sense that it is closed under logicaloperations and contains our interesting properties. This approach was initiatedby Kamp [20] who investigated expressive power of propositional temporal logic(PTL) with respect to expressive power of the �rst order logic over h!;�i. Thislead him to the discovery of the until operator and the proof that PTL with theuntil operator is expressively complete with respect to �rst order logic, i.e.: aclass of models is de�nable by a PTL formula with until i� it is de�nable in the�rst order logic. PTL is still widely used but it turned out that there are inter-esting properties which are not expressible in the �rst order logic and MSOLover h!;�i was proposed as a new yardstick. This choice was particularly usefulas it brought new insights and a wealth of automata theoretic methods to the�eld. The logic expressively complete with respect to MSOL over h!;�i is the�-calculus of linear time [4].As noted by Emerson ([10] p. 1026) the situation for branching time logics isnot so well understood. Known results are limited to transition systems whichare binary trees. For this restricted class of models the yardstick is MSOL theoryof the binary tree (S2S). It is known that the binary �-calculus is expressivelycomplete with respect to full S2S [24, 11] and CTL� is expressively completewith respect to the fragment of S2S where only quanti�cation over paths is al-lowed [16].As far as we are aware, the only expressive completeness results dealing



with the general case of logics over all transition systems were given by vanBenthem [5] and van Benthem and Bergstra [6]. They show that a bisimulationclosed class of transition systems is de�nable in �rst order logic (resp. in in�nitary�rst order logic) i� it is de�nable in (system K) modal logic (resp. in�nitarymodal logic). For these results to hold it is essential that one admits disconnectedtransition systems. This makes properties like \there is a transition from everynode" not closed under bisimulation. These kind of properties also show thatthese results are not true when restricted only to connected transition systems.Expressive completeness of temporal logic with respect to �rst order logic overvarious kinds of orders was investigated among others in [14, 2].From Gaifman's characterisation of expressive power of �rst order logic overtransition systems [15] it follows that �rst order logic is not a very interestinglogic from a veri�cation point of view. In our opinion the proper yardstick forlogics over transition systems should be MSOL, or rather, bisimulation invariantproperties expressible in MSOL. This choice is motivated by the fact that it is avery expressive logic, capable of expressing most of the properties considered inthe literature. Moreover the set of properties of MSOL is closed under quanti�ca-tion over sets which makes it possible to express for example: path quanti�cation,reachability, least and greatest �xpoints of the properties.Let us brie
y comment why S2S is not a good candidate for de�ning anexpressibility standard over transition systems of arbitrary degree. It is of coursepossible to code every countable transition system into a binary tree but thiscomes with a price. Any such coding introduces an ordering between siblingswhich is not available in the original structure. This order allows even a veryweak logics over binary trees to express properties of codings not expressible inMSOL over transition systems (see [28] p. 540 for an example).Finally observe that MSOL over trees of arbitrary degree is very di�erentfrom monadic second order theory of !-successors (S!S). In the later theoryeven the relation \x is a son of y" is not de�nable (one would need an in�niteformula to do this).1.1 SynopsisOur main result is that, every bisimulation closed MSOL de�nable property oftransition systems is de�nable in the propositional �-calculus. This shows thatamong all possible behavioural speci�cation languages whose semantics is ex-pressible in MSOL over transition systems, the �-calculus is the most expressiveone. In particular, this immediately shows that CTL� and ECTL� are translat-able into the �-calculus [9] since these logics are easily translatable into MSOLover unwindings of transition systems and formulas resulting from the translationare bisimulation closed, hence invariant under unwinding operation.Maybe an interesting aspect of this result is that the set of MSOL formu-las closed under bisimulation is not recursive (it is even not arithmetical). Onthe other hand it turns out to be decidable whether a MSOL formula de�nes abisimulation closed set of trees. Let us also remark that unlike van Benthem and



