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Abstract. In this paper, we study the satisfiability problem in fixpoint
calculi. A notion of disjunctive formulas is defined to characterize a class
of fixpoint calculi in which the satisfiability problem is simple: provided
the underlying lattice of interpretation is compact in some sense, sat-
isfiability is decidable in linear time. Then we generalize this approach
to a broader class of fixpoint calculi giving some simple condition for a
calculus to be semantically equivalent to a disjunctive one.

This approach generalizes important results in fixpoint calculi and au-
tomata theory. In particular it induces an abstract characterization of
the notion of finite non deterministic automata, i.e. automata without
universal branching or, following the terminology of Muller and Schupp,
non alternating automata.

Introduction

In this paper, we investigate the satisfiability problem in fixpoint calculi. More
precisely, given a complete lattice M equipped with a set of monotonic increasing
functions, we want to know if there exists an algorithm that, given any positive
fixpoint expression (or fixpoint formula) « built over these functions, decide if
the value ajps of the formula « in the lattice M is distinct from the bottom
element (in this case we say « is satisfiable in M) or not.

Such a problem generalizes many other problems. For instance, it as been
shown recently that fixpoint calculi are tightly related with automata theory [1];
fixpoint calculi induces a notion of automaton which generalizes most usual no-
tions of finite automaton. It turns out that solving the satisfiability problem for
fixpoint calculi also solves the emptiness problem for languages recognizable by
means of many kind of (today or future) notions of finite automaton.

Before giving an overview of our paper, let us review some simple facts on
the satisfiability problem.

First, with the disjunction operator V, the satisfiability problem is straight-
forward since a disjunction of two formula « V [ is satisfiable if and only if one
of the disjunct « or § is satisfiable.



With the conjunction operator A, the satisfiability problem becomes difficult
in general. In classical language theory for instance, given two regular expression
a; and ay (which are some normal forms of fixpoint expression built without
conjunctions) deciding if the language L(a; V a2) = L(aq) U L(as) is non empty
is immediate. Deciding if the language L(a; A as) = L(a1) N L(as) is non empty
is more difficult. It requires some (implicit or explicit) basic automata theory.

Notice that it may also happen that the satisfiability problem is, even with
the conjunction operator, still easy. For instance, over languages of binary trees,
given two formulas a; and ay over trees, one may define, as in [6], the formula
a(ay, az) which denote the language of all trees which root are labeled by a
and which left and right sons respectively belong to the languages L(«;) and
L(az). Obviously, an implicit conjunction is hidden in this operator. But the
satisfiability problem is still easy since the satisfiability of the formula a(a1, as)
is equivalent to the satisfiability of both the formula «; and the formula «s,.

From the previous examples one is tempted to say that an operator f has a
simple behavior w.r.t. the satisfiability problem when checking the satisfiability
of some formula f(ay,---,a,) is equivalent with checking a boolean combina-
tion (which depends on f) of the satisfiability of the arguments a4, ..., a,. In
the absence of fixpoint, such a condition obviously leads to formulas for which
satisfiability is easy.

In the present paper, we essentially show that when all operators satisfy the
previous property, provided the underlying lattice is compact in some sense, the
satisfiability problem for arbitrary fixpoint formulas is also easy. At first sight
such a case seems quite restrictive (e.g. no explicit conjunction may occur in
formulas). But we also show, applying a formerly proved reduction theorem [1],
that, under some simple conditions, fixpoint calculi are reducible to this case. In
fact, the decision procedure we describe in this paper can be applied to many
fixpoint calculi: from Park’s p-calculus over finite and infinite words [7] to the
fixpoint calculi over tree-shaped structures defined in [10], passing by Kozen’s
modal p-calculus [3] and Niwiniski fixpoint calculus over binary trees [6].

The paper is organized as follows. In the first part we recall some basic
definitions about fixpoint formulas and their interpretations in complete lattices
called, in this occasion, fixpoint algebras.

In the second part, we define a topological structure in fixpoint algebras
which leads us to the notion of compact algebras.

