
Automata, tableaus and a reduction theorem
for fixpoint calculi in arbitrary complete lattices

David Janin
LaBRI

Université de Bordeaux I - ENSERB
351 cours de la Libération,

F-33 405 Talence cedex
janin@labri.u-bordeaux.fr

Abstract

Fixpoint expressions built from functional signatures in-
terpreted over arbitrary complete lattices are considered. A
generic notion of automaton is defined and shown, by means
of a tableau technique, to capture the expressive power of
fixpoint expressions. For interpretation over continuous and
complete lattices, when, moreover, the meet symbol^ com-
mutes in a rough sense with all other functional symbols, it
is shown that any closed fixpoint expression is equivalent to
a fixpoint expression built without the meet symbol^. This
result generalizes Muller and Schupp's simulation theorem
for alternating automata on the binary tree.

Introduction

The induction principle (least fixpoint construction) is
generally sufficient for the specification or analysis of clas-
sical input-output programs. However, for many systems
such as reactive systems or networks, the co-induction prin-
ciple (greatest fixpoint construction) is needed as well to
express, for instance, correctness properties of their behav-
iors [4, 13].

This fact has led to various definitions of fixpoint calcu-
lus, depending on which model of behaviors one may con-
sider. For instance, Park defined in his landmark paper [13]
a fixpoint calculus over finite or infinite sequences of ac-
tions. Kozen's propositional�-calculus [7] was introduced
to handle models of behaviors as classes of bisimilar labeled
transition systems.

From a mathematical point of view, this study of fixpoint
calculi led to some striking results.

It has been known for a long time, say from Kleene's
works, that fixpoint calculi have strong connection with au-
tomata theory and logic; regular expressions capture both

definability in monadic second order logic (MSOL) and rec-
ognizability by finite automata.

Today similar connections have been established in
many other contexts, e.g. for infinite sequences [13], bi-
nary trees [12] and, in a recent paper, for arbitrary tree-like
structures [17].

All these results advocate that fixpoint calculi play a fun-
damental role between logic and automata theory. From
logic they inherit a strong mathematical foundation, e.g. in-
ductively defined semantics, and from automata they inherit
nice algorithmical properties.

However, despite this series of theoretical successes,
almost no general relationship between fixpoint calculi and
automata theory has been established so far. One of the
main mathematical tools available today to investigate the
expressive power of an arbitrary fixpoint calculus is the
notion of transfinite approximations from Knaster-Tarski!

In this paper we give automata semantics to fixpoint cal-
culi in a quite general setting : arbitrary complete lattices
with monotonic increasing functions.

More precisely, we introduce a notion of an automaton
which runs over elements of these lattices. Such a notion
of automaton is generic in the sense that it can be instanti-
ated into such or such a classical framework to be seen as
the corresponding usual notion of automaton (with accept-
ing states for finite objects and parity or chain conditions for
infinite objects [9]). For instance, in the boolean algebra of
languages of infinite words, we recover the usual!-words
automata with parity conditions. In arbitrary complete lat-
tices, we show that generic automata are as expressive as
fixpoint expressions.

Then, to illustrate the relevance of this approach, we
prove a reduction theorem for fixpoint calculi. In particular,
together with the previous automata characterization, this
theorem gives simple but powerful necessary conditions to

1

check closure properties of a particular notion of automata
and, as a consequence, to relate its expressive power to log-
ical definability.

In fact, this reduction theorem generalizes, to fixpoint
calculi over continuous lattices, Muller and Schupp's
simulation theorem [11] which appeared in an alternative
proof [10] of Rabin's complementation lemma [14].

The paper is organized as follows. In the first part, we
recall the usual definitions and properties of fixpoint ex-
pressions interpreted in complete lattices with monotonic
functions as presented in [2].

In the second part we define generic automata in this gen-
eral setting. We examine to what extent this notion is related
to more classical notions of automata.

In the third part, we state the reduction theorem and give
several applications such as the determinization theorem1

for !-automata and Muller and Schupp's simulation theo-
rem.

In the fourth part, we extend the notion of tableau defined
for the modal mu-calculus [15, 5] to more general fixpoint
expressions. This enable us to prove that generic automata
capture the expressive power of fixpoint calculi and, in the
end, to prove the reduction theorem.

All through the paper, we illustrate most definitions and
theorems with a slightly modified version of Park's fixpoint
calculus over languages of infinite words [13].

Acknowledgement

This work started during a pleasant meeting of the
French-Polish “�-calculus group” at LaBRI (Bordeaux) in
June 1996. I greatly thank all participants for their remarks,
criticism and support.

1. Preliminaries

In this paper, we callfunctional signature, or signature
for short, a set� of function symbols equipped with an arity
function� : �! IN .

Definition 1.1 Over a signature� a fixpoint algebrais
a complete latticehM;_M ;^Mi with bottom and top el-
ements denoted by?M and >M together with, for any
symbolf 2 �, a monotonic increasing functionfM :M�(f) !M called theinterpretation off in M .

As usual, for any setE � M we will denote by
WM E

(resp.
VM E) the least upper bound (resp. the greatest

lower bound) of the setE.

1the proof of the reduction theorem relies on determinization so this
paper can hardly be considered as a new proof of the determinization the-
orem.

In the sequel, to keep consistent with symbol names, we
always assume that for any fixpoint algebraM , any symbol?,>, ^ or_ which appears in� is respectively interpreted
in M as?M ,>M , ^M or_M .

We say a fixpoint algebraM iscontinuouswhen the meet
operator̂ M onM is continuous, i.e. for any directed setsE andF �M_E ^_F =_fe ^ f : e 2 E andf 2 Fg
Definition 1.2 Over a signature� and a setX of vari-
able symbols disjoint from�, we inductively define the set��(X) of fixpoint formulas, simply called formulas in the
sequel, by the following rules :

1. X is a formula for any variableX 2 X ,

2. f(�1; � � � ; ��(f)) is a formula for anyf 2 � and any
formula�1, . . . ,��(f),

3. �X:� and�X:� are formulas for anyX 2 X and any
formula�.