Bergstra's results mentioned above our expressibility result also holds when werestrict to connected transition systems or even �nite branching trees.The main tools we will be using are recently developed automata character-isations of the �-calculus [19] and MSOL [31] over trees. It turns out that thereis a more general notion of automata of which both characterisations are specialcases. This gives us a common ground to compare the two logics.The paper is organised as follows.We start with the section introducing trans-ition systems and the bisimulation relation. We also introduce there a notion of!-expansion which we will need in the main proof. Next we give de�nitions ofMSOL and the �-calculus. In Section 4 we de�ne a general notion of automatonand give characterisations of MSOL and the �-calculus in terms of these auto-mata. These characterisations are used in the following section where we proveour main result.2 Transition systems and bisimulationLet Pred = fp; p0; : : :g be a set of unary predicate symbols and let Rel = fr; r0; : : :gbe a set of binary predicate symbols. A transition system with a source, simplycalled transition system in the sequel, is a tuple:M = hSM ; srM ; frMgr2Rel; fpMgp2Propiwhere: SM is a nonempty set of states; srM 2 S is a source; each rM is a binaryrelation on SM and each pM is a subset of SM .For every r 2 Rel, let:succMr (s) = fs0 2 SM j (s; s0) 2 rMgTransition system M is called a transition tree (or simply a tree) if for everystate s 2M there exists a unique path to the root, or more formally there exists aunique sequence s0; : : : ; sn such that s0 = srM , sn = s and for every i = 1; : : : ; nwe have (si; si+1) 2 rMi for some ri 2 Rel.Transition systems M and N are called bisimilar when there exists a relationR � SM � SN , called a bisimulation relation, such that (srM ; srN ) 2 R and forevery (s; t) 2 R, p 2 Prop and r 2 Rel:{ s 2 pM i� t 2 pM ,{ whenever (s; s0) 2 rM for some s0, then there exists t0 such that (t; t0) 2 rNand (s0; t0) 2 R,{ whenever (t; t0) 2 rN for some t0, then there exists s0 such that (s; s0) 2 rMand (s0; t0) 2 R.De�nition1 !-expansion. Given a transition systemM , an !-indexed path ofM is a sequence u of the form:u = s0(a1; r1; s1)(a2; r2; s2) � � � (an; rn; sn)where s0 = srM , ai 2 IN and (si�1; si) 2 rMi for i = 1; : : : ; n.The !-expansion cM of the system M is de�ned by :



1. S bM is the set of !-indexed paths of M ,2. sr bM = srM ,3. for every r 2 Rel, every u and v 2 S bM : (u; v) 2 r bM i� v is an !-indexed pathof the form u(a; r; s), for some a and s,4. for every p 2 Prop:p bM = fu(a; r; s) : s 2 pM ; u; a; r arbitraryg [ fsr bM : srM 2 pMgIn the rest of this section let us brie
y point out how the concept of !-expansion arises from a general consideration about bisimulation relation.De�nition2. Given two transition systems M and N , we say that M is anexpansion of N , denoted M � N , when there exists a partial function h : SM !SN such that :1. h(srM ) = srN ,2. for every s 2 SM , p 2 Prop and r 2 Rel:s 2 pM () h(s) 2 pN and h(succMr (s)) = succNr (h(s))Remark. In [8], with distinct notations and names, Castellani shows that M1andM2 are bisimilar i� there exists N such that N � M1 andN �M2. IntuitivelyN is a quotient ofM1 andM2 under bisimulation relation, henceforth a minimalrepresentative. Next fact states that !-expansions are, in the countable case,maximal representatives of behaviours.Fact 3. Considering only transition systems with at most countably many states:for every transition systemM we have M � cM , and, for every transition systemN , if M and N are bisimilar then cM and bN are isomorphic.3 Monadic second order logic and the propositional�-calculusIn this section we will de�ne monadic second order logic (MSOL) and the pro-positional �-calculus [21]. Both logics will be interpreted over transition systemsof the signature containing only unary symbols from Prop and binary symbolsfrom Rel. These sets were �xed at the beginning of the previous section. LetVar = fX;Y; : : :g be a countable set of (second order) variables.3.1 MSOLMonadic second order logic over the signature fRel;Propg and constant sr canbe de�ned as follows. The set of MSOL formulas is the smallest set containingformulas: p(X); r(X;Y ); X � Y; sr(X)



