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Abstract. We investigate the expressive power of existential monadic
second-order logic (monadic Σ1) on finite transition systems. In partic-
ular, we look at its power to express properties that are invariant under
forms of bisimulation and compare these to properties expressible in
corresponding fixed-point modal calculi. We show that on finite unary
transition systems the bisimulation invariant fragment of monadic Σ1 is
equivalent to bisimulation-invariant monadic second order logic itself or,
equivalently, the mu-calculus. These results contrast with the situation
on infinite structures. Although we show that these results do not ex-
tend directly to the case of arbitrary finite transition systems, we are still
able to show that the situation there contrasts sharply with the case of
arbitrary structures. In particular, we establish a partial expressiveness
result by means of tree-like tiling systems that does not hold on infinite
structures.

1 Introduction

The second author and Walukiewicz [5] showed in 1996 that any sentence of
monadic second-order logic (MSO) whose models are invariant under bisimula-
tion is equivalent to a sentence of Kozen’s modal µ-calculus (Lµ).

The importance of the theorem lies, on the one hand, in the fact that monadic
second-order logic is seen as a natural upper limit on the reasonable expressive
power of languages for the specification of behaviours of concurrent systems.
Indeed, almost all logics used in practice, such as LTL and CTL∗ are fragments
of this logic. On the other hand, bisimulation is a natural relation describing
the behavioral equivalence of processes. In speaking of behavioral specifications
expressed in MSO, it seems natural to restrict oneself to those that are invariant
under bisimulation. The theorem of Janin and Walukiewicz provides a syntactic
characterization of the properties that are bisimulation invariant. Looked at from
the other side, the theorem is also seen as an expressive completeness result for
the µ-calculus.

The methodology used in the proof of this theorem is based on automata
on infinite trees. Every transition system is equivalent by bisimulation to a tree
and, on trees, the evaluation of MSO formulas can be expressed as the evalu-
ation of alternating tree automata. By considering trees that are, in a precise



sense, saturated one can transform automata to show that these formulas are
equivalent to formulas of the µ-calculus. This essential methodology has proved
productive in establishing variants of the original result. It is known, for instance,
that sentences of MSO that are invariant under counting bisimulation are equiv-
alent to Cµ—the modal fixed-point calculus with counting modalities [12, 4]. It
has also been shown that the existential fragment of MSO (which we denote
monadic Σ1) is, for bisimulation invariant properties, expressively equivalent to
N1—the fragment of the µ-calculus with only greatest fixed points [4].

However, it remains an open question whether a version of this expressive
completeness result is true if we restrict ourselves to finite structures. That is,
is it the case that every sentence of MSO that is bisimulation-invariant on finite
structures is equivalent, again on finite structures to a sentence of Lµ?

This statement has a weaker hypothesis and conclusion than the original
theorem and is therefore not a consequence of it. It has been the subject of
much recent investigation. The corresponding finite versions of the equivalence
between monadic Σ1 and N1 for bisimulation invariant properties and of MSO
and Cµ for counting bisimulation also remain open. One related result that is
known to carry over into the finite is the theorem of van Benthem (see [11])
that any first-order definable property that is invariant under bisimulation is
definable in propositional modal logic. It has been shown by Rosen [7] that this
statement is still true when we restrict ourselves to finite structures.

One reason why the question of the equivalence of these logics is so different
in the finite is that, once we restrict ourselves to finite structures, we no longer
have a tree model property. That is, it is no longer the case that every structure
is equivalent by bisimulation to a tree. In the general case, it is possible to
take the collection of all (saturated) infinite trees as a canonical class of models
that intersects every bisimulation equivalence class. Thus, as one is considering
formulae invariant under bisimulation, one can restrict oneself to this class and
on this class there are well-behaved automata models for the logics we consider.
Unfortunately, there is no class of finite structures that fulfills these conditions.

Main results

In this paper, we are mainly concerned with the study of the bisimulation in-
variant fragment of monadic Σ1 in the finite.