We say a formula� 2 ��(X) is aclosed formulawhen any
variableX occurring in� always occurs in a subformula
of the form�X:t with � = � or �. The set of all closed
formulas of��(X) is denoted by��.

In the sequel, we also denote by�(X) the set of all for-
mulas built without fixpoint construction.

Definition 1.3 (Formula semantics)Given a fixpoint al-
gebraM , given a valuation of variablesV : X ! M ,
any formula� is interpreted as an element[[�]]MV of M in-
ductively defined by :

1. [[X]]MV = V (X),
2. [[f(�1; � � � ; ��(f))]]MV = fM ([[�1]]MV ; � � � ; [[��(f)]]MV),
3. [[�X:�]]MV =_ne 2M : e � [[�]]MV [e=X]o,

4. [[�X:�]]MV =^ne 2M : e � [[�]]MV [e=X]o,

whereV [e=X] denotes the valuation defined for any vari-
ableY 2 X by :� V [e=X](Y) = V (Y) whenY 6= XV [e=X](X) = e:
By the Knaster-Tarski theorem,[[�X:�]]MV and [[�X:�]]MV
are respectively the least and greatest fixpoints of the map-
ping fromM toM defined bye 7! [[�]]MV [e=X].

In particular,[[�X:X]]MV = ?M and[[�X:X]]MV = >M .
In the sequel,we will always assume, without increase of
expressive power, that both constant symbols> and? be-
long to�.

Definition 1.4 GivenC a class of structures, we say formu-
las�1 and�2 are semantically equivalent w.r.t.C, which is
written�1 'C �2 when, for any fixpoint algebrasM 2 C,
any valuation of variablesV : X !M , [[�1]]MV = [[�2]]MV .

When this equivalence holds for arbitrary fixpoint algebras
and arbitrary valuations the subscript will be omitted.

In this framework, afixpoint calculuscan be seen as a
pair h�; Ci for � a functional signature andC a class of�-
fixpoint algebras.

Example 1.5 Given an alphabetA = fa1; : : : ; ang, given
a signature�1 = f?;>;^;_; S1g with �(S1) = n, we
define the (continuous) fixpoint algebra of languages of in-
finite words (!-languages for short) on the alphabetA asM = hP(A!);[;\iwith, for anyL1, . . . ,Ln 2 P(A!),S1M (L1; � � � ; Ln) = [i2[1;n] ai:Li
wherea:L = fa:w : w 2 Lg.

In this fixpoint algebra, one can check that formula� = �X(�Y (b:X _ a:Y))
denotes the set of all infinite words on the alphabetfa; bg
with infinitely manyb. An equivalent regular expression for
this language is(a�b)!.

The following result, from Knaster and Tarski, is a fun-
damental tool to investigate fixpoint calculus.

Proposition 1.6 (Transfinite approximation) For any fix-
point algebraM , there exists an ordinal�M such that for
any formula�(X) :

1. [[�X:�(X)]]MV = [[��MX:�(X)]]MV ,

2. [[�X:�(X)]]MV = [[��MX:�(X)]]MV ,

with semantics of�� :�(X) and �� :�(X) inductively de-
fined by :

1. [[�0X:t]]MV = >
(resp.[[�0X:t]]MV = ?),

2. [[��+1X:t]]MV = [[t[��X:T=X]]]MV
(resp.[[��+1X:t]]MV = [[t[��X:T=X]]]MV),

3. and, for any limit ordinal� ,[[��X:t]]MV = ^� 0<� [[�� 0X:t]]MV
and [[��X:t]]MV = _� 0<� [[�� 0X:t]]MV

The rest of the section illustrates one simple use of trans-
finite approximation.

Definition 1.7 We say a variableX in formula �(X) is
guardedwith respect to function symbolf when every oc-
currence ofX in �(X) is in the scope of function symbolsg distinct fromf , i.e. it always occurs in subformulas of the
formg(�1; � � � ; ��(g)) with g 6= f .

A formula� is said guarded w.r.t.f when, for any sub-
formula of� of the form�X:�1(X), variableX in �1(X)
is guarded w.r.t.f .

Lemma 1.8 (Guardedness)For any class of fixpoint alge-
bra C, any formula of��(X) is equivalent w.r.t. C to a
formula guarded w.r.t._.

Proof: One can easily prove, using transfinite approxima-
tions, that, for any formula�(X), any variableY 6= X, the
following equivalences hold :�X:(X _ �(X)) ' > (1)�X:(X _ �(X)) ' �X:�(X) (2)

and providedX 6= Y with � denoting� or ��X:(Y _ �(X)) ' Y _ �X:�(X _ Y) (3)

With these equivalences, for any formula�, one can eas-
ily build by induction on the structure of� an equivalent
formula�0 guarded w.r.t. the join operator_. 2
Remark: Dual arguments hold for̂ henceforth one may
always assume that all formulas one consider are guarded
w.r.t. both^ and_. Technically, we do not need such a
restriction. It may however help intuition as shown below.

2. Generic automata

Given a functional signature�, let F� be the set of
(syntactic) functions one can build from signature� and
composition. More precisely, using lambda notation, we
defineF� as the set of all classes of functions (equiva-
lent under consistent renaming of bound variables) of the
form G = �X1: � � � :�Xn:�(X1; � � � ; Xn) for any formula�(X1; � � � ; Xn) 2 �(X) built without fixpoint construction
with all free variables of� taken amongX1, X2, . . . ,Xn.

