
A note on the satis�ability problemin �xpoint calculi(Draft Version)Andr�e Arnold, David JaninLaBRIUniversit�e de Bordeaux I - ENSERB351 cours de la Lib�eration,F-33 405 Talence cedexfarnold|janing@labri.u-bordeaux.frAbstract. In this paper, we study the satis�ability problem in �xpointcalculi. A notion of disjunctive formulas is de�ned to characterize a classof �xpoint calculi in which the satis�ability problem is simple: providedthe underlying lattice of interpretation is compact in some sense, sat-is�ability is decidable in linear time. Then we generalize this approachto a broader class of �xpoint calculi giving some simple condition for acalculus to be semantically equivalent to a disjunctive one.This approach generalizes important results in �xpoint calculi and au-tomata theory. In particular it induces an abstract characterization ofthe notion of �nite non deterministic automata, i.e. automata withoutuniversal branching or, following the terminology of Muller and Schupp,non alternating automata.IntroductionIn this paper, we investigate the satis�ability problem in �xpoint calculi. Moreprecisely, given a complete latticeM equipped with a set of monotonic increasingfunctions, we want to know if there exists an algorithm that, given any positive�xpoint expression (or �xpoint formula) � built over these functions, decide ifthe value �M of the formula � in the lattice M is distinct from the bottomelement (in this case we say � is satis�able in M) or not.Such a problem generalizes many other problems. For instance, it as beenshown recently that �xpoint calculi are tightly related with automata theory [1];�xpoint calculi induces a notion of automaton which generalizes most usual no-tions of �nite automaton. It turns out that solving the satis�ability problem for�xpoint calculi also solves the emptiness problem for languages recognizable bymeans of many kind of (today or future) notions of �nite automaton.Before giving an overview of our paper, let us review some simple facts onthe satis�ability problem.First, with the disjunction operator _, the satis�ability problem is straight-forward since a disjunction of two formula � _ � is satis�able if and only if oneof the disjunct � or � is satis�able.



2 With the conjunction operator ^, the satis�ability problem becomes di�cultin general. In classical language theory for instance, given two regular expression�1 and �2 (which are some normal forms of �xpoint expression built withoutconjunctions) deciding if the language L(�1 _�2) = L(�1)[L(�2) is non emptyis immediate. Deciding if the language L(�1^�2) = L(�1)\L(�2) is non emptyis more di�cult. It requires some (implicit or explicit) basic automata theory.Notice that it may also happen that the satis�ability problem is, even withthe conjunction operator, still easy. For instance, over languages of binary trees,given two formulas �1 and �2 over trees, one may de�ne, as in [6], the formulaa(�1; �2) which denote the language of all trees which root are labeled by aand which left and right sons respectively belong to the languages L(�1) andL(�2). Obviously, an implicit conjunction is hidden in this operator. But thesatis�ability problem is still easy since the satis�ability of the formula a(�1; �2)is equivalent to the satis�ability of both the formula �1 and the formula �2.From the previous examples one is tempted to say that an operator f has asimple behavior w.r.t. the satis�ability problem when checking the satis�abilityof some formula f(�1; � � � ; �n) is equivalent with checking a boolean combina-tion (which depends on f) of the satis�ability of the arguments �1, . . . , �n. Inthe absence of �xpoint, such a condition obviously leads to formulas for whichsatis�ability is easy.In the present paper, we essentially show that when all operators satisfy theprevious property, provided the underlying lattice is compact in some sense, thesatis�ability problem for arbitrary �xpoint formulas is also easy. At �rst sightsuch a case seems quite restrictive (e.g. no explicit conjunction may occur informulas). But we also show, applying a formerly proved reduction theorem [1],that, under some simple conditions, �xpoint calculi are reducible to this case. Infact, the decision procedure we describe in this paper can be applied to many�xpoint calculi: from Park's �-calculus over �nite and in�nite words [7] to the�xpoint calculi over tree-shaped structures de�ned in [10], passing by Kozen'smodal �-calculus [3] and Niwi�nski �xpoint calculus over binary trees [6].The paper is organized as follows. In the �rst part we recall some basicde�nitions about �xpoint formulas and their interpretations in complete latticescalled, in this occasion, �xpoint algebras.In the second part, we de�ne a topological structure in �xpoint algebraswhich leads us to the notion of compact algebras.In the third part, the notion of disjunctive functions (functions with a simplebehavior w.r.t. satis�ability) is de�ned. Basic properties of these functions arealso given. This notion of disjunctiveness generalizes a similar notion presentedin [2] for Kozen's modal �-calculus.In the fourth part, we prove the main theorem of our paper. Namely, overdisjunctive formulas, i.e. formulas built only with disjunctive functions, providedthe underlying �xpoint algebra is compact, the satis�ability problem is decidablein time linear in the size of formulas. In some sense, the restriction to disjunctive



3functions ensures that no universal branching will occurs in the underlying au-tomata. While arbitrary �xpoint formulas generalizes Muller and Schupp alter-nating automaton [4], disjunctive formulas generalizes non deterministic Rabinautomaton [8].In the last part, we recall the reduction theorem proved in [1] (a generaliza-tion of Muller and Schupp simulation theorem [5]) and show how it enable usto reduce the satis�ability problem in many �xpoint calculi to the satis�abilityproblem on disjunctive formulas.As a conclusion, we examined the compactness hypothesis which may be dif-�cult to check. We also examined how far we are from solving a related question:obtaining complete and �nite axiomatization of truth in �xpoint calculi as it hasalready been done for Kozen's modal �-calculus [9].1 PreliminariesWe call functional signature any set � of function symbols equipped with anarity function � : � ! IN over these symbols.1.1.De�nition (Fixpoint algebras). Given a signature � a �xpoint algebraover � is a complete lattice hM;_M ;^M i with the bottom and top elementdenoted by ?M and >M together with, for any symbol f 2 �, a monotonicincreasing function fM :M�(f) !M called the interpretation of f in M .In the sequel, to be consistent with symbol names, we always assume that forany �xpoint algebra M , any symbol among ?, >, ^ or _ which appears in � isrespectively interpreted in M as ?M , >M , ^M or _M . Also, for any set E �Mwe denote by WM E (resp. VM E) the least upper bound (resp. the greatestlower bound) of the set E.1.2. Example. Any complete boolean algebra is a �xpoint algebra over signa-ture f_;^g.1.3.De�nition (Fixpoint formulas). Given a signature � and a set of vari-able symbol X disjoint from � the set ��(X ) of �xpoint formulas, simply calledformulas in the sequel, is inductively de�ned by the following rule:1. X is a formula for any variable X 2 X ,2. f(�1; � � � ; ��(f)) is a formula for any f 2 � and any formula �1, . . . , ��(f),3. �X:� and �X:� are formulas for any X 2 X and any formula �.Given a formula � 2 ��(X ), we say a an occurrence of variable X is bound in �when it occurs in a subformula of the form �X:�1 for � = � or �. Unboundedoccurrences of variable X in � are called free. A formula � is a closed formulawhen no variable occurs free. The set of closed formulas is denoted by ��. Wealso denote by �(X ) the set of formulas built without �xpoint construction, i.e.formulas with no sub-formulas of the form �X:�1 for � = � or �.



