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Abstract definability in monadic second order logic (MSOL) and rec-
ognizability by finite automata.

Fixpoint expressions built from functional signatures in- Today similar connections have been established in
terpreted over arbitrary complete lattices are consider&d ~ many other contexts, e.g. for infinite sequences [13], bi-
generic notion of automaton is defined and shown, by meansary trees [12] and, in a recent paper, for arbitrary trke-li
of a tableau technique, to capture the expressive power ofstructures [17].
fixpoint expressions. For interpretation over continuond a All these results advocate that fixpoint calculi play a fun-
complete lattices, when, moreover, the meet symim@im-  gamental role between logic and automata theory. From
mutes in a rough sense with all other functional symbols, it logic they inherit a strong mathematical foundation, eng. i
is shown that any closed fixpoint expression is equivalent togyctively defined semantics, and from automata they inherit
a fixpoint expression built without the meet symbolThis nice algorithmical properties.
result gene_ralizes Muller and Schupp's simulation theorem However, despite this series of theoretical successes,
for alternating automata on the binary tree. almost no general relationship between fixpoint calculi and

automata theory has been established so far. One of the

main mathematical tools available today to investigate the
Introduction expressive power of an arbitrary fixpoint calculus is the

notion of transfinite approximations from Knaster-Tarski!

The induction principle (least fixpoint construction) is
generally sufficient for the specification or analysis ofela In this paper we give automata semantics to fixpoint cal-
sical input-output programs. However, for many systems culi in a quite general setting : arbitrary complete latiice
such as reactive systems or networks, the co-induction prin With monotonic increasing functions.
ciple (greatest fixpoint construction) is needed as well to  More precisely, we introduce a notion of an automaton
express, for instance, correctness properties of thembeh which runs over elements of these lattices. Such a notion
iors [4, 13]. of automaton is generic in the sense that it can be instanti-
This fact has led to various definitions of fixpoint calcu- ated into such or such a classical framework to be seen as
lus, depending on which model of behaviors one may con-the corresponding usual notion of automaton (with accept-
sider. For instance, Park defined in his landmark paper [13]ing states for finite objects and parity or chain conditians f
a fixpoint calculus over finite or infinite sequences of ac- infinite objects [9]). For instance, in the boolean algelra o
tions. Kozen's propositionakcalculus [7] was introduced languages of infinite words, we recover the usuabords
to handle models of behaviors as classes of bisimilar labele automata with parity conditions. In arbitrary complete lat

transition systems. tices, we show that generic automata are as expressive as
From a mathematical point of view, this study of fixpoint fixpoint expressions.
calculi led to some striking results. Then, to illustrate the relevance of this approach, we

It has been known for a long time, say from Kleene's prove a reduction theorem for fixpoint calculi. In partiaula
works, that fixpoint calculi have strong connection with au- together with the previous automata characterizatiors, thi
tomata theory and logic; regular expressions capture boththeorem gives simple but powerful necessary conditions to



check closure properties of a particular notion of automata  In the sequel, to keep consistent with symbol names, we
and, as a consequence, to relate its expressive power to logalways assume that for any fixpoint algetdra any symbol
ical definability. L, T, A orv which appears i is respectively interpreted

In fact, this reduction theorem generalizes, to fixpoint in M as_Las, Tar, Aar OF V.
calculi over continuous lattices, Muller and Schupp's  We say afixpointalgebr#/ is continuousvhen the meet
simulation theorem [11] which appeared in an alternative operatorA s on M is continuous, i.e. for any directed sets
proof [10] of Rabin's complementation lemma [14]. EFandl' C M

The paper is organized as follows. In the first part, we \VEAN F=\/{eA[:ceEandf e F}
recall the usual definitions and properties of fixpoint ex-
pressions interpreted in complete lattices with monotonic
functions as presented in [2].

In the second part we define generic automata in this gen-
eral setting. We examine to what extent this notionis relate

Definition 1.2 Over a signatureX and a sett’ of vari-
able symbols disjoint front, we inductively define the set

¥, (&) of fixpoint formulas simply called formulas in the
sequel by the following rules :

to more classical notions of automata. 1. X is a formula for any variableX € X,
In the third part, we state the reduction theorem and give
several applications such as the determinization thedrem 2. f(@1,- -+, a,(y)) is a formula for anyf € ¥ and any
for w-automata and Muller and Schupp's simulation theo- formulaay, ..., ay),
rem.

3. vX.candpX.a are formulas for anyX' € X and any

In the fourth part, we extend the notion of tableau defined formulac

for the modal mu-calculus [15, 5] to more general fixpoint

expressions. This enable us to prove that generic automatdVe say a formula € X,(.t) is aclosed formulavhen any

capture the expressive power of fixpoint calculi and, in the variable X occurring in« always occurs in a subformula

end, to prove the reduction theorem. of the formo X .t with o = p or v. The set of all closed
All through the paper, we illustrate most definitions and formulas oft,, (X') is denoted by ,,.

theorems with a slightly modified version of Park's fixpoint

calculus over languages of infinite words [13]. In the sequel, we also denote by.t) the set of all for-
mulas built without fixpoint construction.