Notions of arity and interpretation are extended toF� in
a straightforward way. In the sequel, in order to avoid heavy
notation, setF� is considered as a functional signature and
the previous notation applies. In particular, for any functionG 2 F� (seen as a functional symbol), any fixpoint algebraM over signature�, we denote byGM the interpretation ofG in M . We also denote by� the particular symbol ofF�
which is always interpreted as the identity.

Definition 2.1 A generic automatonA over signature� is
a tupleA = hQ; q0; �; �;
i with :

1. a finite set of statesQ,

2. an initial stateq0,
3. a transition function� : Q! Q�,
4. a type function� : Q! F�,

5. an index function
 : Q! IN ,

such that, for any stateq 2 Q, the length of�(q) equals the
arity of the functional type� (q) 2 F� of stateq.
Definition 2.2 Given a generic automatonA, given a fix-
point algebraM for signature�, given a pointe0 2 M ,
a run of automataA on e0 is a (possibly infinite) treeT
labeled by pairs(e; q) 2M � Q such that :

1. the rootn0 of treeT is labeled by(e0; q0),
2. from any noden of treeT labeled by some pair(e; q)

with e 6= ?M one of the following rules applies :

(a)
W

-move : there exists a subsetfei : i 2 Ig ofM such thate = Wi2I ei and noden has exactly
one sonni labeled by pair(ei; q) for each indexi 2 I,

(b) G-move : when � (q) = G 2 F�, givenk = �(G) the arity ofG, notingq1: � � � :qk =�(q) the sequence of successors ofq :
(1) if k > 0 then there existe1, . . . , ek 2M such
thate = GM(e1; � � � ; ek) and noden has exactlyk sonsn1, . . . , nk respectively labeled by pairs(ei; qi) for i 2 [1; � � � ; k],
(2) if k = 0 thene �M GM ,

3. on any infinite path of treeT , infinitely manyG-moves
occur.

We say that runT is anaccepting runwhen, for any infi-
nite pathn0, n1, . . . of nodes ofT labeled by pairs(e0; q0),(e1; q1), . . . , the smallest index
(qi) which appears in-
finitely often on this path is even (such a condition is called
a parity or a chain condition [9]). In this case, we say thate is accepted byA and we denote byLM (A) the set of ele-
ments ofM accepted byA.

Remark: WhenG = � (i.e. the identity symbol) aG-move
can be seen as firing an�-transition in classical automata
theory. Indeed, when such a move occurs from a noden
labeled by(e; q) then noden has exactly one son labeled by(e; �(q)), i.e. no further reading of the input is made during
the move. The next proposition shows, as in the usual case,
that these�-states are useless in terms of expressive power.

Proposition 2.3 For any automatonA there exists an au-
tomatonA1 with no states of type� equivalent toA
in the following sense : for any fixpoint algebraM ,LM (A) = LM (A1).
Proof: Given an automatonA = hQ; q0; �; �;
i, for any
stateq 2 Q of type �, let sq = q0:q1: � � � be the longest
(possibly infinite but unique) sequence of states such that,q = q0 and for any relevanti, �(qi) = qi+1 with � (qi) = �,
i.e. in the casesq = q0: � � � :qn then�(qi) 6= � only wheni = n. AutomatonA1 is built from automatonA replacing
any stateq 2 Q of type � by the sequencesq , extending
parity, type and successor functions to these sequences as
follows :

1. for any finite sequencesq = q0: : : : :qn,
1(sq) = minf
(qi) : i 2 [0; � � � ; n]g
with �1(sq) = � (qn) and�1(sq) = �(qn),

2. for any infinite sequencesq = q0:q1: � � �,
1(sq) = minf
(qi) : i 2 INg
with �1(sq) = > when
1(sq) is even,�1(sq) = ?
otherwise and�(q) equals to the empty word.

From the construction ofA1 one can easily check that, for
any fixpoint algebraM , LM (A) = LM (A1), accepting
runs on automatonA immediately inducing accepting runs
on automatonA1 and vice versa. 2(_; 1)(a; 1) (b; 0) h;; (a; 1)ih;; (b; 0)ih(ab)!; (_; 1)ih(ab)!; (a; 1)ihb(ab)!; (_; 1)ihb(ab)!; (b; 0)i

Figure 1. An automaton and a run.

Example 2.4 In Figure 1 above, an automaton, which ac-
cepts any subset of(a�b)! on the algebra of!-languages,
illustrates the previous definitions. In this figure, any stateq is labeled by its type and its parity index, i.e. pair(� (q);
(q)) where, as in Example 1.5, functiona and resp.
functionb stand for the mappingL 7! a:L and resp. the
mappingL 7! b:L. The initial state is labeled by(_; 0). In
addition to the automaton on the left, an accepting run on
language(ab)! is given on the right.

Remark: The previous example illustrates two major as-
pects of generic automata.
(1) In the classical definition of non deterministic automata
firing a transition is implicitly preceded by the choice of the
transition to fire; union of languages is implicitly modelized
by non determinism. In the present approach these two suc-
cessive steps become explicit; non determinism is explicitly
modeled by states of type_. One reason for this trick is that
the joint operator_ can then be treated like any other oper-
ator. In particular, it helps to realize that determinization of!-automaton is a particular instance of Muller and Schupp
simulation (see Example 3.3 of next section).
(2) In this example no

W
-move occurs; none is needed. This

is not the case in general. For instance, in any accepting run
of the previous automaton over language(a�b)! a

W
-move

must occur (otherwise, by Koenig's Lemma, there would
exist an accepting run overa!).

Proposition 2.5 For any automatonA, any fixpoint alge-
braM :

1. LM (A) is closed under_,

2.
WLM (A) 2 LM (A).

Proof: Obvious, applying a
W

-move at the beginning of the
accepting run one intends to build. 2

The following definition and theorem give a straightfor-
ward condition forLM (A) to be downward closed.