We show that restricting ourselves to finite structures that are unary. i.e. in
which each node has a single successor, this fragment is as expressive as (the
bisimulation invariant fragment of) full monadic second order logic. In other
words, we obtain a complete characterization of the expressive power of the
bisimulation invariant fragment of MSO on such structures. As a corollary, the
correspondence between monadic Σ1 and N1 that holds on arbitrary (finite and
infinite) unary structures just fails in the finite.

On finite structures that are not necessarily unary, however, the situation is
less clearcut. We obtain a counterexample to the equivalence of monadic Σ1 with
NC1 (the first level of the Cµ hierarchy) on finite structures, demonstrating that
this situation is distinct from the case of arbitrary (finite and infinite) systems.



We also show that monadic Σ1 is not as expressive as bisimulation-invariant
MSO, so the situation also differs from the unary case.

These two negative results leads us to consider tiling systems [10], which
are known to capture monadic Σ1 on finite structures. We show that when the
properties concerned are bisimulation invariant, simple tiling systems suffice.
More precisely, we show that if a sentence ϕ of monadic Σ1 is invariant under
bisimulation then there is a class of structures, including representatives of all
bisimulation classes, on which ϕ is characterized by a tree-like tiling system
of radius one (these terms are made precise below). One might expect that
this normal form could be further refined so that the tiles are what we call
forward looking. This would establish that bisimulation invariant properties of
monadic Σ1 can be expressed in N1. However, such a methodology would also
yield the result for the counting case, which is refuted by the counterexample
obtained on unary structures.

2 Background and Definitions

Models and standard logics

The logics we consider are interpreted in transition systems, also called Kripke
structures, or simply labeled directed graphs (in the sequel, when we use the
term graph, we mean a labeled directed graph). Fix a set A of actions and a set
Prop of atomic propositions. A transition system for A and Prop is a structure

K = 〈V, r, {Ea}a∈A, {p
K}p∈Prop〉

with universe V (whose elements are called states), a distinguished element called
the root r ∈ V , binary relations Ea ⊆ V × V for each a ∈ A and unary relations
pK ⊆ V for each atomic proposition p ∈ Prop. For the sake of clarity, we confine
ourselves in this paper to vocabularies where A consists of a single action. We
then drop the subscript a on the binary relation E. All of our results apply
equally well to the more general case.

Such transition systems are usually used to interpret modal logics, which we
consider below. We also interpret standard predicate logics, in particular first-
order logic (FO) and monadic second-order logic (MSO) in transition systems.
In the sequel, we shall write ϕ(x1, · · · , xn) or simply ϕ(x̄) for an FO or MSO
formula with free first-order variables among x̄ = (x1, · · · , xn) regardless of the
free monadic predicate (or set) variables occurring in ϕ. More precisely, given
the set {X1, · · · , Xn} of all set variables occurring free in ϕ, we shall implicitly
and whenever required interpret the formula ϕ on transition systems with the
set of atomic proposition Prop ′ = Prop ∪ {X1, · · · , Xn}.

Bisimulation and counting bisimulation

A directed (resp. undirected) path in a transition system K is a (finite or infinite)
sequence of vertices such that for any two consecutive vertices v1 and v2 in the



sequence one has (v1, v2) ∈ E (resp. (v1, v2) or (v2, v1) ∈ E). The directed (resp.
undirected) distance dd(v1, v2) (resp. d(v1, v2)) between two vertices v1 and v2
is the length of the shortest directed (resp. undirected) path from v1 to v2.

A directed (resp. undirected) cycle in K is a periodic infinite directed (resp.
undirected) path. Given an integer k, we say that a graph K is k-acyclic if any
undirected cyclic path in K contains at least k + 1 distinct vertices. Given two
transition systems K = 〈V, r, E, {pK}p∈Prop〉 and K′ = 〈V ′, r′, E′, {pK

′

}p∈Prop〉,
a bisimulation between K and K′ is a relation B ⊆ V ×V ′ such that, if (v, v′) ∈ B
then:

– for each p ∈ Prop, v ∈ pK ⇐⇒ v′ ∈ pK
′

;
– for each w with (v, w) ∈ E there is a w′ with (v′, w′) ∈ E′ and (w,w′) ∈ B;

and
– for each w′ with (v′, w′) ∈ E′ there is a w with (v, w) ∈ E and (w,w′) ∈ B.