Acknowledgement Definition 1.3 (Formula semantics) Given a fixpoint al-
gebra M, given a valuation of variable¥ : ¥ — M,
This work started during a pleasant meeting of the any formulax is interpreted as an elemef]? of M in-
French-Polish fi-calculus group” at LaBRI (Bordeaux) in  ductively defined by :
June 1996. | greatly thank all participants for their rensark o
criticism and support. 1 [X]y = V(X),

2. [f(ox, - o)V = S (lea¥ - LI,

1. Preliminaries
3. [vX.o]¥ = \/{e EM:e< [[oz]]{y[e/x]},
In this paper, we caffunctional signatureor signature
for short, a sek of function symbols equipped with an arity 4. [uX.o]¥ = /\ {e EM:e> [[a]]{‘f[e/x]},
functionp : X — IV.
whereV [e/X] denotes the valuation defined for any vari-
Definition 1.1 Over a signatureX a fixpoint algebrais ableY € X by :

a complete latticd M, Vs, Apr) with bottom and top el-
ements denoted by, and T, together with, for any { Ve/X](Y) = V(Y) whenY # X
symbolf € ¥, a monotonic increasing functiofiy, Vie/X](X) =e.

Mr) — M called theinterpretation off in M. _
By the Knaster-Tarski theorenfuX.a]# and [v X.a]¥

As usual, for any sefz C M we will denote bva are respectively the least and greatest fixpoints of the map-
(resp. A, ) the least upper bound (resp. the greatest Ping from/ to M defined bye + [a]y./ x1-
lower bound) of the set. In particular,[uX. X]¥ = 1y and[vX. X]¥ = Ty

In the sequelwe will always assume, without increase of

1the proof of the reduction theorem relies on determinizasio this .
paper can hardly be considered as a new proof of the detezatiim the- expressive power, that both constant symboland L be-

orem. long toX.



Definition 1.4 GivencC a class of structures, we say formu-
las «; and«, are semantically equivalent w.r.&, which is
written «; ~¢ a5 when, for any fixpoint algebras! € C,
any valuation of variable¥” : X — M, [o]¥ = [aq]¥.

When this equivalence holds for arbitrary fixpoint algebras
and arbitrary valuations the subscript will be omitted.

In this framework, dixpoint calculuscan be seen as a
pair (X, C) for ¥ a functional signature an€ia class oft-
fixpoint algebras.

Example 1.5 Given an alphabeti = {a;,...,a,}, given

a signatureX; = {1, T,A,V, 51} with p(S1) = n, we
define the (continuous) fixpoint algebra of languages of in-
finite words (v-languages for short) on the alphabétas

M = (P(A¥),u,n)with,forany L+, ..., L, € P(4AY),

U ClZ'.LZ'

1€[1,n]

SIM(Lla"'aLn)

wherea.L = {a.w: w € L}.
In this fixpoint algebra, one can check that formula

a=vX(pY(h.XVaY))

denotes the set of all infinite words on the alphageth }
with infinitely manyb. An equivalent regular expression for
this language i$a*5)~.

The following result, from Knaster and Tarski, is a fun-
damental tool to investigate fixpoint calculus.

Proposition 1.6 (Transfinite approximation) For any fix-
point algebral/, there exists an ordinat; such that for
any formulan(X) :

1 vX.a(X) ¥ = [v™X.oX)]¥,
2. [uX.a(X) = [ X.a ()T,
with semantics of".«(X) and p”.a(X) inductively de-
fined by :
1. [[I/OX.t]]Jy =T
(resp.[p° X .4]¥ = 1),
2. [v XM = [t X T/ X
(resp. [+ X 4] = [t X.T/ XTI,
3. and, for any limit ordinalr,
xR = A v X%
7T

and ,
[ X1 = \/ 7 X

7T

The rest of the section illustrates one simple use of trans-
finite approximation.

Definition 1.7 We say a variableX in formula a(X) is
guardedwith respect to function symbgl when every oc-
currence ofX in «(X) is in the scope of function symbols
g distinct fromf, i.e. it always occurs in subformulas of the
formg(ay, -, a,q) withg # f.

A formulac is said guarded w.r.tf when, for any sub-
formula of« of the forme X .« (X), variable X in a; (X)
is guarded w.r.t.f.

Lemma 1.8 (Guardedness)For any class of fixpoint alge-
bra C, any formula ofZ, (') is equivalent w.r.t.C to a
formula guarded w.r.ty.

Proof: One can easily prove, using transfinite approxima-
tions, that, for any formula(X), any variablé™ # X, the
following equivalences hold :

vX(XValX)) =~ T (1)
pX (X Va(X)) =~ pX.aX) (2)

and providedX # Y with ¢ denotingu or v
cX.(YVa(X)) ~ YVeX.a(XVY) 3)

With these equivalences, for any formula one can eas-
ily build by induction on the structure of an equivalent
formulac’ guarded w.r.t. the join operator. ad

Remark: Dual arguments hold fox henceforth one may
always assume that all formulas one consider are guarded
w.r.t. bothA andv. Technically, we do not need such a
restriction. It may however help intuition as shown below.