for p 2 Prop, r 2 Rel, X;Y 2 Var; and closed under negation, disjunction andexistential quanti�cation. A sentence is a formula without free variables.The de�nition of the truth of a formula in a given transition systemM and avaluation V : Var! P(SM ) is de�ned by induction on the length of the formula:M;V j= p(X) i� V (X) � pMM;V j= r(X;Y ) i� V (X) = fsg; V (Y ) = ftg and (s; t) 2 rMM;V j= sr(X) i� V (X) = fsrMgM;V j= X � Y i� V (X) � V (Y )M;V j= � _ � i� M;V j= � or M;V j= �M; V j= :� i� not M;V j= �M;V j= 9X: �(X) i� there is T � SM s.t. M;V [T=X] j= �(X)We will concentrate here on de�nability by sentences. Of course it makesno di�erence for MSOL because the quanti�cation is available, but it will makethe di�erence in the case of the �-calculus. We write M j= ' to mean that thesentence ' is true in M . A sentence ' of MSOL de�nes a class of transitionsystems: fM :M j= 'g. A class of transition systems is MSOL de�nable if thereexists an MSOL sentence de�ning this class. A class C of transition systems isbisimulation closed if whenever M 2 C and M 0 is bisimilar to M then M 0 2 C.A sentence is bisimulation invariant if the class of transition systems it de�nesis bisimulation closed.Remark. There exist formulas of MSOL which are not bisimulation invariant.Take for example a formula stating that there is exactly one r{transition fromthe source. Observe that the problem of checking whether an MSOL formula isbisimulation invariant is not arithmetical because the validity problem is notarithmetical.3.2 Propositional �-calculusThe set of the �-calculus formulas is the smallest set containing Prop[Var whichis closed under negation, disjunction and the following two formation rules:{ if � is a formula and r 2 Rel then hri� is a formula,{ if �(X) is a formula and X occurs only positively (i.e. under even number ofnegations) in �(X) then �X:�(X) is a formula.Observe that we use relation names in the modalities.The meaning of a formula � in a transition system M and a valuation V :Var! P(SM ) is a set of states, jj�jjMV , where it is true. It is de�ned by inductionon the length of the formula:jjpjjMV = pMjj:�jjMV = SM � jj�jjMVjj�_ �jjMV = jj�jjMV [ jj�jjMVjjhri�jjMV = fs : 9t:(s; t) 2 rM ^ t 2 jj�jjMV gjj�X:�(X)jjMV = TfT � SM : jj�(X)jjV [T=X] � Tg



For a sentence ' we writeM; s j= ' when s 2 jj'jjMV (the choice of a valuationV is irrelevant as ' is a sentence). A sentence ' of the �-calculus de�nes a classof transition systems fM : M; srM j= 'g. The class of transition systems is �-de�nable if there exists a �-calculus sentence de�ning this class. It is well knownthat:Fact 4. Every �-de�nable class is bisimulation closed.Remark. Let us comment on the fact that we consider only de�nability bysentences. Call a class C, �-f-de�nable (�-formula-de�nable) if there is a formula' of the �-calculus such that:C = fM : srM 2 jj'jjMV for arbitrary V : Var! SMgThere are �-f-de�nable classes which are not closed under bisimulation. Considerfor example the class de�ned by the formula :(hriX ^ hri:X). This formulade�nes a class of structures M where there is at most one s 2 SM such that(srM ; s) 2 rM . This class is clearly not bisimulation closed. The �-f-de�nabilitycorresponds to de�nability of frames in modal logic. It is easy to see that thenotion of �-f-de�nability is not closed under complement. Hence this notion ofde�nability is not interesting from expressive completeness point of view.4 Automata characterisationsHere we will de�ne automata running on transition systems. Then we will givecharacterisations of the expressive power of MSOL and the �-calculus in termsof these automata.First problem we have to deal with is the description of a transition function.In case of words, a transition function of an automaton with alphabet � andstates Q is an element of Q�� ! P(Q). In case of binary trees, it is an elementfrom Q�� ! P(Q�Q). This suggest that for trees of degree less than or equalto �, a transition function should be an element of Q�� ! P(Q�). But surelyit cannot be an arbitrary such function because MSOL has limited expressivepower. The idea is to shift the attention a little. Let us consider the set S of sonsof a node. An assignment of states to the elements of S can be seen as a functionm : Q! P(S), which for each state q 2 Q gives a set of elements to which q isassigned. We call such a function amarking. The set of markings can be describedby a formula with free second order variables fZqgq2Q representing the sets ofelements assigned q. For example in case of binary trees, S will be always atwo element set fl; rg and a transition, say, �(q; a) = f(q1; q2); (q3; q4)g will betranslated into the formula: (Zq1 (l) ^ Zq2 (r)) _ (Zq3 (l) ^ Zq4 (r)). This approachextends easily to alternating automata on binary trees [23] but this time formulasobtained in the translation will be arbitrary positive boolean combinations ofatomic formulas of the from Zqi (l) or Zqi (r). In the case of trees of arbitrarydegree the use of formulas to describe markings allows us to abstract from thecardinality of S. By restricting to speci�c classes of formulas we can control the