A counting bisimulation between K and K′ is a relation B ⊆ V × V ′ such that,
if (v, v′) ∈ B then:

– for each p ∈ Prop, v ∈ pK ⇐⇒ v′ ∈ pK
′

;
– B contains a bijection between the sets {w : (v, w) ∈ E} and {w′ : (v′, w′) ∈
E′}.

Observe that any counting bisimulation is a bisimulation.
We say that K and K′ are (counting) bisimilar if there is a (counting) bisim-

ulation B between them with (r, r′) ∈ B. More generally, we say that two states
v ∈ K and v′ ∈ K′ (where K and K′ are not necessarily distinct) are (counting)
bisimilar if there is a (counting) bisimulation B between the two structures with
(v, v′) ∈ B.

Given a class C of transition systems, we say that an FO or MSO sentence ϕ
is (counting) bisimulation invariant on C when, for any two (counting) bisimilar
models K and K′ ∈ C one has K |= ϕ if, and only if, K′ |= ϕ. Accordingly, we say
that ϕ is bisimulation invariant in the finite when it is bisimulation invariant on
the class of finite structures.

Modal logic and the mu-calculus

The modal propositional logic (ML) consists of formulas built up from the propo-
sitions in Prop and the propositional constants true and false using the Boolean
connectives and the modalities 2 and 3: i.e., for a formula α, 2α and 3α are
also formulas. For the semantics, we just note that K, v |= 3α if, and only if,
there is a v′ with (v, v′) ∈ E such that K, v′ |= α (and dually for 2α).

The modal depth of a modal formula is defined to be the maximal depth of
nesting of modalities in α, i.e. the modal depth of a modality free formula is
defined to be zero; if α is of modal depth k then the modal depth of 3α or
2α is k + 1; and the modal depth of a Boolean combination of formulas is the
maximum modal depth of any one of the formulas.

The modal µ-calculus Lµ is obtained by extending ML with a countable
collection of propositional variables X so that a variable by itself is a formula



and, if α is a formula and X a variable which occurs only positively (i.e., only
within the scope of an even number of negation signs) in α then µX.α and νX.α
are also formulas in which the variable X is bound. For the semantics, given a
structure K and an interpretation in K for all the free variables of α, we say
that K, v |= µX.α if v is in the least set X ⊆ V such that X ⇐⇒ α. Similarly
K, v |= νX.α if v is in the greatest fixed point defined by α.

A key feature of the modal logics ML and Lµ is that the properties they
express are bisimulation invariant. That is, if K and K′ are bisimilar then for
any formula α, K |= α if, and only if, K′ |= α.

There is a standard translation of formulas of ML into the first-order logic of
transition systems. That is, for each formula α of ML, there is a formula ϕα(x)
of first-order logic with one free first-order variable x (in the vocabulary with a
binary relation symbol E and unary relation symbols for each p ∈ Prop) that
defines in each K exactly the set of states in which α is true. Similarly, there is
a straightforward translation from Lµ to monadic second-order logic.

By results of van Benthem [11] and Janin and Walukiewicz [5] we know that
there are converses for these translations. That is, every property of transition
systems that is expressible in FO and is invariant under bisimulation is express-
ible in ML and any bisimulation-invariant property that is definable in MSO is
also definable in Lµ.

Using the equivalences 2α ⇐⇒ ¬3¬α, νX.α ⇐⇒ ¬µX.¬α[¬X/X ] and
De Morgan’s laws, it is possible to transform any formula of Lµ into negation
normal form, where negation signs only appear before propositional atoms. We
write N1 for the collection of formulas in negation normal form in which no
instance of the operator µ appears. Similarly, M1 is the collection of formulas
without ν. These are the bottom two levels of an alternation hierarchy which is
known to give strictly increasing expressive power (see [2]).