2. Generic automata

Given a functional signatur&l, let Fx be the set of
(syntactic) functions one can build from signatiteand
composition. More precisely, using lambda notation, we
define 7y, as the set of all classes of functions (equiva-
lent under consistent renaming of bound variables) of the
formG = AX;. - AX,.a(Xy, -, X,,) for any formula
a(Xy, -+, X,) € Z(X) built without fixpoint construction
with all free variables ofr taken amongX;, X-, ..., X,.

Notions of arity and interpretation are extended®oin
a straightforward way. In the sequel, in order to avoid heavy
notation, setFy, is considered as a functional signature and
the previous notation applies. In particular, for any fiumct
G € Fx (seen as a functional symbol), any fixpoint algebra
M over signaturé:, we denote by, the interpretation of
G in M. We also denote by the particular symbol ofs;
which is always interpreted as the identity.



Definition 2.1 A generic automatopl over signaturex is
atupled = (Q, qo, 9, 7, ) with :

1. afinite set of stateg,

2. aninitial statey,

3. atransition functiod : Q@ — Q*,
4. atype functiom : Q — Fx,

5. anindex functiof® : @Q — IV,

such that, for any state € (), the length o6 (¢) equals the
arity of the functional type (¢) € Fx of statey.

Definition 2.2 Given a generic automatad, given a fix-
point algebra for signatureX, given a point, € M,
a run of automatad on ¢, is a (possibly infinite) tred”
labeled by pairge, ¢) € M x @ such that:

1. the rootn, of treeT is labeled by(eg, o),

2. from any node: of tree T labeled by some pai, ¢)
with e # L 3; one of the following rules applies :

(@) \/-move: there exists a subsdt; : i € T} of
M such that = \/;.; ¢; and noden has exactly
one som; labeled by pair(e;, ¢) for each index
1 €7,

(b) G-move: whenr(q) = G € Fsx, given
k = p(G) the arity of G, notinggy. - -.qx; =
d(¢) the sequence of successorg of
(1) if & > 0 then there existy, ...,ex € M such
thate = Gar(ey, - - -, ex) and noden has exactly
k sonsny, ..., ng respectively labeled by pairs
(62', Qi) fori e [1, .- ~,]<7],

(2) if k = 0 thene <3y Gy,

3. on any infinite path of tre@', infinitely manyG-moves
occur.

We say that ruff' is anaccepting rurwhen, for any infi-
nite pathng, n1, ... of nodes of" labeled by pairgeg, o),
(e1,q1), ... , the smallest indef¢(q;) which appears in-

finitely often on this path is even (such a condition is called
a parity or a chain condition [9]). In this case, we say that

e is accepted byl and we denote by s (A) the set of ele-
ments of\/ accepted by.

Remark: When( = ¢ (i.e. the identity symbol) &'-move
can be seen as firing antransition in classical automata
theory. Indeed, when such a move occurs from a node

Proposition 2.3 For any automatond there exists an au-
tomaton.4; with no states of type equivalent to.A
in the following sense : for any fixpoint algebrd/,
Ly (A) = La(Ay).

Proof: Given an automatonl = (@, 0,9, 7,2}, for any
stateq € @ of typee, lets, = gq.91.--- be the longest
(possibly infinite but unique) sequence of states such that,
q = qo and for any relevant, 6(¢;) = ¢;+1 With 7(¢;) = ¢,

i.e. inthe cases;, = ¢o.---.¢, thend(g;) # € only when

i = n. AutomatonA, is built from automatond replacing
any statey € () of type ¢ by the sequence,, extending
parity, type and successor functions to these sequences as
follows :

1. for any finite sequence, = qo. . . .. Gns
Qi (sq) = min{Q(qi) 11 €[0,---,n]}
with 71 (sq) = 7(¢n) andd (sq) = 6(gn),
2. for any infinite sequence, = ¢o.¢1.- - -,
Q1 (sq) = min{Q(q;) :i € IN}
with 71 (sq) = T when(s,) is even,r(sy) = L
otherwise and(¢) equals to the empty word.

From the construction afl; one can easily check that, for
any fixpoint algebral!, Ly (A) = Lar (A1), accepting
runs on automatos immediately inducing accepting runs
on automatord; and vice versa. O

(b(ab)*, (b,0))

Figure 1. An automaton and a run.

Example 2.4 In Figure 1 above, an automaton, which ac-
cepts any subset ¢f*6)“ on the algebra ob-languages,
illustrates the previous definitions. In this figure, anytesta
q is labeled by its type and its parity index, i.e. pair
((q),(q)) where, as in Example 1.5, functiarand resp.

labeled by(e, ¢) then node: has exactly one son labeled by functions stand for the mapping — «.L and resp. the
(e,6(q)), i.e. no further reading of the input is made during mappingZ — b.L. The initial state is labeled bv, 0). In

the move. The next proposition shows, as in the usual caseaddition to the automaton on the left, an accepting run on
that these-states are useless in terms of expressive power. languagd ab) is given on the right.



Remark: The previous example illustrates two major as-
pects of generic automata.