In the third part, the notion of disjunctive functions (functions with a simple
behavior w.r.t. satisfiability) is defined. Basic properties of these functions are
also given. This notion of disjunctiveness generalizes a similar notion presented
in [2] for Kozen’s modal p-calculus.

In the fourth part, we prove the main theorem of our paper. Namely, over
disjunctive formulas, i.e. formulas built only with disjunctive functions, provided
the underlying fixpoint algebra is compact, the satisfiability problem is decidable
in time linear in the size of formulas. In some sense, the restriction to disjunctive
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functions ensures that no universal branching will occurs in the underlying au-
tomata. While arbitrary fixpoint formulas generalizes Muller and Schupp alter-
nating automaton [4], disjunctive formulas generalizes non deterministic Rabin
automaton [8].

In the last part, we recall the reduction theorem proved in [1] (a generaliza-
tion of Muller and Schupp simulation theorem [5]) and show how it enable us
to reduce the satisfiability problem in many fixpoint calculi to the satisfiability
problem on disjunctive formulas.

As a conclusion, we examined the compactness hypothesis which may be dif-
ficult to check. We also examined how far we are from solving a related question:
obtaining complete and finite axiomatization of truth in fixpoint calculi as it has
already been done for Kozen’s modal p-calculus [9)].

1 Preliminaries

We call functional signature any set X of function symbols equipped with an
arity function p : X' — IV over these symbols.

1.1. Definition (Fixpoint algebras). Given a signature X a fixpoint algebra
over Y is a complete lattice (M,V s, Ap) with the bottom and top element
denoted by Ljps and Tps together with, for any symbol f € X, a monotonic
increasing function fp; : MPY) — M called the interpretation of f in M.

In the sequel, to be consistent with symbol names, we always assume that for
any fixpoint algebra M, any symbol among 1, T, A or V which appears in X' is
respectively interpreted in M as Ly, T, Aps or Vg, Also, for any set E C M
we denote by \/,, E (resp. A, E) the least upper bound (resp. the greatest
lower bound) of the set E.

1.2. Example. Any complete boolean algebra is a fixpoint algebra over signa-
ture {V,A}.

1.3. Definition (Fixpoint formulas). Given a signature X' and a set of vari-
able symbol X" disjoint from X the set X, (X) of fizpoint formulas, simply called
formulas in the sequel, is inductively defined by the following rule:

1. X is a formula for any variable X € X,
2. f(au, -, a,()) is a formula for any f € ¥ and any formula ay, ..., a,y),
3. vX.a and pX.a are formulas for any X € A and any formula a.

Given a formula o € ¥, (X), we say a an occurrence of variable X is bound in o
when it occurs in a subformula of the form 0 X.ay for o = p or v. Unbounded
occurrences of variable X in « are called free. A formula « is a closed formula
when no variable occurs free. The set of closed formulas is denoted by X,,. We
also denote by X'(X) the set of formulas built without fixpoint construction, i.e.
formulas with no sub-formulas of the form o X.a; for o = p or v.
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Notation: Given a set of variable {X;,---, X,,}, we denote by a(Xy,---,X,)
any formula o € ¥,(X) such that any variable occurring free in « belongs to
the set {Xy,---, X, }.

1.4. Definition (Formulas semantics). Given a fixpoint algebra M, given a
valuation of variables V' : X — M, any formula « is interpreted as an element
[a]¥ of M inductively defined by :

X =V(X),
: [[f(ala T 7ap(f))]]y = fM([[al]]JVwa Ty [[ap(f)]]y%
C[vX.a]M = \/ {e EM:e< [[a]]%e/xl},

. [pX.a]¥ = /\{e EM:e> [[a]]%e/x]},

= W N

where V{e/X] denotes the valuation defined for any variable Y € X' by

VI XI0) = { § 0 hermie

Given C a class of structures, we say that a formula «; is refinement of formula
as over class C, which is noted a; <¢ as when, for any fixpoint algebra M € C,
any valuation of variable V. : X — M,

[oa ] <ar [e2]?)