Definition 2.6 We say thedecomposability propertyholds
on a fixpoint algebraM over a signature� when, for
any f 2 � with �(f) 6= 0, for any d 2 M , any e1,
. . . , e�(f) 2 M if d � fM (e1; � � � ; e�(f)) then there ex-
ists d1, . . . , d�(f) 2 M such that, for anyi, di � ei
andd = fM (d1; � � � ; d�(f)) (equivalently the inverse imagef�1M (I) of any idealI ofM is an ideal ofM�(f).).
Remark: In particular, when decomposability holds onM
for anyf 2 � with �(f) 6= 0 the functionfM is strict. Note
that in the modal�-calculus the universal modalityX 7![a]X is not strict. In [5], to translate formulas into automata,
an equivalent signature of strict functions was introducedto
remedy this.

Theorem 2.7 For any automatonA, any continuous alge-
braM where decomposability holds for any element ofM ,LM (A) is downward closed, i.e. for anye andf 2 M , ife �M f with f 2 LM (A) thene 2 LM (A).
Proof: Givene andf 2M with e � f and an accepting runTf of automatonA on f one can build fromTf , by induc-
tion on the depth of nodes, an accepting runTe of automatonA one. Indeed, decomposability ensures easy construction
steps for�-moves andG-moves. When a

W
-move is applied

in Tf from a noden labeled by(fn; qn) with successors la-
beled by(fi; qi) for any i 2 I, then a

W
-move occurs also

in Te from noden labeled by(en; qn) with successors la-
beled by(fi ^ en; qi) for i 2 I. Here, continuity is required
since the definition of runs impliesen = Wi2I en ^ fi withen �M Wi2I fi. The construction ends in any noden such
thaten = ?. 2
Remark: In particular, whenM is an atomic boolean alge-
bra, for any automataA where decomposability holds, the
languageLM (A) is characterized by its projection on the
atoms, i.e. the set of all atoms accepted byA. We almost
recover here the usual settings of automata theory where
acceptance is only defined on atoms, e.g. words for usual
automata.

Lemma 4.10 and Lemma 4.12 below show the equiva-
lence, in terms of expressive power, of generic automata
and fixpoint expression interpreted in complete lattices.

Remark: Strictly speaking, we need one more restriction
in our definition of automata to recover, for instance over
words, usual definitions. Namely, there should be no loops
from states of type_, i.e. states modeling non determin-
ism, since such loops cannot occur with usual definitions
of automata where non determinism is modeled implicitly
in the definition of the transition function. In terms of fix-
point expression such a restriction is captured by the notion
of guardedness w.r.t. the join operator_. Lemma 1.8 and
Lemma 4.10 show that, indeed, such a restriction has no
effect in terms of expressive power.

3. The reduction theorem

In this section we present the reduction theorem and give
several applications. We shall use bold-math letters to de-
note tuples (such asx denoting(x1; x2; : : : ; xn)).
Definition 3.1 Given a class of fixpoint algebrasC, we say
that the meet operator̂ commuteswith � on C when, for
any finite multisetffigi2[1;n] of functional symbols of� �f^g there exists a functionG 2 F� built without the symbol^ such that an equation of the form:^i2[1;n]ffi(xi)g = G(^y1; � � � ;^ym)
holds onC, where :

1. xis are vectors of distinct variables of the appropriate
length,

2. yjs are vectors of distinct variables taken among those
appearing inxis,

3.
Vyjs denote the g.l.b. applied to the set of all vari-
ables occurring inyj.

In the sequel, such an equation, oriented from left to
right, is called the2 commutation ruleassociated withffigi2[1;n]. In particular, whenn = 1, we always consider
the degenerated commutation rulef(x) = f(x).
Theorem 3.2 (Reduction) When the meet operator̂com-
mutes with� onC any closed fixpoint formula� is equiva-
lent overC to a formulab� built without the symbol̂ .

Proof: As described in next part, one can build a regular
tableau for� then, applying Lemma 4.10, translate it into
an equivalent generic automaton on the signature� � f^g
which itself, applying Lemma 4.12, can be translated into
an equivalent fixpoint formula on the same signature.2

As an illustration, we give, in the rest of this section,
some applications of this reduction theorem.

Example 3.3 Continuing example 1.5 of!-languages, we
have :

Observation 3.3.1 (Unary simulation) Any fixpoint for-
mula� 2 �1� is equivalent over!-languages to a fixpoint
formulab� without conjunction.

Proof: It is almost immediate that for!-languages,̂ ful-
fills the hypothesis of theorem 3.2, e.g.S1(x) ^ S1(y) = S1(x ^ y)
wherex ^ y denotes(x1 ^ y1; � � � ; xn ^ yn) whenx =(x1; � � � ; xn) andy = (y1; � � � ; yn). 2
Observation 3.3.2 (Determinization)Any fixpoint for-
mula� 2 �1� built without symbol̂ is equivalent over!-languages to a fixpoint formulab� built without either^
or _.

Proof: Here again, over signature�1 � f^g, function_
fulfills the hypothesis of the dual version of Theorem 3.2,
e.g. S1(x) _ S1(y) = S1(x _ y)
with a similar notation. Hence, starting with all formulas
of �1� built without^, the reduction theorem applies in its
dual version giving us the result. 2

In other words, applying the theorem twice, we have
proved that any formula� 2 �1� is equivalent over!-
languages to a formulab� built without either the symbol̂
or the symbol_.

As a consequence, since the class of languages definable
by fixpoint expressions over the signature�1 is obviously
closed under complement, union and intersection we obtain
the usual closure properties of deterministic languages.

2we assume that one such rule is selected for each multiset of symbols
of �� f^g

Remark: We do not obtain here a new proof of the deter-
minization theorem since we use this result in the proof of
the reduction theorem.