4Notation: Given a set of variable fX1; � � � ; Xng, we denote by �(X1; � � � ; Xn)any formula � 2 ��(X ) such that any variable occurring free in � belongs tothe set fX1; � � � ; Xng.1.4.De�nition (Formulas semantics). Given a �xpoint algebra M , given avaluation of variables V : X ! M , any formula � is interpreted as an element[[�]]MV of M inductively de�ned by :1. [[X ]]MV = V (X),2. [[f(�1; � � � ; ��(f))]]MV = fM ([[�1]]MV ; � � � ; [[��(f)]]MV ),3. [[�X:�]]MV =_ne 2M : e � [[�]]MV [e=X]o,4. [[�X:�]]MV =^ne 2M : e � [[�]]MV [e=X]o,where V [e=X ] denotes the valuation de�ned for any variable Y 2 X byV [e=X ](Y ) = � e when X = Y ,V (Y ) otherwise.Given C a class of structures, we say that a formula �1 is re�nement of formula�2 over class C, which is noted �1 �C �2 when, for any �xpoint algebra M 2 C,any valuation of variable V : X !M ,[[�1]]MV �M [[�2]]MVThis relation is a preorder and we note 'C the induced equivalence. When �1 'C�2 (i.e. both �1 �C �2 and �2 �C �1) we say formulas �1 and �2 are semanticallyequivalent w.r.t. C. When this equality holds for arbitrary �xpoint algebra andarbitrary valuation the subscript will be omitted.In particular, �X:X ' ? and �X:X ' >. In the sequel we will always assume,without increase of expressive power, that both constant symbols > and ? belongto �.1.5.Example. Given an alphabet A = fa1; : : : ; ang, given a signature �1 =f?;>;^;_; S1g with �(S1) = n, we de�ne the �xpoint algebra of languages ofin�nite words (!-languages for short) on the alphabet A as M = hP(A!);[;\iwith, for any L1, . . . , Ln 2 P(A!),S1M (L1; � � � ; Ln) = [i2[1;n] ai:Liwhere a:L = fa:w : w 2 Lg. In [7], the signature is slightly di�erent sincePark uses mappings of the form L 7! ai:L. These mappings can be built fromsymbols of �1 as mappings X 7! S1M (t1; : : : ; tn) with tj = L when j = iand tj = ?M otherwise, i.e. the interpretation in M of a term noted ai:X ofthe form S1(?; � � � ;?; X;?; � � � ;?). In this algebra, one can check that formula� = �X(�Y (b(X) _ a(Y ))) denotes, the set of all in�nite words on alphabet



5fa; bg with in�nitely many b. An equivalent regular expression for this languageis (a�b)!.The algebra of languages of �nite and/or in�nite words is de�ned from sig-nature �1 extended with a new constant symbol � interpreted as the emptyword.In formulas semantics, valuations gives meaning to free variables. Abstractingfrom this meaning, interpretations of formulas become functions. The followingde�nition formalized this intuition.1.6.De�nition (Functional interpretations of formulas). Given a �xpointalgebra M , any formula �(X1; � � � ; Xn), we de�ne the functional interpretationof �(X1; � � � ; Xn) in M , denoted by �M (X1; � � � ; Xn), as the function from Mnto M de�ned by :(e1; � � � ; en) 7! �M (e1; � � � ; en) = [[�]]MV [e1=X1]���[en=Xn]In the sequel, in the notation �M (X1; � � � ; Xn), the sequence of variables shallbe omitted when it causes no ambiguity.Remark: One can check, by induction on the syntactic complexity of formulas,that the function �M (X1; � � � ; Xn) is a monotonic increasing function in any ofits argument. The Knaster-Tarski's Lemma applies showing that the functionalinterpretation in M of the formula � = �Xi:�(X1; � � � ; Xn) is the least �xpoint(when � = �) or the greatest �xpoint (when � = �) of the mapping (overfunctions from Mn�1 to M) de�ned byF 7! �M (e1; � � � ; ei�1; F (e1; � � � ; ei�1; ei+1; � � � ; en); ei+1; � � � ; en)In the sequel, we shall use both notations(�Xi:�)M (X1; � � � ; Xi�1; Xi+1; � � � ; Xn)or �Xi:�M (X1; � � � ; Xi�1; Xi; Xi+1; � � � ; Xn)to denote such a �xpoint.The following proposition is a fundamental tool to study formulas semantics.1.7. Proposition (Trans�nite approximation). For any �xpoint algebras M ,there exists an ordinal �M such that for any formula � :�X:� 'M ��MX:� and �X:� 'M ��MX:�with the semantics of �� :� and �� :� inductively de�ned by :1. [[�0X:t]]MV = >M and [[�0X:t]]MV = ?M ,2. [[��+1X:t]]MV = [[t[��X:T=X ]]]MV and [[��+1X:t]]MV = [[t[��X:T=X ]]]MV ,3. and, for any limit ordinal � , [[��X:t]]MV = V�1<� [[��1X:t]]MVand [[��X:t]]MV = W�1<� [[��1X:t]]MV .