This relation is a preorder and we note ~¢ the induced equivalence. When a; ~¢
ay (i.e. both ay <¢ as and as <¢ ay) we say formulas a; and ay are semantically
equivalent w.r.t. C. When this equality holds for arbitrary fixpoint algebra and
arbitrary valuation the subscript will be omitted.

In particular, pX.X ~ 1 and vX.X ~ T. In the sequel we will always assume,
without increase of expressive power, that both constant symbols T and L belong
to X.

1.5. Example. Given an alphabet A = {ay,...,a,}, given a signature ¥; =
{L,T,A,V, 51} with p(S1) = n, we define the fixpoint algebra of languages of
infinite words (w-languages for short) on the alphabet A as M = (P(A¥),U,N)
with, for any Ly, ..., L, € P(AY),

Sin(Li,- Ln) = | aiLs

i€[1,n]

where a.L = {a.w : w € L}. In [7], the signature is slightly different since
Park uses mappings of the form L + a;.L. These mappings can be built from
symbols of ¥; as mappings X — Sip(t1,...,t,) with t; = L when j = 4
and t; = L otherwise, i.e. the interpretation in M of a term noted a;.X of
the form Sy (L,---, L, X, L --- 1). In this algebra, one can check that formula
a = vX(pY (b(X) V a(Y))) denotes, the set of all infinite words on alphabet
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{a, b} with infinitely many b. An equivalent regular expression for this language
is (a*b)“.

The algebra of languages of finite and/or infinite words is defined from sig-
nature Y; extended with a new constant symbol e interpreted as the empty
word.

In formulas semantics, valuations gives meaning to free variables. Abstracting
from this meaning, interpretations of formulas become functions. The following
definition formalized this intuition.

1.6. Definition (Functional interpretations of formulas). Given a fixpoint
algebra M, any formula a(Xy,---,X,,), we define the functional interpretation
of a(Xy, -, Xy) in M, denoted by apy (X1, -, X,), as the function from M™
to M defined by :

(e1,+ - en) = anmler, - en) = [[a]]x]/w[el/xl]---[en/xn]

In the sequel, in the notation aps(Xy,---,X,), the sequence of variables shall
be omitted when it causes no ambiguity.

Remark: One can check, by induction on the syntactic complexity of formulas,
that the function ay(Xy,---,X,,) is a monotonic increasing function in any of
its argument. The Knaster-Tarski’s Lemma applies showing that the functional
interpretation in M of the formula 8 = 0 X;.a(X4, -+, X,) is the least fixpoint
(when o = p) or the greatest fixpoint (when o = v) of the mapping (over
functions from M™ ! to M) defined by

Frapy(er, -, ei-1,F(er, - €i-1,€it1,"*,€n),€i41," ", €n)
In the sequel, we shall use both notations
(0 Xia)m (X, -+, Xi1, Xiyr, -+, Xy)

or
o Xi.an (Xp, oo, Xim1, Xy Xiya, 0, Xy)
to denote such a fixpoint.
The following proposition is a fundamental tool to study formulas semantics.

1.7. Proposition (Transfinite approximation). For any fizpoint algebras M,
there exists an ordinal Tp; such that for any formula a :

vX.a~yv™Xaand pX.a >y p™ X«

with the semantics of V™.« and p™ .« inductively defined by :

1. [W°XA)Y = Ty and [P X A]Y = Ly,
2. v XA = [ty X.T/ XM and [p™ P X 4] = [t X. T/ XY,
3. and, for any limit ordinal T, [v” X 4]/ = A\, _ [v" XA}/

and [[uTXt]]]VM = VT1<T|[H’T1 Xt]]y
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2 Compact algebras

Before introducing the notion of disjunctive functions which is a central notion
in our approach to the satisfiability problem, we need first to introduce some
topological-like notions over fixpoint algebras.