It is easily seen that when we translate Lµ to MSO, formulas of N1 yield ex-
istential MSO formulas (i.e., in prenex normal form, all second-order quantifiers
are existential) while formulas of M1 yield universal MSO formulas. By a result
of Janin and Lenzi [4] we get a converse of these statements for bisimulation-
invariant properties. That is, any bisimulation-invariant property definable in
existential MSO (also written as monadic Σ1) is definable in N1.

The counting modal logic and the counting µ-calculus Cµ are defined similarly
to ML and Lµ except the rules for 2 and 3 are replaced by: for each i ∈ IN, if α
is a formula then so are 2iα and 3iα. For the semantics, we say that K, v |= 3iα
if there are at least i distinct v′ such that (v, v′) ∈ E and K, v′ |= α. We write
NC 1 (by analogy with N1) for the fragment of Cµ without least fixed-points.

In the sequel, we also use backward modalities 3
−1 and 2

−1, and backward
counting modalities 3

−1

i and 2
−1

i that are defined like the ordinary modalities
but with respect to the inverse edge relation E−1 in place of E. In the pres-
ence of backward modalities, the standard modalities are referred to as forward
modalities.



3 Monadic Σ1 on finite unary graphs

In this section, we study the expressive power of monadic Σ1 on unary graphs.
We first review the straightforward relationship between (bisimulation classes
of) finite unary graphs and ultimately periodic infinite words. We establish that
monadic Σ1 in the finite is expressive enough to define all ω-regular languages.
Then we prove that, on finite unary graphs, the bisimulation (or counting bisim-
ulation) invariant fragment of monadic Σ1 is the same as the bisimulation in-
variant fragment of full MSO. These results contrast with the case of arbitrary
(finite or infinite) unary graphs where monadic Σ1 can only express topologically
closed regular languages.

A graph K is a unary graph if every vertex in K has a unique successor under
the relation E. Of course, the bisimulation class of a unary graph is completely
characterized by the infinite word (in the alphabet Σ = P(Prop)) that is de-
scribed by the path emanating from the root. Thus, we can see any bisimulation-
invariant property of unary finite graphs as described by a language of eventually
periodic ω-words. So, given such a language L ⊆ Σω, and a class of finite unary
graphs C, we say that C is equivalent to L in the finite if:

– for any graph K ∈ C, there is a word wK ∈ L such that wK is the Σ-word
defined by the unique infinite path starting at the root of K.

– for any ultimately periodic word w ∈ L there is a graph Kw ∈ C such that
w is the Σ-word defined by the infinite path starting at the root of K.

By extension, we say that an MSO sentence ϕ is equivalent to L when the class
Cϕ of finite unary graphs it defines is equivalent to L. Note that if this is the
case then ϕ is invariant under counting bisimulation. Note further that on the
class of finite unary graphs, counting bisimulation coincides with bisimulation.

Theorem 1. For any regular ω-language L ⊆ Σω there is a (counting bisimula-
tion-invariant) monadic Σ1 formula ϕL equivalent to L in the finite.

Proof. Let L be an ω-regular language. First, one can show that that there is a
nondeterministic finite Büchi automaton AL = 〈Q,Q0, δ, F 〉 with set of states
Q, set of initial states Q0, transition function δ : Q×Σ → P(Q) and accepting
states F , that recognizes L and such that, for any infinite word of L of the form
u.vω, there is an initial state q0 ∈ Q0 and an accepting state q ∈ F such that,
there is a path in AL from state q0 to state q reading u (with q0 = q when u = ε),
and a cycle in AL from q to q reading v.