62 Compact algebrasBefore introducing the notion of disjunctive functions which is a central notionin our approach to the satis�ability problem, we need �rst to introduce sometopological-like notions over �xpoint algebras.2.1.De�nition. Given a �xpoint algebra M over signature �, the set CM ofclosed elements of M is de�ne as the smallest set such that:1. ?M and >M 2 CM ,2. for any function symbol f 2 �, any closed element e1, . . . , e�(f) 2 CM ,f(e1; � � � ; e�(f)) is a closed element,3. for any set E � CM of closed element, VM E is a closed element,Remark: In the case M is a continuous lattice (when _ is continuous w.r.t. to^) with _ 2 � the set of closed elements de�ned above induces a topology inthe usual sense overM , i.e. the least upper bound of any �nite subset of set CMbelong to set CM and the greatest lower bound of any �nite or in�nite subset ofset CM belong as well to set CM .The following proposition (from which comes our de�nition) shall be usefulin the sequel.2.2.Proposition. Given a �xpoint algebra M , for any formula �(X1; � � � ; Xn)built without least �xpoint construction, the function �M (X1; � � � ; Xn) is a closedfunction, i.e. for any closed element e1, . . . , en 2M , �M (e1; � � � ; en) is a closedelement.Proof: A straightforward induction on the syntactic complexity of formula �,applying trans�nite approximation of greatest �xpoint. 22.3.De�nition (Compact algebra). We say a �xpoint algebraM is compactwhen, for any set E � CM of closed points, VE = ? if and only if VF = ?for some �nite subset F of set E.2.4.Example. The �xpoint algebra of languages of �nite words is not compactas shown, for instance, by the language de�ned by^i2IN an:>which is empty. In opposite, the �xpoint algebra of languages of �nite and in�nitewords is a compact algebra.



73 Disjunctive algebras3.1.De�nition (Boolean projection). Given a �xpoint algebra M over sig-nature �, the boolean projection XM over M is de�ned as the mappingXM :M ! f>;?gx 7! XM (x) = �? when x = ?,> otherwise.Remark: Extending in a straightforward way the usual (model theoretical)notion of satis�ability, a closed formula � 2 �� is satis�able in an algebra Mwhen XM (�M ) = >.3.2.De�nition (Disjunctive function). We say a function F : Mn ! M isdisjunctive when:1. if n = 0 then F = cM for some constant symbol in �,2. if n 6= 0 then there exists a boolean function XM (F ), called the booleanprojection of function F , such that, for any closed elements e1, . . . , en 2 CM ,XM (F (e1; � � � ; en)) = XM (F )(XM (e1); � � � ;XM (en))Remark: In condition 2 above, function XM (F ) is uniquely determined, forany boolean elements e1, . . . , en 2 f>;?g, byXM (F )(e1; � � � ; en) = XM (F (e1; � � � ; en))3.3. Example. The joint function _ is disjunctive with XM (_) = _. In generalthe meet function ^ is not disjunctive. For instance, given M = P(fa; bg) onehas XM (fag \ fbg) = ? while XM (fag) ^ XM (fbg) = >.3.4. Proposition. The set of disjunctive function is closed under function com-position. The boolean projection of a composition of disjunctive functions is thecomposition of their boolean projections.Proof: By de�nition XM is \functorial" over disjunctive functions ! 23.5. Proposition. The boolean projection is invariant under iteration of dis-junctive functions, i.e. for any disjunctive function F (X1; � � � ; Xn), any i 2 [1; n]XM (F (X1; � � � ; Xn)) = XM (F (X1; � � � ; Xi�1; F (X1; � � � ; Xn); Xi+1; � � � ; Xn))Proof: Obvious since for any boolean function F , any i 2 [1; n], F (X1; � � � ; Xn) =F (X1; � � � ; Xi�1; F (x1; � � � ; Xn); Xi+1; � � � ; Xn). 23.6.De�nition. Given a �xpoint algebraM , we say that a formula � 2 ��(X )is a disjunctive formula over M when, for any function symbol f occurring in�, the function fM is disjunctive. By extension, we say that the �xpoint algebraM is a disjunctive algebra when the interpretation fM of any symbol f 2 �, isa disjunctive function.