2.1. Definition. Given a fixpoint algebra M over signature X, the set Cys of
closed elements of M is define as the smallest set such that:

1. Ly and Ty € Cyy,

2. for any function symbol f € X, any closed element ey, ..., e, € Cu,
fle1,- -+, e,(5)) is a closed element,

3. for any set E C Oy of closed element, A,, E is a closed element,

Remark: In the case M is a continuous lattice (when V is continuous w.r.t. to
A) with V € X the set of closed elements defined above induces a topology in
the usual sense over M, i.e. the least upper bound of any finite subset of set Cyy
belong to set Cs and the greatest lower bound of any finite or infinite subset of
set Cyr belong as well to set Cys.

The following proposition (from which comes our definition) shall be useful
in the sequel.

2.2. Proposition. Given a fixpoint algebra M, for any formula a(Xy,---,X,)

built without least fizpoint construction, the function ap (X, -+, X,,) is a closed
function, i.e. for any closed element ey, ..., e, € M, ap (e, --,e,) is a closed
element.

Proof: A straightforward induction on the syntactic complexity of formula a,
applying transfinite approximation of greatest fixpoint. O

2.3. Definition (Compact algebra). We say a fixpoint algebra M is compact
when, for any set E C () of closed points, A £ = L if and only if A F = L
for some finite subset F of set E.

2.4. Example. The fixpoint algebra of languages of finite words is not compact
as shown, for instance, by the language defined by

/\ a™. T

i€IN

which is empty. In opposite, the fixpoint algebra of languages of finite and infinite
words is a compact algebra.



3 Disjunctive algebras

3.1. Definition (Boolean projection). Given a fixpoint algebra M over sig-

nature X, the boolean projection Xp; over M is defined as the mapping
Xy M — {T, J_}
1 when x = L,
@ Xu(o) = { T otherwise.

Remark: Extending in a straightforward way the usual (model theoretical)
notion of satisfiability, a closed formula a € X, is satisfiable in an algebra A
when XM(OzM) =T.

3.2. Definition (Disjunctive function). We say a function F' : M™ — M is
disjunctive when:

1. if n = 0 then F' = ¢); for some constant symbol in X,
2. if n # 0 then there exists a boolean function X (F), called the boolean
projection of function F', such that, for any closed elements ey, ..., e, € Cur,

Xp(Fler; - en)) = X (F)(Xnr(er), -, Xar(en))

Remark: In condition 2 above, function X/ (F') is uniquely determined, for
any boolean elements ey, ..., e, € {T, L}, by

Xar(F)(er,- - en) = A (Fler, -, en))

3.3. Example. The joint function V is disjunctive with X»;(V) = V. In general
the meet function A is not disjunctive. For instance, given M = P({a,b}) one
has Xps({a} N {b}) = L while Xyr({a}) A X0 ({b}) =TT.

3.4. Proposition. The set of disjunctive function is closed under function com-
position. The boolean projection of a composition of disjunctive functions is the
composition of their boolean projections.

Proof: By definition X is “functorial” over disjunctive functions ! O

3.5. Proposition. The boolean projection is invariant under iteration of dis-
Junctive functions, i.e. for any disjunctive function F(X,,---,X,,), anyi € [1,n]

A (F (X1, -, Xp)) = X (F(Xy, -, Xio1, F( Xy, 0, X)), X, -+, X))

Proof: Obvious since for any boolean function F, any i € [1,n], F(X;,---,X,) =
F(Xla"'7Xi—17F($17"'7X’n)7Xi+17"'7Xn)' |

3.6. Definition. Given a fixpoint algebra M, we say that a formula a € X, (X)
is a disjunctive formula over M when, for any function symbol f occurring in
«, the function fjs is disjunctive. By extension, we say that the fixpoint algebra
M is a disjunctive algebra when the interpretation fj; of any symbol f € X' is
a disjunctive function.
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Notation: In the sequel, for any formula «, we denote by X () (X, -, X,),
when it does exist, the boolean projection of the functional interpretation of
formula a(Xi,---,X,,). In particular, for any function symbol f € X such that
the function fys is disjunctive, we denote by Xy (f) the boolean projection of
for.