expressive power of the obtained automata. It turns out that this gives us enoughcontrol to characterise the �-calculus or MSOL over trees. Hence we obtain acommon ground to compare the two logics.Let us proceed with the formal de�nition of these automata.De�nition5 Basic formulas. For every �nite set U , let BF(U) be some set ofsentences of the �rst order logic, possibly with the equality predicates, over thesignature consisting of unary predicates fpgp2U . A marking of a given set S isa function m : U ! P(S). We say that m satis�es a sentence ' 2 BF(U) i� 'is satis�ed in the structure hS; fm(p)gp2U i, i.e., the structure with the carrier Sand each predicate p 2 U interpreted as m(p).An automaton is a tuple:A = hQ;�p � Prop; �r � Rel; q0 2 Q;� : Q�P(�p)! BF(�r �Q); 
 : Q! IN i (1)where Q is a �nite set of states, �p is a �nite subset of Prop and �r is a �nite sub-set of Rel. Observe that the automaton has two alphabets. One is for examiningproperties of states and the other is for checking labels of taken transitions.We �nd it convenient to give the de�nition of acceptance in terms of games.De�nition6 Acceptance. Let M be a transition system and let A be an auto-maton as above. We de�ne a game G(M;A) as follows:{ The initial position is a pair (srM ; q0).{ If the current position is a pair (s; q) then player I is to move. LetL(s) = fp 2 Prop : s 2 pMg \�pbe a set of relevant propositions holding in s. Player I chooses a markingm : �r � Q! P(Sr2�r succr(s)) such that for every r; q we have m(r; q) �succr(s) and h [r2�r succr(s); fm(r; q)g(r;q)2�r�Qi j= �(qi; L(s))The marking m becomes the current position.{ If the current position is a marking m then player II chooses some r 2 �r ,some automaton state q 2 Q and some state s 2 m(r; q). The pair (s; q)becomes the current position.If one of the players cannot make a move then the other player wins. If the playis in�nite then as the result we obtain an in�nite sequence:(s0; q0);m1; (s1; q1);m2; : : :Let j be the smallest number appearing in�nitely often in the sequence:
(q0); 
(q1); : : :



Player I wins if j is even, otherwise player II is the winner.We say that M is accepted by A i� there is a winning strategy for player I inthe game G(M;A). A language recognised by A is the class of transition systemsaccepted by A:From now on, let U = �r � Q. The following is a reformulation of a resultfrom [19].Theorem7. A class of transition systems is de�nable by a �-calculus sentencei� it is a language recognised by an automaton as in (1) with BF(U) containingonly disjunctions of sentences of the form:9x1; : : : ; xk: (p1(x1) ^ : : :^ pk(xk) ^ 8z:p1(z) _ : : :_ pk(z)) (2)where pi 2 U for i = 1; : : : ; k.The goal in [19] was to �nd the simplest possible form of automaton. Herewe will be content with more liberal formalisation. The proof of the fact belowcan be found in [18], it also follows from [31].Fact 8. A class of transition systems is de�nable by some �-calculus formulai� it is a language recognised by an automaton as in (1) with BF(U) containingonly disjunctions of formulas of the form:9x1; : : : ; xk: (p1(x1) ^ : : :^ pk(xk) ^ 8z:�(z))where �(z) is a disjunction of conjunctions of formulas of the form p(z) forp 2 U .Example 1. As an example we construct an automaton equivalent to the �-calculus formula �X:p _ hriX. This automaton is:hfqg; fpg; frg; q; �; 
iwhere 
(q) = 1 and � is de�ned by:�(q; ;) = 9x: (r; q)(x) ^ 8z:true�(q; fpg) = 8z: trueThe following was shown in [31]:Theorem9. A class of trees is de�nable by a MSOL sentence i� it is a languagerecognised by an automaton as in (1) with BF(U) containing only disjunctionsof formulas of the form:9x1; : : : ; xk: di�(x1; : : : ; xk) ^ pi1(x1) ^ � � � ^ pik(xk)^8z: di�(z; x1; : : : ; xk)) �(z)where �(z) is a disjunction of conjunctions of formulas of the form p(z), forp 2 U , and di�(x1; : : : ; xk) is a formula stating that the meanings of all thevariables are di�erent.