8Notation: In the sequel, for any formula �, we denote by XM (�)(X1; � � � ; Xn),when it does exist, the boolean projection of the functional interpretation offormula �(X1; � � � ; Xn). In particular, for any function symbol f 2 � such thatthe function fM is disjunctive, we denote by XM (f) the boolean projection offM .As far as complexity is concerned, we also assume that given any algebraM ,any function symbol f 2 � such that the function fM is disjunctive, the functionXM (f) is given in such a way it is computable in time linear in the number ofits argument. Since XM (f) is a boolean function this is always possible.4 Satis�ability in compact and disjunctive algebrasIn the absence of �xpoint construction, disjunctiveness is a straightforward suf-�cient condition for the satis�ability problem to be simple. More precisely:4.1.Proposition. When M is a disjunctive �xpoint algebra, the satis�ability ofany closed formula � built without �xpoint is decidable in time linear in the sizeof �.Proof: By induction on formula �. If � is a constant symbol then XM (�) iscomputable in constant time. Otherwise � is of the form f(�1; � � � ; ��(f)) withXM (�) = XM (f)(XM (�1); � � � ;XM (��(f)))hence induction hypothesis applies giving us the result. 24.2.De�nition (Lower and upper projection). Given a formula � 2 ��(X ),we de�ne the lower projection and the upper projection of formula � as the for-mula #� and the formula "� inductively de�ned by the following rules:1. #X = X and "X = X for any variable X 2 X ,2. #f(�1; � � � ; ��(f)) = f(#�1; � � � ; #��(f))and "f(�1; � � � ; ��(f)) = f("�1; � � � ; "��(f)),3. #�X:� =#�[?=X ] (resp. "�X:� = �X: "�),4. #�X:� = �X: #� (resp. "�X:� ="�[>=X ]),Remark: For any formula � 2 ��(X ), #� � � �"� and #"� '"#�.4.3.Theorem (Disjunctiveness). For any �xpoint formula �, for any dis-junctive and compact �xpoint algebra M , the functional interpretation �M ofthe formula � is disjunctive with XM (�) = XM ("#�).Proof: The proof goes in two steps. We �rst show this result holds for formulabuilt without least �xpoint construction and then we extend it to the generalcase. In the sequel, let M be a disjunctive and compact �xpoint algebra.4.4. Lemma. For any formula �(X1; � � � ; Xn) built without least �xpoint con-struction, function �M (X1; � � � ; Xn) is disjunctive with XM (�)(X1; � � � ; Xn) =XM ("�)(X1; � � � ; Xn).



9Proof: By induction on the structure of formula �(X1; � � � ; Xn).1. When formula � is a variable X noting has to be done since "X = X .2. When formula � is of the form f(�1; � � � ; ��(f)), by induction hypothesis, forany i 2 [1; �(f)], the function �iM is disjunctive with XM (�i) = XM ("�i).Hence, for fM is disjunctive, by composition of disjunctive function (seeproposition 3.5), �M is disjunctive withXM (�)(X1; � � � ; Xn)= XM (f)(XM ("�1)(X1; � � � ; Xn); � � � ;XM ("��(f))(X1; � � � ; Xn))3. When formula � is of the form �X:�, we prove by induction on ordinals that,for any ordinal � > 1, (��X:�)M is disjunctive withXM (��X:�)(X1; � � � ; Xn) = XM (�[>=X ])(X1; � � � ; Xn)which, applying Proposition 1.7 and the induction hypothesis on �[>=X ]enable us to conclude.The induction on ordinals goes as follows.(a) When � = 1, �1X:� 'M �[>=X ], hence the result.(b) When � is a successor ordinal, i.e. � = �1 + 1, we have ��1+1X:� '�[��1X:�=X ]. Applying the general induction hypothesis, we know thefunction �M (X;X1; � � � ; Xn) is disjunctive hence, applying proposition 3.5,XM (�)(X;X1; � � � ; Xn) = XM (�[�=X ])(X;X1; � � � ; Xn). Then, by com-position of disjunctive function, i.e. with X instantiated into the formula(�t1X:�)(e1; � � � ; en) on which the induction hypothesis applies, we con-clude the induction step.(c) When � is a limit ordinal, for any closed elements e1, . . . , �n 2 CM ,�M (e1; � � � ; en) = ^t1<�(��1X:�M )M (e1; � � � ; en)In this case the compactness hypothesis applies (for all elements of theform (��1X:�)M (e1; � � � ; en) are closed) hence XM (�M (e1; � � � ; en)) =(��1X:�)M (e1; � � � ; en) for some �1 < � and the induction hypothesisapplies. 24.5. Lemma. The functional interpretation of any formula �(X1; � � � ; Xn) isdisjunctive with XM (�)(X1; � � � ; Xn) = XM (#�)(X1; � � � ; Xn).Proof: Again, the proof goes by induction on the structure of �. Lemma 4.4ensures that formula #� (built without least �xpoint construction) is disjunctive.1. When formula � is a variable X or when it is of the form f(�1; � � � ; ��(f))the proof is essentially the same as above to relate � and #�.