The formula ϕL can now be defined as follows: there is a collection of disjoint
sets Xq (q ∈ Q), such that: (i) r ∈ Xq0

for some q0 ∈ Q0; (ii) for each q ∈ Q
and x ∈ Xq, x has a single successor y and there is a state q′ ∈ δ(q, λ(x)) such
that y ∈ Xq′ , where λ(x) = {p ∈ Prop : p(x) holds}; and (iii) any element with
two predecessors in

⋃
q∈QXq (and the root if it has one predecessor in

⋃
q∈QXq)

must belong to some Xq with q ∈ F .
One can check that ϕL defined in such a way (i) is counting bisimulation

invariant, (ii) does enforce that there is a unique path from the root and, (iii)
the word described by this path is accepted by the automaton AL. 2



Since only topologically closed regular languages are definable in the level
N1 of the mu-calculus hierarchy, this first theorem already shows that:

Corollary 2. There is a bisimulation invariant class of unary finite models de-
finable in monadic Σ1 that is not definable in N1.

One might expect a converse to Theorem 1 to hold. Indeed, we even prove a
stronger result.

Theorem 3. For any MSO formula ϕ, counting-bisimulation invariant on finite
graphs and true only on unary graphs, there is a regular language Lϕ ⊆ Σω

equivalent to ϕ in the finite.

The remainder of theissection is dedicated to the proof of this theorem.
A unary graph K is called a lasso if the root of K has no predecessor and all

other vertices except one (called the knot) have exactly one predecessor while
the knot has exactly two predecessors.

Any lasso K is completely characterized by the two non empty finite words u
and v (in the alphabet Σ) that are described respectively by the (acyclic) path
from the root to the knot of K (excluding the knot) and the cyclic path from
the knot to itself (excluding the second occurrence of the knot). In the sequel,
we write Ku,v for such a lasso.

Observe that any finite unary graph is counting bisimilar to a lasso. More
precisely, it is counting bisimilar to the subgraph induced by the set of vertices
reachable from the root that forms (possibly after duplicating the root so that
it is distinct from the knot) a lasso.

We are now ready to start the proof of Theorem 3. Let ϕ be an MSO formula
as in Theorem 3.

Proposition 4. There is a finite set of pairs of regular languages (Ui, Vi)i∈I

such that, for any two words u and v ∈ Σ+, Ku,v |= ϕ if, and only if, there is
some i ∈ I such that u ∈ Ui and v ∈ Vi.

Proof. The mapping that maps any pair of non empty finite words (u, v) ∈
Σ+×Σ+ to the lasso Ku,v is a FO-definable transduction. It follows, by Shelah’s
decomposition theorem [9] that there is a finite set of pairs of MSO formulas
{(ϕi, ψi)}i∈I over finite Σ-words such that for any two words u and v ∈ Σ+,
Ku,v |= ϕ if and only if there is some i ∈ I such that u |= ϕi and v |= ψi. By
Büchi’s theorem, for all i ∈ I , the MSO-formulas ϕi and ψi define the regular
languages Ui and Vi we are looking for. 2

Remark. One might think that Proposition 4 concludes the proof of the theorem.
Indeed, if Ku,v |= ϕ, then u.vω belongs to some Ui.V

ω
i so one might think that ϕ

is equivalent to the language
⋃

i∈I Ui.V
ω
i . However, this idea fails since, a priori,

nothing ensures that when an ultimately periodic word w belongs to some Ui.V
ω
i

then it is of the form u.vω with u ∈ Ui and v ∈ Vi so that Ku,v |= ϕ.
So far, we have not used the fact that ϕ is counting bisimulation invariant

on finite graphs.



Proposition 5. For any i ∈ I and any (u, v) ∈ Ui × Vi, there is a triple t =
(j, r, s) ∈ I ×Σ+ ×Σ+ such that:

1. r.sω = u.vω (hence Ku,v and Kr,s are counting bisimilar),
2. for all n > 0, r.sn ∈ Uj and sn ∈ Vj .

Proof. Let i, u and v be as above, so Ku,v |= ϕ. By invariance of ϕ, for each
k > 0, we also haveKu.vk,vk |= ϕ. Hence, by Proposition 4 for each k > 0 there is
some ik ∈ I such that (u.vk, vk) ∈ Uik

×Vik
. Since I is finite, there is some j ∈ I

such that j = ik for infinitely many k. Now, since both Uj and Vj are regular
languages and there are infinitely many k such that u.vk ∈ Uj and vk ∈ Vj there
must be some p > 0 such that u.vpn ∈ Uj and vpn ∈ Vj for all n > 0. Taking
r = u.vp and s = vp gives us the desired triple t. 2

A triple t = (j, r, s) as in Proposition 5 is called special. Write S for the set
of all special triples.