(1) In the classical definition of non deterministic autoaat
firing a transition is implicitly preceded by the choice oéth
transition to fire; union of languages is implicitly modeli

in T from a noden labeled by( £, ¢,,) with successors la-
beled by(f;, ¢;) for any: € Z, then a\/-move occurs also
in T, from noden labeled by(e,,, ¢,) with successors la-
beled by(f; Aey, ¢;) fori € Z. Here, continuity is required
since the definition of runs implies, = \/ieI en A f; with

by non determinism. In the present approach these two suce,, <us V;.7 fi- The construction ends in any nogdesuch

cessive steps become explicit; non determinism is exjylicit
modeled by states of type One reason for this trick is that
the joint operatok/ can then be treated like any other oper-
ator. In particular, it helps to realize that determiniaatof

w-automaton is a particular instance of Muller and Schupp

simulation (see Example 3.3 of next section).

(2) In this example n§/-move occurs; none is needed. This
is not the case in general. For instance, in any accepting ru
of the previous automaton over langudgéb)* a\/-move
must occur (otherwise, by Koenig's Lemma, there would
exist an accepting run ovet”).

Proposition 2.5 For any automaton4, any fixpoint alge-
bra M:

1. Ly (A) is closed undev,
2. \/LM(.A) c LM(.A)

Proof: Obvious, applying 8/-move at the beginning of the
accepting run one intends to build. O

The following definition and theorem give a straightfor-
ward condition forl s (.A) to be downward closed.

Definition 2.6 We say thelecomposability propertiolds
on a fixpoint algebralM over a signatureX: when, for
any f € X with p(f) # 0, foranyd € M, anye;,
s eppy € Mifd < far(er, -, ey5)) then there ex-
istsdy, ..., d,(;y € M such that, for anyi, d; < e¢;
andd = far(dy,---,d,s)) (equivalently the inverse image
f37-(I) of any ideall of M is an ideal ofM?(f).).

Remark: In particular, when decomposability holds &h
forany f € X with p(f) # 0 the functionfy, is strict. Note
that in the modaj:-calculus the universal modality —
[a] X is not strict. In [5], to translate formulas into automata,
an equivalent signature of strict functions was introduoced
remedy this.

Theorem 2.7 For any automator, any continuous alge-
bra M where decomposability holds for any elemenibf
L (A) is downward closed, i.e. foranyand f € M, if
e <y fwith f € Ly (A) thene € Ly (A).

Proof: Givene andf € M with e < f and an accepting run
T} of automaton4 on f one can build fron¥’, by induc-
tion on the depth of nodes, an accepting fumf automaton

thate,, = L. ]

Remark: In particular, when/ is an atomic boolean alge-
bra, for any automatal where decomposability holds, the
languagel s (A) is characterized by its projection on the
atoms, i.e. the set of all atoms acceptedhyWe almost
recover here the usual settings of automata theory where

fficceptance is only defined on atoms, e.g. words for usual

automata.

Lemma 4.10 and Lemma 4.12 below show the equiva-
lence, in terms of expressive power, of generic automata
and fixpoint expression interpreted in complete lattices.

Remark: Strictly speaking, we need one more restriction
in our definition of automata to recover, for instance over
words, usual definitions. Namely, there should be no loops
from states of typey, i.e. states modeling non determin-
ism, since such loops cannot occur with usual definitions
of automata where non determinism is modeled implicitly
in the definition of the transition function. In terms of fix-
point expression such a restriction is captured by the notio
of guardedness w.r.t. the join operator Lemma 1.8 and
Lemma 4.10 show that, indeed, such a restriction has no
effect in terms of expressive power.

3. The reduction theorem

In this section we present the reduction theorem and give
several applications. We shall use bold-math letters to de-
note tuples (such as denoting(z1, z2, . . ., Zn)).

Definition 3.1 Given a class of fixpoint algebr&s we say
that the meet operatox commuteswith X on C when, for
any finite multised f; };¢[1,,) Of functional symbols of —
{A} there exists a functiof € Fx built withoutthe symbol
A such that an equation of the form:

1€[1,n]
holds onC, where :

1. x;s are vectors of distinct variables of the appropriate
length,

2. y;s are vectors of distinct variables taken among those
appearing inz;s,

Aone. Indeed, decomposability ensures easy construction 3. Ay;s denote the g.l.b. applied to the set of all vari-

steps for-moves and7-moves. When §/-move is applied

ables occurring iny; ..



In the sequel, such an equation, oriented from left to Remark: We do not obtain here a new proof of the deter-
right, is called the? commutation ruleassociated with  minization theorem since we use this result in the proof of
{fi}iep n)- In particular, whenn = 1, we always consider  the reduction theorem.

the degenerated commutationr = .
9 Wiee) = J(x) Example 3.4 For the binary case things are similar. Let

Theorem 3.2 (Reduction) When the meet operatorcom- X2 = {T, L, V, A, S»} be a functional signature with the
mutes withe onC any closed fixpoint formula is equiva-  usual arity for usual symbols and arity. for symbol ..
lent overC to a formulaa built without the symbah. Given A = {ai,---,a,} an alphabet, let/ be theX,-
fixpoint algebra defined a&/ = (P({l,r}* — A),U,N)
Proof: As described in next part, one can build a regular for {/,»}* — A the set of all total functions which map any
tableau fora then, applying Lemma 4.10, translate it into finite word over the alphabet, »} to a letter inA, inter-

an equivalent generic automaton on the signafure {A} pretings- by :
which itself, applying Lemma 4.12, can be translated into
an equivalent fixpoint formula on the same signature Sop(Li, Lo,y Lan—1, Lan) = U ai(Lai—1, La;)