Example 3.4 For the binary case things are similar. Let�2 = f>;?;_;^; S2g be a functional signature with the
usual arity for usual symbols and arity2n for symbolS2.
Given A = fa1; � � � ; ang an alphabet, letM be the�2-
fixpoint algebra defined asM = hP(fl; rg� ! A);[;\i
for fl; rg� ! A the set of all total functions which map any
finite word over the alphabetfl; rg to a letter inA, inter-
pretingS2 by :S2M (L1; L2; � � � ; L2n�1; L2n) = [i2[1;n] ai(L2i�1; L2i)
noting for anyL1 and L2 2 P(fl; rg� ! A) and anya 2 A,a(L1; L2) = ff : 9f1 2 L1; f2 2 L2; f(�) = a^8w 2 fl; rg�; f(l:w) = f1(w)^f(r:w) = f2(w)g
Observation 3.4.1 (Binary simulation) Any formula� 2 �2� is equivalent to a formulab� built without
conjunction symbols.

Proof: As before theorem 3.2 applies. 2
This result is a reformulation, in terms of fixpoint, of

Muller and Schupp's simulation theorem [10]. Translated
back into automata, it immediately shows that non alter-
nating parity automata on the binary tree are closed under
complementation: an essential step in Rabin's proof of the
decidability of S2S [14].

Remark: Another application is Walukiewicz's work on
tree-shaped structures [17]. The functional signature� is
given by all possiblebasic formulasas defined in this ap-
proach, the interpretation of these function symbols being
the underlying model theoretical interpretation. Checking
that the symbol̂ commutes in the sense above with the
signature� is quite obvious and thus, the reduction theorem
applies. In the case of tree-shaped structures this solves the
difficult part of the proofs. In particular, in the case of trees
(of arbitrary degrees) the reduction theorem enables us to
obtain the (more restrictive) automata characterization used
in [6] to characterize the expressive power of the modal mu-
calculus.

4. Tableaus for fixpoint formulas

In this section we extend the notion of tableau used for
instance in [5] in order to prove the automata characteriza-
tion stated in Lemmas 4.12 and 4.10 and the reduction the-
orem stated in Theorem 3.2. We assumeC is a given class

of continuous fixpoint algebras over the signature� where^ commutes with� (see Definition 3.1).

Remark: To translate formulas into automata and au-
tomata into formulas, the hypothesis can be weakened.
More precisely, all results below still hold dropping the con-
tinuity hypothesis and renaminĝ in � into some fresh
symbol name in order to avoid all the machinery needed
to prove the reduction theorem. In this case,C can be any
class of fixpoint algebra on signature�.

Definition 4.1 We call a formulawell namediff every vari-
able is bound at most once in the formula and free variables
are distinct from bound variables. For a variableX bound
in a well named formula� there exists a unique sub-formula
of� of the form�X:�(X), from now on called thebinding
definition ofX in � and denoted byD�(X).

We callX a �-variablewhen� = �, otherwise we callX a �-variable.

Remark: Every formula is equivalent to a well-named
one which can be obtained by some consistent renaming of
bound variables.

Definition 4.2 Given a formula� we define thedepen-
dency orderover the bound variables of�, denoted��,
as the least partial order relation such that ifX occurs free
inD�(Y) thenX �� Y .

Remark: For instance, if� = �X:(�Y:f(Y)) _ g(X)
then variablesX andY are incomparable in�� ordering.
This partial order leads to the alternation depth defined by
Niwinski [12], a notion which, in the context of the modal
mu-calculus, has been shown to lead to an infinite hierar-
chy [3].

Definition 4.3 (Tableaus) Given a closed well-name fix-
point formula� a tableau for a formula� is a tupleG = hQ; q0; �; Li
with hQ; q0; �i the graph of a generic automaton andL :N ! P(��(X)) a labeling function, such that the initial
stateq0 is labeled byL(q0) = f�g and, for any stateq 2 Q
with �(q) = r1:r2: � � � :rn,fL(r1)g � � � fL(rn)gL(q)
is an instance of one of the following transition rules :� ^-rule :

(^-rule)
f�1; �2g [�f�1 ^ �2g [�

� Fixpoint rule :

(�-rule)
f�1(X)g [�f�X:�1(X)g [�

with� = � or �� Regeneration rule :

(reg-rule)
f�1(X)g [�fXg [�

providedD�(X) = �X:�1(X),� Functional rules :

(G-rule)
f�jgj2[1;m]ff1(�1); f2(�2); � � � ; fn(�n)g

providedf1(x1)^� � �^fn(xn) = G(Vy1; � � � ;Vym)
is the commutation rule associated with multisetffigi2[1;n] (see definition 3.1) and, considering the
mapping that maps any variable of a vectorxi to
the corresponding formula in the corresponding vec-
tor �i, vectors of formulas�js are built from vectors
of variableyjs applying this mapping.

f�X(�Y (b:X _ a:Y)gf�Y (b:X _ a:Y)gfb:X _ a:Y gfb:Xg fa:Y gfXg fY g_-rule

�-rule�-ruleb-rule a-rule

reg-rule reg-rule

Figure 2. A tableau for � without ^.

Example 4.4 As an illustration, a tableau for formula� = �X:(�Y:(b:X _ a:Y)) (already presented in Exam-
ple 1.5) is given in Figure 2 above. Since no symbol^ oc-
curs in�, the states of the tableau are labeled by singletons.

Remark: For technical reasons, it is more convenient to
allow infinite graphs as well. Notice however that for any
closed formula�, any tableauG = hQ; q0; �; Li, the setL(Q) is finite, i.e. only finitely many labels can be used.
Henceforth, for any formula�, there exists at least one reg-
ular tableau for formula� and, henceforth, there exists also
one finite tableau for�.