Remark. In the above theorem we can allow arbitrary �rst or even monadicsecond order formulas as basic formulas. The set of basic formulas speci�edabove is the smallest set which was shown to be su�cient in [31]. Of course,the simpler the set of basic formulas, the easier would be our task of translatingMSOL formulas into �-calculus formulas.Because the construction of an automaton equivalent to a given formula ise�ective and because the emptiness problem for these automata can be shown tobe decidable we obtain:Corollary 10. MSOL theory of trees is decidable.For countably branching trees this corollary is a consequence of Rabin's the-orem about decidability of S2S [27].5 Expressive completenessTheorem 9 together with Fact 8 suggest that there is a very strong connectionbetween the two logics. Basic formulas in case of MSOL automata are moreexpressive because, for example, they can compare the number of sons with aconstant (by the use of existential quanti�cation together with di�(~x) formula).Intuitively if an MSOL formula is bisimulation closed, an equivalent automatonshould not use di�(~x) formulas, hence it should be equivalent to a �-calculusformula. A precise argument con�rming this intuition must take into account thefact that automata are nondeterministic which means that the automaton mayhave only runs which use di�(~x) formulas but nevertheless accept a bisimulationclosed set.Theorem11 Expressive completeness. A bisimulation closed class of trans-ition systems is MSOL de�nable i� it is �-de�nable.Proof. It is easy to see that every �-de�nable class is also MSOL de�nable. Forconverse we use the following lemma:Lemma12. For every MSOL sentence ' one can build a �-calculus sentence'_ such that for every transition system M :M j= '_ i� cM j= 'Assume that the lemma was proved. Let ' be a MSOL sentence de�ning abisimulation closed class of transition systems. This in particular means that forevery transition system M we have:M j= ' if and only if cM j= '. Let '_ be theformula given by the lemma above. We have:M j= ' i� cM j= ' i� M j= '_ 2



Proof of Lemma 12. For every formula  of the form:9x1; : : : ; xl: di�(x1; : : : ; xl) ^ p1(x1) ^ � � � ^ pl(xl)^8z:di�(z; x1; : : : ; xl)) �(z) (3)we let  _ to be a formula obtained by substituting true for di� in the above:9x1; : : : ; xl: p1(x1) ^ : : :^ pl(xl) ^ 8z:�(z) (4)For a disjunction � =  1_: : :_ j of formulas as in 3 we de�ne: �_ =  _1 _: : :_ _j .By Theorem 9 there is an automaton A = hQ;�; q; �; 
i accepting the classof tree models of '. We know that for every q 2 Q and a 2 P(�p), formula�(q; a) is a disjunction of formulas of the form (3). We de�ne the automaton A_which has all the same components as A but the transition function �_. For everyq 2 Q and P 2 �p we let �_(q; P ) = (�(q; P ))_.Observation1. The automaton A_ accepts M i� A accepts cM .It is quite easy to see that if M is accepted by A_ then cM is accepted by A.Conversely, suppose cM is accepted by A. We will show that M is accepted byA_.By the de�nition, A accepts cM i� player I has a winning strategy b� in thegame bG = G(cM;A). We de�ne a winning strategy �_ for player I in the gameG_ = G(M;A_). The idea of the strategy is to play simultaneously the gamesG_ and bG and transfer each move of player II from G_ to bG. Then one canconsult the strategy b� for bG and transfer the suggested move of player I back toG_.The initial position of G_ is (srM ; q0) and it is also the initial position of bG.Assume that each of the players has made k moves. Assume also that thehistories of the two plays are respectively:(srM ; q0);m1; (s1; q1); : : : ;mk; (sk; qk)for G_ and (srM ; q0); bm1; (u1; q1); : : : ; bmk; (uk; qk)for bG, where for every i = 1 : : : ; k we have ui = u0i(ai; ri; si) for some !-indexedpath u0i, ai 2 IN and ri 2 Rel.In this position player I is to move. Let bmk+1 = b�(uk; qk) be a markingsuggested by the strategy b�. Let us introduce a notation for the two structuresMuk = hSr2�r succ bMr (uk); f bmk+1(r; q)g(r;q)2�r�QiMsk = hSr2�r succMr (sk); fmk+1(r; q)g(r;q)2�r�QiBy de�nition the marking bmk+1 : �r � Q! P(succ bM (uk)) satis�es:Muk j= �(qk; L(uk)) (5)