To continue the proof of Theorem 3, we need some standard definitions from
formal language theory. Recall that the left congruence class [w]lL and the right
congruence class [w]rL of a finite wordw ∈ Σ+ with respect to a languageL ⊆ Σ+

are defined as the sets of words

[w]lL = {w′ ∈ Σ+ : ∀u ∈ Σ∗, u.w ∈ L⇔ u.w′ ∈ L}

and
[w]rL = {w′ ∈ Σ+ : ∀v ∈ Σ∗, w.v ∈ L⇔ w′.v ∈ L}

We know that if L is regular there are only finitely many distinct sets [w]lL and
[w]rL for w ∈ Σ∗ and each one is a regular language.

For any special triple t = (j, r, s) we define the languages

Dt = [r]rUj
.([s]lUj

∩ [s]rVj
) and Et = ([s]lUj

∩ [s]rVj
)

By construction, both languages Dt and Et are regular. Moreover:

Proposition 6. For any special triple t = (j, r, s), Dt ⊆ Uj, Et ⊆ Vj , Dt.E
+
t ⊆

Dt and E+
t ⊆ Et and, for any u and v ∈ Σ+, if u ∈ Dt and v ∈ Et then

Ku,v |= ϕ.

Proof. Immediate consequence of the constructions, Proposition 5 and Proposi-
tion 4. 2

We now conclude the proof of Theorem 3 by proving the following proposi-
tion:

Proposition 7. The ω-regular language L =
⋃

t∈S
Dt.(Et)

ω is equivalent to ϕ.

Proof. Assume that K |= ϕ for some finite model K. By assumption, K is unary
and counting bisimilar to some lasso Ku,v. We show that u.vω belongs to L
by applying Proposition 5. Indeed, this guarantees that there is a special triple
t = (j, s, r) such that u.vω = r.sω and, by construction, r.sω ∈ Dt.E

ω
t .

For the converse, let w be an ultimately periodic word in L. By definition of
L, this means that there is a special triple t = (j, r, s) such that w ∈ Dt.(Et)

ω.
In other words, w = u1.w1 with u1 ∈ Ut and w1 ∈ V ω

t .



Now, since w is ultimately periodic so is w1 and thus, because Vt is regular,
w1 is of the form v1.v2 . . . vn.(vn+1 . . . vn+m)ω for some v1, . . . , vn+m ∈ Vt.

Defining u = u1.v1 . . . vn and v = vn+1 . . . vn+m, we have w = u.vω by
construction. Hence Kw is counting bisimilar to Ku,v . We also have u ∈ Dt and
v ∈ Et (applying Proposition 6) hence Ku,v |= ϕ and thus Kw |= ϕ. 2

Putting Theorems 1 and 3 together gives the following corollary.

Corollary 8. Any MSO formula counting bisimulation-invariant on finite unary
graphs is equivalent to a monadic Σ1 formula.

Moreover, restricted to the class of unary graphs, the (counting or modal) mu-
calculus can define exactly the classes corresponding to ω-regular languages. This
gives us the following.

Corollary 9. The counting bisimulation-invariant fragment of monadic Σ1 on
finite unary graphs is equivalent to Lµ.

4 Monadic Σ1 on arbitrary finite graphs

In this section, we aim at a characterization of the bisimulation invariant frag-
ment of monadic Σ1 on finite graphs. We establish two negative results that
demonstrate how this case differs from both the more restricted class of fi-
nite unary graphs and the wider class of arbitrary (finite or infinite) graphs.
Nonetheless, by means of a translation to tiling systems [10], we obtain a partial
characterization of this fragment.

Theorem 10. There is monadic Σ1 counting bisimulation invariant formula ϕ
that is not equivalent to a formula of the level NC1 of the counting mu-calculus.