Definition 4.5 Given a tableauG = hQ; q0; �; Li for for-
mula�, an infinite pathonG is an infinite sequenceP = q0; q1; � � �
of states ofQ such that, for any indexi, qi+1 occurs in�(qi).

For any infinite pathP on G, a infinite traceonP is a
function tr : IN ! ��(X) such that, for anyi 2 IN ,
tr (i) 2 L(qi) and tr (i + 1) is related totr (i) according to
one of the following rules.

1. When the fixpoint rule or regeneration rule is applied
from stateqi to stateqi+1 thentr (i + 1) equalstr (i)
possibly modified by the application of the rule,

2. When thê -rule is applied from stateqi to qi+1 then :

(a) if this application does not modifytr (i) then
tr (i) = tr (i+ 1),

(b) otherwise tr (i) = �1 ^ �2 with �1 and�2 2 L(qi+1) thentr (i + 1) equals�1 or �2,
3. When theG-rule is applied from stateqi to stateqi+1

with commutation rulef1(x1) ^ � � � ^ fn(xn) = G(^y1; � � � ;^ym)
with tr (i) = fi(�i) for some i 2 [1;m] andL(qi+1) = f�jg for somej 2 [1; n] then tr (i + 1)
equals to thekth component of�j for somek such
that thekth variable ofyj occurs inxi.

Proposition 4.6 On any infinite pathP of G, for any infi-
nite tracetr 2 T r(P) there exists a variableX which is
the smallest variable regenerated infinitely often ontr .

We say that tracetr is a�-tracewhen this smallest vari-
able is a�-variable (see Definition 4.1), otherwise, we say
that tracetr is a�-trace.

Definition 4.7 Given a tableauG = hQ; q0; �; Li for a for-
mula� we define amarkingM of the tableauG (with re-
spect to an algebraM) by e 2 M as a run in the sense
of Definition 2.2 on the underlying graph of automatonhQ; q0; �; � i taking, for anyq 2 Q, � (q) = G when theG-rule applies on stateq in the construction ofG, � (q) = �
otherwise.

Remark: Notice here that any finite path of a marking
either ends in a node labeled(?M ; q) for arbitrary stateq or
ends in a node labeled by(e; q) with e �M fM and some
constant functional symbolf 2 � such thatL(q) = ffg.
Definition 4.8 A markingM = h�; Li is consistentwhen
for any infinite path ofM labeled by(e; q0); (e1; q1); (e2; q2) � � �
all infinite traces on the tableau pathq0, q1, . . . are�-traces.

Theorem 4.9 For any closed formula�, any continuous
fixed point algebraM 2 C, for any tableauG for�, [[�]]M is
the greatest element ofM which admits a consistent mark-
ing of tableauG.

Proof: We first build by induction a consistent marking
of G. More precisely, for any noden of the marking we
build a closed formula�n such thatn is labeled by pair([[�n]]M ; qn) for some tableau stateq with formula�n ob-
tained from formula

VL(q) inductively replacing, in an ap-
propriate order to obtain a closed formula :� any free �-variable X by its binding definition�X:D�(X),� any free�-variableY by some transfinite approxima-

tion��X:D�(X) of the fixpoint subformula of� bind-
ingX.

The basic idea of the induction step is to apply to formula�n the tableau rule applied in stateqn in order to build for-
mulas�m one for each successorm of noden.

1. When theG-rule is applied in stateqn then aG-move
occurs. Givenr1, . . . ,rk thek successors of stateqn inG with k = �(G), by the induction hypothesis and ap-
plying the appropriate commutation rule, formula�n
is equivalent to a formula ofG(�1; � � � ; �k) with, for
any i 2 [1; k] formula�i obtained from the formulaVL(ri) as above and we labelmi theith successor of
noden by pair([[�i]]M ; ri).

2. When thê -rule is applied in stateqn then an�-move
occurs on the marking we build withm the unique suc-
cessor ofn and we put�m = �n.

3. When the fixpoint rule is applied in stateqn on a for-
mula�X:D�(X) 2 L(qn) with � = � or � then�n is
of the form(�X:�1(X)) ^ �2 and noden has exactly
one sonm labeled by:

(a) �m = �1[�X:�1(X)=X] ^ �2 when� = �,

(b) �m = �1[��X:�1(X)=X] ^ �2=X] when� = �, where� is the smallest ordinal such that[[�n]]M = [[�m]]M .

4. When the regeneration rule applies in stateqn onX 2 L(qn) then, since rule 3 above has necessar-
ily been applied before reaching such a state, one of
the following conditions is satisfied :

(a) �n is of the form (�X:�1(X)) ^ �2 then n
has exactly one sonm labeled by �m =�1[�X:�1(x)=X] ^ �2,

(b) �n is of the form(��X:�1(X)) ^ �2 for some
ordinal � : in the case� is a successor ordinal� 0 + 1 noden has exactly one sonm labeled by�m = �1[�� 0X:�1(X)=X] ^ �2, otherwise� is
a limit ordinal hence a

W
-move occurs and, for

each ordinal� 0 < � , noden as one sonm� 0 la-
beled by�1[�� 0X:�1=X] ^ �2; in this last case,
continuity ensures such a move is valid.

On the marking obtained there cannot be an infinite
path with a�-trace. Otherwise on this trace, after some
point, the smallest variable ever regenerated would be a�-variable. Givenn1, n2, . . . , the sequence of nodes, after
this particular point, where a regeneration ofX occurs,
one can check that for anyi 2 IN , �ni is of the form��iX:�1;i(X) ^ �2;i with ti > �i+1 which is absurd since
ordinals are well-founded.

Conversely, we assume that some elemente0 2 M ad-
mits a consistent marking of tableauG with e0 6� [[�]]M and
show that this leads to a contradiction.