102. When formula � is of the form �X:�, applying Proposition 1.7, for any el-ement e1, . . . , en 2 M , �M (e1; � � � ; en) = ?M i� (�[?=X ])M (e1; � � � ; en) =?M hence the result, applying the induction hypothesis on the formula�[?=X ].3. When formula � is of the form �X:�, for any e1, . . . , en 2 CM , we haveXM (# �M (e1; � � � ; en)) � XM (�M (e1; � � � ; en)) since # � � �. We prove theconverse by trans�nite induction. More precisely, we shows that, for anyordinal � , any e1, . . . , en 2 CM , whenever (��X: #�)M (e1; � � � ; en) = ? then(��X:�)M (e1; � � � ; en) = ?. The induction on ordinals goes as follows.(a) When � = 0 nothing has to be done.(b) When � is a successor ordinal, i.e. � = �1 + 1, we haveXM ((��1+1X:�)M (e1; � � � ; en))= XM (�)(XM ((��1X:�)M (e1; � � � ; en));XM (e1); � � � ;XM (en))hence the result applying the general induction hypothesis on formula�(X;X1; � � � ; Xn) (with XM (�) a monotonic increasing function) and theinduction hypothesis for ordinal �1.(c) When � is a limit ordinal, we haveXM ((��X: #�)(e1; � � � ; en)) = XM ( ^�1<�(��1X: #�M (e1; � � � ; en))) = ?Again compactness applies hence (��1X: # �)M (X; e1; � � � ; en) = ? forsome ordinal �1 < � . Then, applying the induction hypothesis on �1, i.e.(��1X:�)M (e1; � � � ; en) = ?, we have (��X:�)M (e1; � � � ; en) = ? whichconclude the proof. 2Proof (Theorem 4.3 continued): Hence for any formula �, �M is disjunctive withXM (�) = XM (# �) (applying Lemma 4.5) hence XM (�) = XM ("# �) (applyingLemma 4.4 on formula #�). 2Remark: Compactness is essential in the previous proofs. However it is onlyused over closed elements which are de�nable by means of trans�nite approx-imations of greatest �xpoint. It may be the case that this hypothesis can beweakened without falsifying the previous theorem.4.6.Corollary. [Satis�ability] In particular, for any compact and disjunctive�xpoint algebra M , for any closed �xpoint formula � 2 ��, the satis�ability offormula � on M is computable in time linear in the size of formula �.Proof: The proof of the theorem above shows that XM (�) = XM (#" (�)) henceit can be computed by induction applying the following rules:1. XM (�X:�1) = XM (�1[?=X ]),2. XM (�X:�1) = XM (�1[>=X ]),3. XM (f(�1; � � � ; ��(f)) = XM (f)(XM (�1); � � � ;XM (��(f))),



11which, under the assumption that every function XM (f)(x1; � � � ; x�(f)) is pre-sented in such a way it can be computed in time �(f), gives us the result. 2Remark: Obviously, the satis�ability problem for disjunctive �xpoint formulasis easier than the emptiness problem for automata. However, since there is anexponential blow-up translating an automaton (with parity condition) into a�xpoint formula [1], this is not a surprise.5 Reduction to the disjunctive caseAn immediate weakness of the decision procedure obtained above is that it doesnot apply to formulas where the conjunction ^ occurs since it is not a disjunctiveoperator. The following result, obtained in [1], remedy to this fact.5.1.De�nition. Given a �xpoint algebra M , we say that the conjunction ^commutes with � on M when, for any �nite multiset ffigi2[1;n] of functionalsymbols of ��f^g there exists a function G built with symbols of ��f^g suchthat an equation of the form:^i2[1;n]ffi(xi)g = G(^ y1; � � � ;^ym)holds on C, where :1. xis are vectors of distinct variables of the appropriate length,2. yjs are vectors of distinct variables taken among those appearing in xis,3. Vyjs denote the g.l.b. applied to the set of all variables occurring in yj .5.2. Example. In the algebra of languages