As an illustration, we give, in the rest of this section, ieftn]
some applications of this reduction theorem. noting for anyZ; and L, € P({l,r}* — A) and any

L a € A,
Example 3.3 Continuing example 1.5 af-languages, we
have : a(Li,La) = {f:3fi€ L1, fa € La, fle) = a
Observation 3.3.1 (Unary simulation) Any fixpoint for- AVw € {l,r}", fl.w) = fi(w)
mulaa € 31, is equivalent ovew-languages to a fixpoint Af(raw) = fa(w)}
formulaa without conjunction. Observation 3.4.1 (Binary simulation) Any formula
Proof: It is aimost immediate that fas-languagesa ful- a € Yy, is equivalent to a formulax built without
fills the hypothesis of theorem 3.2, e.g. conjunction symbols.
: i O
S1(x) A Si(y) = Si (2 Ay) Proof: As before theorem 3.2 applies.

h A o denot A A h _ This result is a reformulation, in terms of fixpoint, of
wherez A\ y denotes(zy A g1, -+, 2n A yn) Whenz = Muller and Schupp's simulation theorem [10]. Translated
(z1, -, zp) andy = (y1, -, yn)- m

back into automata, it immediately shows that non alter-

nating parity automata on the binary tree are closed under
complementation: an essential step in Rabin's proof of the
decidability of S2S [14].

Observation 3.3.2 (Determinization) Any fixpoint for-
mulaa € ¥y, built without symbolA is equivalent over
w-languages to a fixpoint formula built without eithera

orV. Remark: Another application is Walukiewicz's work on
tree-shaped structures [17]. The functional signatliie
Proof: Here again, over signatut; — {A}, functionv given by all possibldasic formulass defined in this ap-
fulfills the hypothesis of the dual version of Theorem 3.2, proach, the interpretation of these function symbols being
e.g. the underlying model theoretical interpretation. Chegkin
Si(x) vV Si(y) = Si(zVy) that the symbolA commutes in the sense above with the

with a similar notation. Hence, starting with all formulas Signature: is quite obvious and thus, the reduction theorem
of £y, built without A, the reduction theorem applies in its applies. In the case of tree-shaped structures this sdiees t
dual version giving us the resul. O difficult part of the proofs. In particular, in the case ofese
(of arbitrary degrees) the reduction theorem enables us to
In other words, applying the theorem twice, we have obtain the (more restrictive) automata characterizatsedu

proved that any formular ¢ ¥;, is equivalent over- in [6] to characterize the expressive power of the modal mu-
languages to a formulka built without either the symboh calculus.
or the symbol.

As a consequence, since the class of languages definablg, Tableaus for fixpoint formulas
by fixpoint expressions over the signatite is obviously

closed under complement, union and intersection we obtain | this section we extend the notion of tableau used for
the usual closure properties of deterministic languages.  instance in [5] in order to prove the automata characteriza-

2we assume that one such rule is selected for each multisgtrifcs tion stated in_ Lemmas 4.12 and 4.10 an(_j the redUCtion the-
of & — {A} orem stated in Theorem 3.2. We assufris a given class




of continuous fixpoint algebras over the signattireshere
A commutes witlt (see Definition 3.1).

Remark: To translate formulas into automata and au-

tomata into formulas, the hypothesis can be weakened.

More precisely, all results below still hold dropping thexeo
tinuity hypothesis and renaming in X into some fresh
symbol name in order to avoid all the machinery needed
to prove the reduction theorem. In this caSezan be any
class of fixpoint algebra on signature

Definition 4.1 We call a formulavell namedff every vari-
able is bound at most once in the formula and free variables
are distinct from bound variables. For a variablé bound
in a well named formula there exists a unique sub-formula
of « of the forme X.3(X), from now on called theinding
definition of X' in « and denoted b, (X).

We call X a u-variablewhens = u, otherwise we call
X av-variable

Remark: Every formula is equivalent to a well-named

one which can be obtained by some consistent renaming of

bound variables.

Definition 4.2 Given a formulaa we define thedepen-
dency orderover the bound variables af, denoted<,,
as the least partial order relation such thatif occurs free
inDy(Y) thenX <, V.

Remark: For instance, ifoe = pX.(vY.f(Y)) V ¢(X)
then variablesX andY" are incomparable ir,, ordering.
This partial order leads to the alternation depth defined by
Niwinski [12], a notion which, in the context of the modal
mu-calculus, has been shown to lead to an infinite hierar-
chy [3].