For this, we first show, by induction, that there ex-
ists an infinite path onM labeled by a sequence of pairsf(ei; qi)gi2IN such that, denoting byP the underlying infi-
nite tableau path, no�-trace occurs on the pathP, and there
exists a�-tracetr onP such that, for any stateqi occurring
on P, ei 6� [[�i]]M for some closed formula�i obtained
from formula tr (i) with a construction dual from the one
above.

The initial induction step for this construction comes
from the rootn0 of the marking labeled by pairs(e; q0)
where we taken0 as the initial node of the path we build
and we puttr (0) = �0 = �.

Let us assume now we have build this path inM up to
nodeni labeled by(ei; qi) with ei 6� [[�i]]M . The construc-
tion proceeds then according to one of the following rules.

1. When a
W

-move occurs in nodeni: given(fj ; rj)j2J
the label of the successor nodes of nodeni one havee = _j2J fj 6� [[�i]]M
Hence there exists at least onej 2 J such thatej 6� [[�i]]M and we putei+1 = fj with qi+1 = qi and�i+1 = �i, taking forni+1 the corresponding succes-
sor ofni.

2. When an�-move occurs in nodeni:
(a) if the^-rule is not applied from stateqi or if it is

applied on a formula distinct fromtr (i): the con-
struction ofni+1, qi+1, tr (i+ 1) and�i+1 is ob-
vious (perhaps applying a rule dual from Rule 3
or Rule 4 above in order to build�i+1).

(b) if the^-rule is applied from stateqi on formula
tr (i) of the form�1 ^ �2: taking for qi+1 the
unique successor of stateqi, formula�i is, by
induction hypothesis, of the form�01^�02 with b01
andb02 related to�1 and�2; in other wordsei 6� [[�i]]M = [[�01 ^ �02]]M
hence there existsj 2 f1; 2g such thatei 6� [[�0j]]M and we putei+1 = ei with
tr (i+ 1) = �j and�i+1 = �0j .

3. Otherwise a G-rule is applied on ni: givenL(ni) = ffk(�k) : k 2 [1;m]g and applying the
induction hypothesis we haveei 6� [[�i]]M with�i = fp(�0p)
for somep 2 [1;m] and some vector of formulas�0p
built from �p as above. From definition ofG-moves
we also have ei = GM(d1; � � � ; dn)
wheredls occur on the labels of the sons of nodeni.
Given then the commutation rule which applies in this
node: k̂ fk(xk) = G(^y1; � � � ;^yn)
we instantiate vectorxk above by�0k when k = p
and by(>M ; � � � ;>M) otherwise, and we obtain an
equivalence of the formfp(�0p) ^ d =M G(^�001 ; � � � ;^�00n)
From the fact thatei 6� [[fp(�0p)]]M we immediately
deduceei = GM (d1; � � � ; dn) 6� [[G(^�001 ; � � � ;^�00n)]]M
from which we conclude there exists onel 2 [1; n] and
then one formula�00 occurring in�00l (and by construc-
tion occurring in�0p) such thatdl 6� [[�00]]M . From this
we take forni+1 the lth successor of nodeni puttingei+1 = dl and�i+1 = �00 and we take fortr (i+1) the
corresponding formula in�p; notice here that�l can
indeed be chosen distinct from(>M ; � � � ;>M) other-
wise we immediately concludee 6� >M which is ab-
surd.

Such a construction is infinite. Otherwise we end in a nodeni of M which is a leaf and then, sinceM is a mark-
ing, eitherei = ?M which contradictei 6� [[�i]]M or

VL(ni) is a closed formula with, by definitions of mark-
ings,ei � [[VL(ni)]]M � [[�i]]M which, again, contradicts
the induction hypothesis.

Moreover, no�-trace occurs on this infinite path forM
is a consistent marking. Hence tracetr is a�-trace.

The last argument that leads to a contradiction is simi-
lar to the one above. Considering the smallest�-variable
regenerated infinitely often on tracetr we show the se-
quence of ordinals associated to these regenerations is
strictly decreasing after some point which contradicts the
well-foundedness of ordinals. 2

Let us now prove the two fundamental lemmas which
conclude our proofs.

Lemma 4.10 For any closed formula� on signature�, any
regular tableauG for �, there exists a generic automatonAG on signature��f^g such that, for any algebraM 2 C,
anye 2 M , there exists a consistent marking ofG by e iff
automatonAG acceptse.
Proof: Let G1 be the infinite unwinding of tableauG. From
automata theory on!-languages, applying complementa-
tion and determinization, one can show that there exists
a deterministic and complete word automaton with parity
condition which read any path ofG and accepts only an in-
finite path with no�-trace on it. Running this automaton
from the initial stateq0 of G on all paths, we obtain a unique
labeling of all states ofG1 by states of the automaton. Then
we define the parity index
(q) of any stateq of G1 as the
parity index of the corresponding state of the word automa-
ton, and we define the type� (q) of stateq asG when theG-rule applies in stateq, as� otherwise. By construction,
the resulting tree is the infinite unwinding of a finite generic
automaton with the word automaton translating, in any in-
finite path of any marking or run, any consistency require-
ment into a parity requirement and vice versa. Moreover,
since theG-rule always applies in tableauG with functionG built without symbol̂ , automatonAG is, indeed, built
on signature�� f^g. 2

Before stating and proving the last lemma, we intro-
duce the notion of tree-shaped automaton which, intuitively,
characterizes generic automata which, roughly speaking, di-
rectly corresponds to fixpoint formulas. One can check that,
in general, generic automata can be considered as sets of
fixpoint equations instead of single formulas.

Definition 4.11 A generic automatonA is tree-shaped with
back-edgeswhen:

1. for any stateq of A there exits a unique acyclic path
from the initial stateq0 to stateq,

2. for any cycleC in the graph induced byA, there exists
a unique stateqC such that, for any stateq in cycleC,

(a) qC belongs to the unique acyclic path from the
stateq0 to the stateq,

(b) and
(qC) �
(q).
Figure 3 below illustrates the notion of tree-shaped au-

tomata.