As far as complexity is concerned, we also assume that given any algebra M,
any function symbol f € X such that the function fj; is disjunctive, the function
X (f) is given in such a way it is computable in time linear in the number of
its argument. Since X/ (f) is a boolean function this is always possible.

4 Satisfiability in compact and disjunctive algebras

In the absence of fixpoint construction, disjunctiveness is a straightforward suf-
ficient condition for the satisfiability problem to be simple. More precisely:

4.1. Proposition. When M is a disjunctive fizpoint algebra, the satisfiability of
any closed formula o built without fizpoint is decidable in time linear in the size
of a.

Proof: By induction on formula a. If a is a constant symbol then Xy () is

computable in constant time. Otherwise « is of the form f(ay, -+, a,)) with
Xy (@) = X (f)(Xnr(r), -, X))
hence induction hypothesis applies giving us the result. O

4.2. Definition (Lower and upper projection). Given aformula a € X, (),
we define the lower projection and the upper projection of formula « as the for-
mula Ja and the formula 1« inductively defined by the following rules:

1. J]X = X and 11X = X for any variable X € X,
2. Lflan, - app) = flan, - bagp)
and 1 f(a, -+, app) = f(Tar, -, Tayy),
3. lpX.a=la[L/X] (resp. TpX.a = pX. ta),
4. lvX.a=vX. la (resp. tvX.a =ta[T/X]),

Remark: For any formula a € X, (X), la < a <ta and {fa ~fa.

4.3. Theorem (Disjunctiveness). For any fizpoint formula «, for any dis-
junctive and compact fixpoint algebra M, the functional interpretation ap; of
the formula « is disjunctive with Xy () = Xy ().

Proof: The proof goes in two steps. We first show this result holds for formula
built without least fixpoint construction and then we extend it to the general
case. In the sequel, let M be a disjunctive and compact fixpoint algebra.

4.4.Lemma. For any formula a(Xy, -, X,) built without least fixpoint con-
struction, function oy (X1,---, Xy) is disjunctive with Xpr(a)(X1, -+, Xp) =
Xpr(Ta) (X, -+, Xon).



Proof: By induction on the structure of formula a(Xy,---, X,).

1. When formula « is a variable X noting has to be done since 1 X = X.

2. When formula a is of the form f(ay,---,a,y)), by induction hypothesis, for
any ¢ € [1, p(f)], the function «;,; is disjunctive with Xpr(ce;) = X (1 ;).
Hence, for fys is disjunctive, by composition of disjunctive function (see
proposition 3.5), ays is disjunctive with

Xu(a) (X, -, Xp)
= XM(f)(XM(Tal)(Xla o '7Xn)7 o '7XM(Tap(f))(X17 T 7Xn))

3. When formula « is of the form v X.3, we prove by induction on ordinals that,
for any ordinal 7 > 1, (v X.) s is disjunctive with

Ap (VX B) (X1, X)) = An (B[T/X]) (X, -+, Xi)

which, applying Proposition 1.7 and the induction hypothesis on S[T/X]

enable us to conclude.

The induction on ordinals goes as follows.

(a) When 7 =1, v' X.8 ~5; B[T/X], hence the result.

(b) When 7 is a successor ordinal, i.e. 7 = 71 + 1, we have v*T1X.3 ~
Blv™ X.5/X]. Applying the general induction hypothesis, we know the
function By (X, Xy, - - -, X,,) is disjunctive hence, applying proposition 3.5,
X (B)(X, X1,-++, X)) = A (B[B/X])(X, X1, -+, Xp). Then, by com-
position of disjunctive function, i.e. with X instantiated into the formula
(v'*X.B8)(e1, -+, e,) on which the induction hypothesis applies, we con-
clude the induction step.

(c) When 7 is a limit ordinal, for any closed elements ey, ..., €, € Cu,

arrler o en) = N\ X Baarler - en)

t1<1

In this case the compactness hypothesis applies (for all elements of the

form (v X.8)m(er, -+, en) are closed) hence Xy(ans(er, -+, en)) =

v X.B)m(er, - -,e,) for some 11 < 7 and the induction hypothesis
applies.