Definition 4.3 (Tableaus) Given a closed well-name fix-
point formulax a tableau for a formulav is a tuple

g = <Qa qoa(sa L>

with {@, g0, d) the graph of a generic automaton arid :
N — P(X,(X)) a labeling function, such that the initial
stategy is labeled by (¢0) = {a} and, for any statg € @
withd(g) = r1.79. - -1,

is an instance of one of the following transition rules :

e A-rule:
{Ozl, Ozz} U F

(A-rule) (o Aaa] UT

e Fixpointrule :

{a(X)}Ul
{eX.a1(X)}UT

(c-rule)

withe = g orv
Regeneration rule :

{faa(X)}ul

(reg-rule) TXTUT

providedD, (X) = 0 X.a1(X),

Functional rules :

18, }ien m]
{f1(0t1), fz(az), T fn(an)}

providedf; (#1)A- - Afp(®n) = G(Ayi, s AUm)

is the commutation rule associated with multiset
{fitien n) (see definition 3.1) and, considering the
mapping that maps any variable of a vectsr to
the corresponding formula in the corresponding vec-
tor «;, vectors of formulag ;s are built from vectors
of variabley ;s applying this mapping.

(G-rule)

XY (h.X vaY)}

J/ o-rule
WY (b.X VaY)}
o-rule
{b.XVaY}
V-rule
{b.X} {a.Y}
J/ b-rule J/ a-rule
reg-rule X} Y} reg-rule
Figure 2. A tableau for « without A.

Example 4.4 As an illustration, a tableau for formula

a = vX.(uY.(b.X VaY)) (already presented in Exam-
ple 1.5) is given in Figure 2 above. Since no symhaic-
curs ina, the states of the tableau are labeled by singletons.

Remark: For technical reasons, it is more convenient to
allow infinite graphs as well. Notice however that for any
closed formulax, any tablealg = {Q, q0, 9, L), the set
L(®) is finite, i.e. only finitely many labels can be used.
Henceforth, for any formula, there exists at least one reg-
ular tableau for formula and, henceforth, there exists also
one finite tableau fot:.



Definition 4.5 Given a tablea; = (@, q0, 4, L) for for-
mula«, aninfinite pathon g is an infinite sequence

PIQOana"'

of states of) such that, for any indek ¢;.+; occurs ind(g; ).

For any infinite pathP on G, a infinite traceon P is a
functiontr : IV — X,(X) such that, for any € IV,
tr(¢) € L(¢;) andtr (i + 1) is related totr (¢) according to
one of the following rules.

1. When the fixpoint rule or regeneration rule is applied
from statey; to stateg; 4, thentr (i + 1) equalstr (¢)
possibly modified by the application of the rule,

2. When the\-rule is applied from state; to ¢; 1 then:

(a) if this application does not modifir (i) then
tr(i) =tr(i +1),

(b) otherwisetr (¢) a1 A as with oy and
ay € L(gi4+1) thentr (i + 1) equalsa; or oz,

3. When the7-rule is applied from state; to stateg;
with commutation rule

Flm) A Afa(ma) =GNy \ym)

with tr(i) = fi(e;) for somei € [1,m] and
L(gi+1) = {B;} for somej € [1,n] thentr (i + 1)
equals to thekth component of3; for somek such
that thekth variable Ofyj occurs inx;.

Proposition 4.6 On any infinite patl? of G, for any infi-
nite tracetr € 7r(P) there exists a variablé which is
the smallest variable regenerated infinitely oftention

We say that tracér is a pu-tracewhen this smallest vari-
able is ap-variable (see Definition 4.1), otherwise, we say
that tracetr is av-trace

Definition 4.7 Given a tablea@ = (Q, qo, ¢, L) for a for-
mula«a we define anarking M of the tableau; (with re-
spect to an algebra/) by e € M as a run in the sense
of Definition 2.2 on the underlying graph of automaton
(@, 90,0, ) taking, for anyg € @, 7(¢) = G when the
G-rule applies on state in the construction off, 7(¢) = ¢
otherwise.

Remark: Notice here that any finite path of a marking
either ends in a node labeléd 57, ¢) for arbitrary state or
ends in a node labeled Hy, ¢) with e <;; far and some
constant functional symbgl € X such that’.(¢) = {f}.

Definition 4.8 A markingM = {4, L) is consistenwhen
for any infinite path of\M labeled by

(e,q0), (e1,q1), (e2,q2) - - -

allinfinite traces on the tableau patf, ¢1, . .. arev-traces.

Theorem 4.9 For any closed formulax, any continuous
fixed pointalgebra/ ¢ ¢, for any tableaw for a, [a]™ is
the greatest element @f which admits a consistent mark-
ing of tableauy.

Proof: We first build by induction a consistent marking
of G. More precisely, for any node of the marking we
build a closed formulay,, such thatr is labeled by pair
([en]™, ¢r) for some tableau statewith formulaa,, ob-
tained from formulg Z(g¢) inductively replacing, in an ap-
propriate order to obtain a closed formula :

e any free v-variable X by its binding definition
vX.Dy(X),

e any freep-variableY by some transfinite approxima-
tion ™ X. D, (X) of the fixpoint subformula of bind-
ing X.

The basic idea of the induction step is to apply to formula
ay, the tableau rule applied in stagg in order to build for-
mulasa,,, one for each successor of noden.

1. When theG-rule is applied in state,, then aG-move
occurs. Giverry, ..., r; thek successors of statg in
G with k& = p((), by the induction hypothesis and ap-
plying the appropriate commutation rule, formulg
is equivalent to a formula of/(31, - - -, 3) with, for
anyi € [1,k] formulag; obtained from the formula
A L(r;) as above and we label; theith successor of
noden by pair([31Y, ).