Proof. The monadic Σ1 formula ϕL of Theorem 1 is counting bisimulation invari-
ant on all finite graphs, not just unary ones. Since any formula of NC1 defining
a regular language must define a topologically closed regular language, it suffices
to take for L a language that is not closed, e.g. L = (a+ b)∗.bω. 2

Theorem 11. There is a bisimulation invariant MSO formula that is not equiv-
alent (on finite graphs) to a bisimulation invariant monadic Σ1 formula.

Proof. We know [1] that directed reachability, though definable in monadic Π1 in
the finite, is not definable in monadic Σ1. Consider now the µ-calculus formula
p∧µX.(q∨3X) that defines the set of vertices satisfying p from which there is a
(directed) path to a vertex satisfying q. If there were an equivalent monadic Σ1

formula we would be able to define in monadic Σ1 the class of graphs in which a
distinguished target t is reachable from a source s. We would get this by replacing
p and q by formulas that define s and t respectively. 2

We are now left with a direct attempt to characterize the expressive power
of the bisimulation invariant fragment of monadic Σ1 in the finite.



It is known (see, for instance, [8]) that monadic Σ1 formulas can only de-
fine local properties. Indeed, such formulas can be characterised by tiling sys-
tems [10], which are a generalization of automata operating on graphs rather
than strings or trees.

Given a positive integer k, we say an FO-formula ϕ is k-local around a first-
order variable x if it is equivalent to the formula obtained from ϕ by restricting
all quantifiers in ϕ to the k-neighborhood of x, i.e. replacing any subformula of
the form ∀yψ (resp. ∃yψ) in ϕ by one of the form ∀y(d(x, y) ≤ k) → ψ (resp.
∃y(d(x, y) ≤ k) ∧ ψ). A local formula is one that is k-local for some k.

Note for any modal (or counting modal) formula α of modal depth k, the FO
translation ϕα(x) is k-local around x. Indeed, it is k-local and forward-looking, in
that we can restrict the quantifiers to the directed k-neighborhood by replacing
∀yψ by ∀y(dd(x, y) ≤ k) → ψ, etc.

Furthermore, when a sentence is (counting) bisimulation invariant, its truth
in a model only depends on the submodels induced by the vertices reachable
from the root. The following proposition is a consequence.

Proposition 12. Any (counting) bisimulation invariant sentence ϕ of monadic Σ1

is equivalent, on the class of finite structures, to one of the form

∃X1 . . . ∃Xl∀xϕ

where ϕ is local.

Proof. Immediate consequence of Theorem 3.4 in [8]. 2

Adapting the terminology of Thomas [10], we call a monadic Σ1 formula of
this form a tiling system. The local formula ϕ in such a tiling system is called
a tiling constraint. When the tiling constraint is k-local, we say that k is the
radius of the tiling system. When the tiling constraint is equivalent to a modal
formula (with forward and backward modalities), we say that the tiling system
is tree-like. One can check that when no backward modalities occur in the tiling
constraint, a tiling system is just a closed (modal counting) alternating tree
automaton (see [4] for a precise definition).

Now, our aim is to push the construction that transforms a (counting) bisim-
ulation invariant tiling system into a tree automaton as far as it can go on finite
structures. We show that any such tiling system is equivalent to a tree-like tiling
system of radius 1 on a sufficiently rich class of graphs.

We say that a graph is k-acyclic when it contains no undirected cycle of length
less than k + 1. We first show that for any structure K and positive integer k,
we can find a k-acyclic structure that is counting bisimilar to K but contains no
undirected cycles of length smaller than k. The construction is similar to that
of acyclic covers in [6].

Definition 13 (Powergraph). For a finite graph K = 〈V, r, E, {pK}p∈Prop〉

define its powergraph 2K to be the graph 2K = 〈V ′, r′, E′, {pK
′

}p∈Prop〉 defined
by V ′ = V × 2V (where 2V denotes the set of maps V → {0, 1}), r′ = (r, 0̄),
there is an edge E ′ from a vertex (v, f) to a vertex (w, g) whenever (v, w) ∈ E



and g equals the function defined from f by taking, for each u ∈ V , g(u) = f(u)
when u 6= w and g(w) = 1 − f(w), and with, for each p ∈ Prop, pK

′

= {(v, b̄) ∈
V ′ : v ∈ pK

′

}.