O

4.5.Lemma. The functional interpretation of any formula a(Xy,---,X,) is

disjunctive with Xpr(a)(Xy1, -+, Xpn) = X a)(X1, -, Xy).

Proof: Again, the proof goes by induction on the structure of . Lemma 4.4
ensures that formula |« (built without least fixpoint construction) is disjunctive.

1. When formula « is a variable X or when it is of the form f(a1,- -, a,y))
the proof is essentially the same as above to relate a and | a.
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2. When formula « is of the form puX.3, applying Proposition 1.7, for any el-

ement ey, ..., e, € M, ap(er, - -,e,) = Ly iff (B[L/X])m(er,---,e,) =
1 hence the result, applying the induction hypothesis on the formula
AlL/X].

3. When formula « is of the form vX.g3, for any ey, ..., e, € Cy, we have

Xl apler, - -,en)) < Xu(an(er, -, en)) since L @ < a. We prove the
converse by transfinite induction. More precisely, we shows that, for any
ordinal 7, any ey, ..., e, € Cy, whenever (v™X. | B)p(e1,---,e,) = L then
(v"X.B)m(e1, -, en) = L. The induction on ordinals goes as follows.

(a) When 7 = 0 nothing has to be done.

(b) When 7 is a successor ordinal, i.e. 7 = 71 + 1, we have

X (X B (er, -+ en))
= Xu (B)(Xn (v X B)m (e, -+ s en)), Xnr(er), -+ Xar(en))

hence the result applying the general induction hypothesis on formula
B(X, X1, -, X,,) (with Xy (8) a monotonic increasing function) and the
induction hypothesis for ordinal 7.

(¢) When 7 is a limit ordinal, we have

Xu (VX AB)(ers - ren)) = X\ (X ABu(er, -+ en)) = L

T1<T

Again compactness applies hence (v X. | B)m(X,e1,---,e,) = L for
some ordinal 7 < 7. Then, applying the induction hypothesis on 7, i.e.
(v X.B)m(er,---,e,) = L, we have (v X.8)p(e1,---,e,) = L which
conclude the proof.

O
Proof (Theorem 4.3 continued): Hence for any formula a, ay; is disjunctive with
Xu(a) = Xy «) (applying Lemma 4.5) hence Xp(a) = X (1l ) (applying
Lemma 4.4 on formula | «). m|
Remark: Compactness is essential in the previous proofs. However it is only
used over closed elements which are definable by means of transfinite approx-
imations of greatest fixpoint. It may be the case that this hypothesis can be
weakened without falsifying the previous theorem.

4.6. Corollary. [Satisfiability] In particular, for any compact and disjunctive
fizpoint algebra M, for any closed fizpoint formula o € X, the satisfiability of
formula o on M is computable in time linear in the size of formula a.

Proof: The proof of the theorem above shows that Xy () = X (11 («)) hence
it can be computed by induction applying the following rules:

L Xy(pX.aq) = Xar(aa [ L/ X)),
2. Xy(vX.on) = Xy (al[T/X]),
3. Xm(flan, - app)) = X (F)(Xne (), -+ Xnr (),
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which, under the assumption that every function Xnr(f)(w1,---,7,(s)) is pre-
sented in such a way it can be computed in time p(f), gives us the result. O
Remark: Obviously, the satisfiability problem for disjunctive fixpoint formulas
is easier than the emptiness problem for automata. However, since there is an
exponential blow-up translating an automaton (with parity condition) into a
fixpoint formula [1], this is not a surprise.

5 Reduction to the disjunctive case

An immediate weakness of the decision procedure obtained above is that it does
not apply to formulas where the conjunction A occurs since it is not a disjunctive
operator. The following result, obtained in [1], remedy to this fact.