2. When thea-rule is applied in state,, then anc-move
occurs on the marking we build with the unique suc-
cessor of: and we puty,, = «a,.

3. When the fixpoint rule is applied in staig on a for-
mulacX.D,(X) € L(g,) with ¢ = p orv thena,, is
of the form(¢X.51 (X)) A 82 and node: has exactly
one sonm labeled by:

@) am = A[vX.51(X)/X] A B2 wheno = v,

(b) [0 759 61[/,LTX61(X)/X] A 62/)(] when
o = u, wherer is the smallest ordinal such that
[[O‘n]]M = [[am]]M-

4. When the regeneration rule applies in stateon
X € L(gy) then, since rule 3 above has necessar-
ily been applied before reaching such a state, one of
the following conditions is satisfied :

(@) a, is of the form (vX.5:(X)) A B2 thenn
has exactly one sonn labeled by a,,

BilvX.Bi(z)/ X] A Ba,



(b) ay, is of the form(u” X.51 (X)) A B2 for some
ordinal =: in the caser is a successor ordinal
7/ 4+ 1 noden has exactly one som labeled by
am = B[ X.B1(X)/X] A B, otherwiser is
a limit ordinal hence a/-move occurs and, for
each ordinal’ < 7, noden as one somn.. la-
beled bys; [1” X .51 /X] A B»; in this last case,
continuity ensures such a move is valid.

On the marking obtained there cannot be an infinite
path with ag-trace. Otherwise on this trace, after some

point, the smallest variable ever regenerated would be a

p-variable. Givermy, ns, ..., the sequence of nodes, after
this particular point, where a regeneration gf occurs,
one can check that for any € IV, «,, is of the form
WX 51 (X) A B2 with t; > 741 which is absurd since
ordinals are well-founded.

Conversely, we assume that some elemgne M ad-
mits a consistent marking of tablegwith ¢, £ []* and
show that this leads to a contradiction.

For this, we first show, by induction, that there ex-
ists an infinite path on\ labeled by a sequence of pairs
{(es, i) }iev such that, denoting b the underlying infi-
nite tableau path, ne-trace occurs on the pa#, and there
exists av-tracetr on’P such that, for any statg occurring
on?P, e; £ [a;]* for some closed formula; obtained
from formulatr (/) with a construction dual from the one
above.

The initial induction step for this construction comes
from the rootn, of the marking labeled by pairg, ¢o)
where we take; as the initial node of the path we build
and we putr (0) = ag = «.

Let us assume now we have build this path\thup to
noden; labeled by(e;, ¢;) with e; £ [a;]*. The construc-
tion proceeds then according to one of the following rules.

1. When a/-move occurs in node;: given(f;,r;);es
the label of the successor nodes of nagene have

e=\/ fi &[]

Jje€T

Hence there exists at least ofiec 7 such that
ej £ [o;]™ and we put; 1 = f; with ¢;+1 = ¢; and
aiy1 = «y, taking forn;; the corresponding succes-
sor ofn;.

2. When an--move occurs in node;:

(a) if thea-ruleis not applied from statg or if itis
applied on a formula distinct fromn (¢): the con-
struction ofr; 11, ¢;41, tr (i + 1) anda; 41 is ob-

(b) if the A-rule is applied from state; on formula
tr (¢) of the form 5, A s: taking for ¢;1; the
unique successor of stagg, formulac; is, by
induction hypothesis, of the forgf A 35 with &)
andb, related to3; andg,; in other words

e £ [ai]™ =181 A BTV

hence there existy € {1,2} such that
e; £ [B]1" and we pute;ys = e; with
tr(i+1) = Bjanda;41 = ;.

3. Otherwise aG-rule is applied onn;: given

L(ni) = {fe(By) : k € [1,m]} and applying the
induction hypothesis we have £ [o;]" with

a; = fp(ﬁg;)

for somep € [1,m] and some vector of formulas;,
built from 3, as above. From definition @f-moves
we also have

e; = Gul(dy, -+, dy)

whered;s occur on the labels of the sons of nade
Given then the commutation rule which applies in this
node:

/\fk(wk) = G(/\yl""’/\yn)

we instantiate vectos; above by3, whenk = p
and by (Tas, -+, Ta) otherwise, and we obtain an
equivalence of the form

LBy Nd =y G\BY, -, \B)

From the fact that; £ [f,(8,)]* we immediately
deduce

€ = GM(dl’ o ’dn) f [[G(/\Bllla o a/\ﬁ::)]]M

from which we conclude there exists ahe [1, n] and

then one formulg” occurring in3;’ (and by construc-
tion occurring in3; ) such that/;, £ [51*. From this

we take forn;y; thelth successor of node; putting

ei+1 = dj anda; 4, = B and we take fotr (i + 1) the

corresponding formula i, ; notice here thaB, can

indeed be chosen distinct froff s, - - -, T as) Other-

wise we immediately conclude £ T 3r which is ab-
surd.