of in�nite words, ^ commutes withsignature�1. For Kozen's modal �-calculus things are less simple since one needsto change the signature. This case from which the present approach was inspired,has been extensively described in [2].The following theorem is proved in [1].5.3.Theorem (Reduction). When the conjunction ^ commutes with � on Many closed �xpoint formula � is equivalent over M to a formula b� built withoutthe symbol ^.Proof: Going back to the proof presented in [1], one can easily check the size ofb� is less than a triple exponent of the size of formula �. 2It follows:5.4.Corollary. In any compact �xpoint algebra M over a signature � suchthat:1. the conjunction ^ commutes with � on M ,2. for any symbol f 2 � � f^g, the function fM is disjunctive,



12the satis�ability problem is decidable in triple exponential time over the size of�xpoint formulas.Proof: Since ^ commutes with � on M , applying Theorem 5.3, any closed for-mula � is, over the �xpoint algebra M , equivalent to a formula b� over thesignature � � f^g. Then, Corollary 4.6 applies, giving us the result. 2ConclusionIn this paper, we have de�ned a general notion of disjunctive formulas for which,in compact algebra, the satis�ability problem is easy; the reduction theoremgives su�cient condition for the satis�ability problem to be reducible to thiscase. Although such a decision procedure applies to many �xpoint calculi, thecompactness condition can be di�cult to check. We miss here some simple andgeneral conditions for compactness 1 to hold in a �xpoint algebra.One interesting case to look at seems to be �xpoint calculi which arise frommonadic �xpoint logic, i.e. where �xpoint formulas are interpreted over lattices ofsets of elementary equivalent structures with interpretations of function symbolsbeing de�nable in First-Order Logic. At the moment it is not clear whethercompactness, that holds for First-Order Logic, will help or not.The satis�ability problem is also, inherently, related with the problem of�nding complete �nite axiomatization of formulas' validity. For Kozen's modal�-calculus [3], such an axiomatization has already been found and proved com-plete [9]. There, an important intermediate step was to consider the notion ofdisjunctive (modal) formulas for which both satis�ability and provability areeasy. Since we generalize, in the present approach, the notion of disjunctive for-mulas, we may expect to obtain completeness results soon.References1. D. Janin. Automata, tableaus and a reduction theorem for �xpoint calculi inarbitrary complete lattices. In IEEE Symp. on Logic in Computer Science, 1997.2. D. Janin and I. Walukiewicz. Automata for the modal mu-calculus and relatedresults. In Math. Found of Comp. Science. LNCS 969, 1995.3. D. Kozen. Results on the propositional �-calculus. Theoretical Comp. Science,27:333{354, 1983.4. D. E. Muller and P. E. Schupp. Alternating automata on in�nite trees. TheoreticalComp. Science, 54:267{276, 1987.5. D. E. Muller and P. E. Schupp. Simultating alternating tree automata by non-deterministic automata: New results and new proofs of the theorems of Rabin,McNaughton and Safra. Theoretical Comp. Science, 141:67{107, 1995.6. D. Niwi�nski. Fixed point vs. in�nite generation. In IEEE Symp. on Logic inComputer Science, 1988.7. D. Park. Concurrency and automata on in�nite sequences. In 5th GI Conf. onTheoret. Comput. Sci., pages 167{183, Karlsruhe, 1981. LNCS 104.1 or a slightly weaker notion as noticed at the end of the proof of Theorem 4.3
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