We de�ne mk+1 : �r � Q! P(succM (sk)) by letting:mk+1(r; q) = fs : uk(a; r; s) 2 bmk+1(r; q) for some a 2 INg (6)Let us check that: Msk j= �_(qk; L(sk))We know that �(qk; L(uk)) is a disjunction of formulas of the form (3). Byde�nition of cM and the fact that uk = u0k(ak; rk; sk) we have: L(uk) = L(sk).Hence �_(qk; L(sk)) = (�(qk; L(uk)))_ by the de�nition of A_.Assume thatMuk j=  for some disjunct  of �(qk; L(uk)). We will show thatMsk j=  _.We know that  _ is of the form (4) where each pj is of the form (rj; qj). Letus �rst check that for every j = 1; : : : ; l there is s 2 mk+1(rj; qj). For this it isenough to take uk(a; rj; s) 2 bmk+1(rj; qj) known to exist by property (5). To seethat Msk j= 8z: �(z) observe that for every s 2 succMr (sk) there is a 2 IN suchthatMuk j= �((a; r; s)). By the fact that � is monotone in predicates fpgp2�r�Qand the de�nition of m, we obtain: Msk j= �(s).Hence taking m is a legal move of player I in the game G_. After this movewe obtain the position:(srM ; q0);m1; (s1; q1); : : : ;mk; (sk; qk);mk+1and at the same time in bG we obtain the position:(srM ; q0); bm1; (u1; q1); : : : ; bmk; (uk; qk); bmk+1with mk+1 de�ned from bmk+1 by (6). From this position player II chooses somerk+1 2 �r , qk+1 2 Q and a state sk+1 2 mk+1(rk+1; qk+1). The history of theplay G becomes:(srM ; q0);m1; (s1; q1); : : :mk; (sk; qk);mk+1; (sk+1; qk+1)We make player II in bG to choose qk+1 and uk(ak+1; rk+1; sk+1) 2 bmk+1(rk+1; qk+1)which exists by (6). We arrive at the position satisfying our initial assumptionsso we can repeat the whole argument.By de�nition of the strategy player I can always make a move hence he cannotlose in a �nite number of steps. If the play is in�nite then the result of the playis an in�nite sequence:(srM ; q0);m1; (s1; q1); : : : ;mk; (sk; qk) : : :At the same time we know that the corresponding play in the game bG has beenin�nite and its result is:(srM ; q0); bm1; (u1; q1); : : : ; bmk; (uk; qk) : : :Because in the game bG player I used the winning strategy b� we know that thesmallest integer appearing in�nitely often in the sequence 
(q1); 
(q2); : : : is



even. But this implies that player I won in the game G_. Hence the strategy wehave de�ned is winning and A_ accepts M .Function �_ was de�ned in such a way that the automaton A_ is of the formrequired in Fact 8. Hence there is a �-calculus sentence '_ equivalent to A_. 2From Corollary 10 and the fact that the sentence '_ from Lemma 12 can beconstructed e�ectively it follows:Corollary 13. It is decidable whether a MSOL sentence de�nes a bisimulationclosed set of trees.Remark. Analysing the proof of Theorem 11 one can observe that the theoremremains true also when we restrict to �nite branching transition systems.Remark. One may ask what is the meaning of b' given in Lemma 12 if ' is notbisimulation invariant. Unfortunately the class de�ned by b' is not so easy todescribe and it does not seem to be very interesting. On the other hand we havethe following fact.Fact 14. Bisimulation closure of a MSOL sentence is not always MSOL de�n-able.Let us give an example of such a sentence. Let ' be a sentence saying thatevery node has exactly one successor and that on the unique path from the sourcethere is exactly one state where a predicate p holds. The bisimulation closure of' contains all the trees with the property that on every two paths p holds atexactly the same distance from the root. If all such trees are models of someMSOL formula then from the automata characterisation it follows that some treewhich does not have this property is also a model of this formula. But this lasttree is not bisimilar to a model of '.6 Concluding remarksWe have investigated the expressive completeness problem for branching timelogics. For this we have introduced a new kind of automata capable of recog-nising classes of transition systems. The de�nition of automata has been para-metrised by the set of basic formulas. This has given us a common ground tocompare expressive power of MSOL and the �-calculus. The fact that the proofof Theorem 11 is relatively easy suggest that this notion of automata may be aninteresting one. .Of course not all properties of potential interest can be expressed in MSOL.Some logics capable of expressing nonregular properties were proposed in theliterature (see for example [17, 7]). We think that in this case it is also importantto look for some new standards to compare expressive power with.There is one new area of veri�cation were the need for \yardsticks" seems to beparticularly pressing. We have in mind veri�cation with respect to so called non-interleaving semantics [32, 1, 29]. There are good reasons for considering these
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