2 1 2 0135
Figure 3. A tree-shaped automaton.

Remark: Obviously: for any generic automatonA there
exists an automatonA1 tree-shaped with back edges such
that, for any algebraM , LM (A) = LM (A1). One possible
construction is first to unwind automatonA into an infinite
tree and then replace any infinite path by a cycle, building
an edge back towards ancestors as soon as possible provided
condition 2b is not violated. One can check such a turn back
can always occur at a depth smaller than twice the depth of
automatonA1.
Lemma 4.12 For any generic automatonA there exists a
formula�A such that, for any algebraM 2 C,[[�]]M =_LM (A)
Proof: Starting from a tree-shaped automatonA1 equiva-
lent to automatonA as above, for each stateq of A1, let
formula�q be built by induction from the (pseudo) leaves
of A1 to the rootq0 as follows:

1. if � (q) = � with �(q) = r then we put�q = �qXq:�q;r
2. if � (q) = G with �(q) = r1: � � � :r�(G) then we put�q = �qXq:G(�q;r1 ; � � � ; �q;rn)

where, in both cases,fXqgq2Q is a set of distinct variables
fromX , �q = � when
(q) is even otherwise�q = � and�r;q is given by one of the following rules:� if stater occurs on the unique path from initial stateq0 to stateq, i.e. the edge from stateq to stater is a

back-edge, then�q;r = Xr ,

� otherwise�q;r = �r.
From this construction, taking�A = �q0 , one can easily
build a tableauG� for � equivalent toA1 (henceforth toA)
in the sense that, for any algebraM 2 C, anye 2M , there
exists a consistent marking of tableauG� by e iff there is a
consistent run ofA1 one. 2
5. Conclusion

In this paper, we have shown that semantics of fixpoint
calculi in arbitrary complete lattices can be captured by
tableau or automaton techniques. With the continuity hy-
pothesis, we have shown that a reduction theorem holds
generalizing fundamental results in automata theory.

Our purpose here is not to give yet more proofs of well-
known results but, indeed, providing an automaton and
tableau semantics to (almost) arbitrary fixpoint calculi, to
participate in the establishment of a general theory of fix-
point calculi and, to some extent, a better understanding of
fixpoint logics.

Yet a general theory of fixpoint calculi can still be devel-
oped. Indeed, many other results or techniques have been
established or investigated for some fixpoint calculi, in par-
ticular, the modal mu-calculus. Let us recall for instance the
completeness result obtained by Walukiewicz [16], the in-
finiteness of the alternation depth hierarchy proved by Brad-
field [3] and many other results on the model checking prob-
lem, e.g. the best algorithm known today [8] or a proof sys-
tems for process algebra [1]. Since these works often use
tableau or automata techniques we can hope the material
presented here will help in generalizing them.

References

[1] H. Andersen, C. Stirling, and G. Winskell. A compositional
proof system for the modal mu-calculus. InIEEE Symp. on
Logic in Computer Science, pages 144–153, 1994.

[2] A. Arnold and D. Niwiński. Fixed point characterization of
weak monadic logic definable sets of trees. InTree, Aut. and
Languages, pages 159–188. Elsevier, 1992.

[3] J. Bradfield. The alternation hierarchy for Kozen's mu-
calculus is strict. InCONCUR'96. LNCS 1119, 1996.

[4] E. A. Emerson and E. M. Clark. Characterizing correctness
properties of parallel programs using fixpoints. InInt. Call.
on Aut. and Lang. and Programming, 1980.

[5] D. Janin and I. Walukiewicz. Automata for the modal mu-
calculus and related results. InMath. Found of Comp. Sci-
ence. LNCS 969, 1995.

[6] D. Janin and I. Walukiewicz. On the expressive completeness
of the modal mu-calculus w.r.t. monadic second order logic.
In CONCUR'96. LNCS 1119, 1996.

[7] D. Kozen. Results on the propositional�-calculus.Theoret-
ical Comp. Science, 27:333–354, 1983.

[8] D. E. Long, A. Browne, E. C. Clarke, S. Jha, and W. R. Mar-
rero. An improved algorithm for the evalutation of fixpoint

expressions. InComputer Aided Verification, pages 338–
350. LNCS 818, 1994.

[9] A. W. Mostowski. Regular expressions for infinite trees and
a standard form of automata. InComputation Theory. LNCS
208, 1984.

[10] D. E. Muller and P. E. Schupp. Alternating automata on in-
finite trees.Theoretical Comp. Science, 54:267–276, 1987.

[11] D. E. Muller and P. E. Schupp. Simultating alternating
tree automata by nondeterministic automata: New results
and new proofs of the theorems of Rabin, McNaughton and
Safra.Theoretical Comp. Science, 141:67–107, 1995.

[12] D. Niwiński. Fixed point vs. infinite generation. InIEEE
Symp. on Logic in Computer Science, 1988.

[13] D. Park. Concurrency and automata on infinite sequences.
In 5th GI Conf. on Theoret. Comput. Sci., pages 167–183,
Karlsruhe, 1981. LNCS 104.

[14] M. O. Rabin. Decidability of second order theories and au-
tomata on infinite trees.Trans. Amer. Math. Soc., 141, 1969.

[15] C. Stirling and D. Walker. Local model cheking in the modal
mu-calculus.Theoretical Comp. Science, 89:161–177, 1991.

[16] I. Walukiewicz. Completeness of Kozen's axiomatization
of the propositional�-calculus. InIEEE Symp. on Logic in
Computer Science, 1995.

[17] I. Walukiewicz. Monadic second order logic on tree-like
structures. InSymp. on Theor. Aspects of Computer Science,
1996. LNCS 1046.