Proposition 14. Graphs K and 2K are counting bisimilar and, if K is k-acyclic
for some k then 2K is 2k-acyclic.

Proof. (sketch) The mapping h : V ′ → V that maps each vertex (v, f) in 2K to
the vertex h(v, f) = v in K induces a counting bisimulation. Now, consider an
undirected cycle in the graph 2K. Along any edge from (v, f) to (w, g), f and g
must differ in exactly one bit. Thus, for the cycle to return to its starting point,
all bits that are changed must flip at least twice. This then maps via h to a cyclic
path in K where all vertices occur at least twice. 2

Corollary 15. For each positive integer k and every graph K, there is a k-
acyclic graph K′ counting bisimilar to K.

Proof. By iterating the powergraph construction. 2

Let ϕ be a counting bisimulation invariant monadic Σ1 formula. By ap-
plying Proposition 12, we may assume that ϕ is a tiling system of the form
ϕ ≡ ∃X1 . . .∃Xl∀xψ with ψ k-local. The following proposition is straightfor-
ward from definitions:

Proposition 16. Let ψa be the k-local FO formula asserting that the k-neigh-
bourhood of x is acyclic. The formula ϕ is equivalent, over k-acyclic graphs, to
the formula, ϕ′ ≡ ∃X1 . . . ∃Xl∀x(ψ ∧ ψa)

Now, we obtain the following

Theorem 17. Formula ϕ is equivalent on k-acyclic graphs to a formula ϕ′′ of
the form ϕ′′ ≡ ∃Y1 . . . ∃Ym∀xψ′ with ψ′ a 1-local tree-like constraint.

Proof. (sketch) The proof is based on the observation that the Hintikka type
(see [3]) of a tree centered on a node c is completely determined by the atomic
propositions that are true at c and the Hintikka types of the subtrees rooted at
the neighbours of c. Thus, by introducing a fresh set of second-order quantifiers
(logarithmic in the number of Hintikka types), it is not difficult to build the
formula ϕ′′. 2

As the constraint ψ′ is tree-like of radius 1, it can be described by a counting
modal formula with forward and backward modalities.

Remark. If this formula were equivalent to one without backward modalities,
then one could show that we can obtain a formula θ of NC 1 that is equivalent
to ϕ on k-acyclic graphs. As ϕ is invariant under counting bisimulation on fi-
nite structures by hypothesis and θ by definition and since the class of k-acyclic
graphs contains representatives of all bisimulation classes on finite structures, it
follows that θ and ϕ are equivalent on the class of all finite structures. Thus, we
would have proved that every formula of monadic Σ1 invariant under counting
bisimulation is equivalent to a formula of NC 1. This would contradict Theo-
rem 10.



5 Conclusions

On finite unary graphs, we provide a precise characterization of bisimulation-
invariant MSO. In this case, the structure of unary graphs is simple enough so
that standard techniques from mathematical logic and language theory apply.
Since unary graphs are closed under counting bisimulation, this also allows us to
show that on finite graphs in general, monadic Σ1 can express more counting-
bisimulation invariant properties than Cµ with only greatest fixed points.

In the general case the question of whether bisimulation-invariant MSO is
equivalent on finite structures to Lµ remains a challenging open problem. By
investigating this question at the first level of the monadic alternating hierarchy
we have been able to show that the nature of the problem is radically different to
its counterpart on infinite structures, while also being different to the restriction
to unary structures.

We provide a translation of bisimulation-invariant monadic Σ1 formulas to
tree-like tiling systems on a sufficiently rich class of structures. However, it seems
that the use of backward modalities in such tiling systems cannot be eliminated
without passing to infinite structures. The relationship between these tiling sys-
tems and the µ-calculus needs however to be investigated further out.
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