Such a construction is infinite. Otherwise we end in a node

vious (perhaps applying a rule dual from Rule 3 n; of M which is a leaf and then, sinc& is a mark-

or Rule 4 above in order to build; ;1 ).

ing, eithere; = 1 which contradicte; £ [o]™ or



A L(n;) is a closed formula with, by definitions of mark- (a) q¢ belongs to the unique acyclic path from the

ings,e; < [AL(n:)]M < [e;]¥ which, again, contradicts stateg, to the statey,
the induction hypothesis. (b) andQ(qc) < Q(q).
Moreover, nou-trace occurs on this infinite path favt -
is a consistent marking. Hence tracds av-trace. Figure 3 below illustrates the notion of tree-shaped au-

The last argument that leads to a contradiction is simi- tomata.
lar to the one above. Considering the smallestariable

regenerated infinitely often on trade we show the se- l

guence of ordinals associated to these regenerations is / \

strictly decreasing after some point which contradicts the

well-foundedness of ordinals. ] 2 2
Let us now prove the two fundamental lemmas which /

conclude our proofs.

Oo

wo
—_

Lemma 4.10 For any closed formula on signature:, any
regular tableaug for «, there exists a generic automaton
Ag on signatureZ — {A} such that, for any algebra/ € C,
anye € M, there exists a consistent marking®by e iff Figure 3. A tree-shaped automaton.
automatondg acceptse.

Proof: Let G, be the infinite unwinding of tableag. From Remark: Obviously: for any generic automato there
automata theory ow-languages, applying complementa- exists an automatod, tree-shaped with back edges such
tion and determinization, one can show that there existsthat, for any algebra/, Ly, (A) = Ly (A;1). One possible

a deterministic and complete word automaton with parity construction is first to unwind automatgehinto an infinite
condition which read any path ¢f and accepts only an in-  tree and then replace any infinite path by a cycle, building
finite path with nogu-trace on it. Running this automaton an edge back towards ancestors as soon as possible provided
from the initial statey, of G on all paths, we obtain a unique condition 2b is not violated. One can check such a turn back
labeling of all states of;, by states of the automaton. Then can always occur at a depth smaller than twice the depth of
we define the parity indef(q) of any state; of G; asthe  automatonA,.

parity index of the corresponding state of the word automa-

ton, and we define the typeg(q) of stateq asG when the ~ Lemma4.12 For any generic automatod there exists a
G-rule applies in statg, ase otherwise. By construction, formulac 4 such that, for any algebra/ € C,

the resulting tree is the infinite unwinding of a finite generi v

automaton with the word automaton translating, in any in- [o]™ = \/ Ly (A)

finite path of any marking or run, any consistency require-
ment into a parity requirement and vice versa. Moreover
since the(i-rule always applies in tableagi with function

G built without symbolA, automatonAg is, indeed, built
on signaturel — {A}. O

Before stating and proving the last lemma, we intro- 1. if 7(¢) = e with §(¢) = r then we put
duce the notion of tree-shaped automaton which, intuitjvel
characterizes generic automata which, roughly speaking, d ag = 0qXq-Bqr
rectly corresponds to fixpoint formulas. One can check that, ) _
in general, generic automata can be considered as sets of 2- if 7(¢) = G withd(q) = r1.---.ryg) then we put
fixpoint equations instead of single formulas. g = 04Xy GBorrre Bors)

Proof: Starting from a tree-shaped automatdn equiva-
"lent to automatond as above, for each stageof A, let
formula«, be built by induction from the (pseudo) leaves
of A, to the rooty, as follows:

Definition 4.11 A generic automatod is tree-shaped with _ _ o _
back-edgesvhen: where, in both case$.X, },c¢ is a set of distinct variables

from X, o, = v when{(q¢) is even otherwise, = x and
1. for any state; of .4 there exits a unique acyclic path 3, . is given by one of the following rules:

from the initial statey, to stateg, . . L
o if stater occurs on the unique path from initial state

2. for any cycle in the graph induced by, there exists qo to statey, i.e. the edge from stateto stater is a
a unique stat@ such that, for any statgin cycleC, back-edge, thefd, , = X,



o otherwises, , = «,.

From this construction, taking4 = «g,, one can easily
build a tableay, for « equivalent ta4; (henceforth tod)
in the sense that, for any algehta € C, anye € M, there
exists a consistent marking of tableguy by e iff there is a

5. Conclusion

) ] ) 12
In this paper, we have shown that semantics of fixpoint
calculi in arbitrary complete lattices can be captured by [13]

tableau or automaton techniques. With the continuity hy-

pothesis, we have shown that a reduction theorem holds[14]

generalizing fundamental results in automata theory.

Our purpose here is not to give yet more proofs of well- [15

known results but, indeed, providing an automaton and

tableau semantics to (almost) arbitrary fixpoint calcwdi, t [16]

participate in the establishment of a general theory of fix-
point calculi and, to some extent, a better understanding of
fixpoint logics.

Yet a general theory of fixpoint calculi can still be devel-
oped. Indeed, many other results or techniques have been
established or investigated for some fixpoint calculi, inpa
ticular, the modal mu-calculus. Let us recall for instarse t
completeness result obtained by Walukiewicz [16], the in-
finiteness of the alternation depth hierarchy proved by Brad
field [3] and many other results on the model checking prob-
lem, e.g. the best algorithm known today [8] or a proof sys-
tems for process algebra [1]. Since these works often use
tableau or automata techniques we can hope the material
presented here will help in generalizing them.
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