5.1. Definition. Given a fixpoint algebra M, we say that the conjunction A
commutes with X' on M when, for any finite multiset {f;};c[1,,) of functional
symbols of X' — {A} there exists a function G built with symbols of X' — {A} such
that an equation of the form:

A @)} =GNy \vm)

i€[1,n]
holds on C, where :

1. x;s are vectors of distinct variables of the appropriate length,
2. y;s are vectors of distinct variables taken among those appearing in x;s,
3. A y;s denote the g.l.b. applied to the set of all variables occurring in y;.

5.2. Example. In the algebra of languages of infinite words, A commutes with
signature ;. For Kozen’s modal p-calculus things are less simple since one needs
to change the signature. This case from which the present approach was inspired,
has been extensively described in [2].

The following theorem is proved in [1].

5.3. Theorem (Reduction). When the conjunction A commutes with X on M
any closed fixpoint formula « is equivalent over M to a formula @ built without
the symbol A.

Proof: Going back to the proof presented in [1], one can easily check the size of
a is less than a triple exponent of the size of formula «. O
It follows:

5.4. Corollary. In any compact fizpoint algebra M over a signature X such
that:

1. the conjunction A commutes with X on M,
2. for any symbol f € X — {A}, the function fy is disjunctive,
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the satisfiability problem is decidable in triple exponential time over the size of
fizpoint formulas.

Proof: Since A commutes with X' on M, applying Theorem 5.3, any closed for-
mula « is, over the fixpoint algebra M, equivalent to a formula @ over the
signature X' — {A}. Then, Corollary 4.6 applies, giving us the result. O

Conclusion

In this paper, we have defined a general notion of disjunctive formulas for which,
in compact algebra, the satisfiability problem is easy; the reduction theorem
gives sufficient condition for the satisfiability problem to be reducible to this
case. Although such a decision procedure applies to many fixpoint calculi, the
compactness condition can be difficult to check. We miss here some simple and
general conditions for compactness ! to hold in a fixpoint algebra.

One interesting case to look at seems to be fixpoint calculi which arise from
monadic fixpoint logic, i.e. where fixpoint formulas are interpreted over lattices of
sets of elementary equivalent structures with interpretations of function symbols
being definable in First-Order Logic. At the moment it is not clear whether
compactness, that holds for First-Order Logic, will help or not.

The satisfiability problem is also, inherently, related with the problem of
finding complete finite axiomatization of formulas’ validity. For Kozen’s modal
p-calculus [3], such an axiomatization has already been found and proved com-
plete [9]. There, an important intermediate step was to consider the notion of
disjunctive (modal) formulas for which both satisfiability and provability are
easy. Since we generalize, in the present approach, the notion of disjunctive for-
mulas, we may expect to obtain completeness results soon.

References

1. D. Janin. Automata, tableaus and a reduction theorem for fixpoint calculi in
arbitrary complete lattices. In IEEE Symp. on Logic in Computer Science, 1997.

2. D. Janin and I. Walukiewicz. Automata for the modal mu-calculus and related
results. In Math. Found of Comp. Science. LNCS 969, 1995.

3. D. Kozen. Results on the propositional p-calculus. Theoretical Comp. Science,
27:333-354, 1983.

4. D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Comp. Science, 54:267-276, 1987.

5. D. E. Muller and P. E. Schupp. Simultating alternating tree automata by non-
deterministic automata: New results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theoretical Comp. Science, 141:67-107, 1995.

6. D. Niwinski. Fixed point vs. infinite generation. In IEEE Symp. on Logic in
Computer Science, 1988.

7. D. Park. Concurrency and automata on infinite sequences. In 5th GI Conf. on
Theoret. Comput. Sci., pages 167-183, Karlsruhe, 1981. LNCS 104.

! or a slightly weaker notion as noticed at the end of the proof of Theorem 4.3



13

8. M. O. Rabin. Decidability of second order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141, 1969.

9. I. Walukiewicz. Completeness of Kozen’s axiomatization of the propositional p-
calculus. In IEEE Symp. on Logic in Computer Science, 1995.

10. I. Walukiewicz. Monadic second order logic on tree-like structures. In Symp. on
Theor. Aspects of Computer Science, 1996. LNCS 1046.



