
Automata for the modal �-calculus and relatedresultsDavid Janin Igor WalukiewiczLaBRI1 BRICS2;3U.E.R. de Math�ematiques et d'InformatiqueUniversit�e de Bordeaux I351, Cours de la Lib�eration,FR-33405 Talence Cedex, Francee-mail: janin@labri.u-bordeaux.fr Department of Computer ScienceUniversity of AarhusNy MunkegadeDK-8000 Aarhus C, Denmarke-mail: igw@daimi.aau.dkAbstract. The propositional �-calculus as introduced by Kozen in [4] isconsidered. The notion of disjunctive formula is de�ned and it is shownthat every formula is semantically equivalent to a disjunctive formula.For these formulas many di�culties encountered in the general case maybe avoided. For instance, satis�ability checking is linear for disjunctiveformulas. This kind of formula gives rise to a new notion of �nite au-tomaton which characterizes the expressive power of the �-calculus overall transition systems.1 IntroductionWe consider the propositional �-calculus as introduced by Kozen [4]. Subsequentresearch showed that the �-calculus is an interesting logic when speci�cationand veri�cation is concerned. It is an expressive logic; on binary trees it is asexpressive as the monadic second order logic of two successors [8, 3]. On the otherhand, if computational complexity is concerned, the propositional �-calculusis not much more di�cult than classical propositional logic as its decidabilityproblem is EXPTIME complete. Because of these and other features the logic isconsidered to be one of the most interesting logics of programs.The two main results we present here are:� De�nition of the class of disjunctive formulas and the proof that every for-mula is equivalent to a disjunctive formula.� Characterization of the �-calculus by means of a new kind of automata ontransition systems.The methods developed here allow us also to obtain other know results as corol-laries. In particular we show that our results subsume the results of Niwinskiand Emerson and Jutla [8, 3]. We obtain yet another proof of Rabin's comple-mentation lemma.It was already discovered by Kozen in [4] that the interplay of all the connec-tives of the �-calculus raises some challenging di�culties. Here we try to analyzethese di�culties. Our �rst step is to give alternative \operational" semanticsof the �-calculus formulas. We look at a formula as an automaton-like devicechecking a property of the unwinding of a model from a given state.1 Laboratoire Bordelais de Recherche en Informatique2 Basic Research in Computer Science,Centre of the Danish National Research Foundation.3 On leave from: Institute of Informatics, Warsaw University, Banacha 2,02-097 Warsaw, POLAND

If we are to check that hai� holds, we choose an edge from this state labeledby a leading to a state where � holds. If we are to check that �_� holds, we choose(nondeterministically) one of the disjuncts. If we are to check �X:�(X), when � is� or �, we try the equivalent formula �(�X:�(X)). The distinction between least(�) or greatest (�) �xed points is achieved using suitable in�nitary acceptanceconditions. When we check �^ � we must check that this state satis�es both �and �.While disjunctions act like nondeterministic choices, conjunctions act ratherlike universal branching of alternating automata. Such an alternating behaviorof conjunctions is the source of many di�culties.From automata theory we know that alternating automata are equivalent tonondeterministic ones [7]. This suggests that every formula should be equivalentto a formula which does not have universal branching behaviors represented byconjunctions. Of course we cannot discard conjunctions completely from positiveformulas as shown by the formula (haip)^ [a](p _ q). Note that the conjunctionin this formula does not act as a universal branching. It is rather like an implicitconjunction from (usual, not alternating) automata on trees where transitionrelation forces the right son to be labeled by one state and the left son byanother one. Such a kind of implicit conjunction is the only form of conjunctionthat appears in the �xpoint notation for sets of trees de�ned by Niwi�nski [8].It was proved that this �xpoint language has the same expressive power as themonadic second order logic of n successors. Hence adding explicit conjunctionto this language will not increase its expressive power.These considerations lead to the notion of disjunctive formulas which areformulas where the role of conjunction is restricted so that it never acts as anuniversal branching. We show that every formula is equivalent to a disjunc-tive formula. It turns out that the satis�ability problem is linear for disjunc-tive formulas. There is also a straightforward method of model construction forsuch formulas. In comparison, the satis�ability problem for arbitrary formulas isEXPTIME-complete and the only known method of model construction involvesnontrivial reduction to Rabin automata on in�nite trees.Disjunctive formulas also hint the possibility of giving automata-like char-acterization of the �-calculus. In [8, 3] it was shown that over binary trees the�-calculus is as expressive as the monadic second order logic (MS-logic for short).Nevertheless it is not true that over arbitrary transition systems the �-calculus isas expressive as MS-logic. It is not even true when we restrict the class of modelsto trees with nodes of �nite but unbounded degrees. In both cases �-calculus isstrictly weaker than MS-logic.Notice that these general trees can be encoded into binary trees. For a given�-calculus formula we can construct, say, a Rabin automaton which recognizescodings of the models of the formula. But this is only a one way mapping. It isnot true that for every Rabin automaton there is a �-calculus formula havingas models exactly the transition systems of which codings are accepted by theautomaton.We propose a notion of automaton of which expressive power is exactly the

same as the �-calculus. Restricted to binary trees these automata are just alter-nating automata with so-called parity conditions [6, 3]. They are more generalbecause they admit runs over arbitrary transition systems. We show that thereare direct translations between disjunctive formulas and this kind of automata.This proves that the set of recognizable languages induced by our notion of au-tomata is closed under all boolean operators hence also complementation. If weconsider �-calculus restricted to binary trees then our constructions give us or-dinary (non alternating) parity automata on trees. This way we obtain a proofof Rabin's complementation lemma and the results from [8, 3].The paper is organized as follows. We start by giving basic de�nitions in-cluding a new formula constructor and the notion of binding functions. In thesecond section we describe operational semantics of formulas. In the third wepresent the notion of disjunctive formulas and prove properties of such formulas.Next section is devoted to the new kind of automata which we call �-automata.2 Preliminary de�nitionsLet Prop = fp; q; : : :g[f?;>g be a set of propositional letters, Var = fX;Y; : : :ga set of variables and Act = fa; b; : : :g a set of actions. Formulas of the �-calculusover these sets can be de�ned by the following grammar:F := Prop j :Prop j Var j F _ F j F ^F j hActiF j [Act]F j �Var :F j�Var:FNote that we allow negations only before propositional constants. As we willbe interested mostly in closed formulas this is not a restriction. All the resultspresented here extend to the general case when negation before variables is alsoallowed, restricting as usual to positive occurrences of bound variables.In the following, �; �;
; : : : will denote formulas, and A;B;C : : : will denote�nite sets of formulas. We shall use � to denote either � or �. Variables, propo-sitional constants and their negations will be called literals.Formulas are interpreted in transition systems of the form M = hS;R; �i,where:� S is a nonempty set of states,� R : Act ! P(S � S) is a function assigning a binary relation on S to eachaction in Act .� � : Prop ! P(S) is a function assigning a set of states to every propositionalconstant.For a given modelM and an assignment Val : Var ! P(S), the set of statesin which a formula � is true, denoted jj�jjMVal , is de�ned inductively as follows

(we will omit superscript M when it causes no ambiguity):jjpjjVal = �(p) jj?jjVal = ; jj>jjVal = Sjj:pjjVal = S � �(p)jjXjjVal = Val(X)jj�_ �jjVal = jj�jjVal [jj�jjValjj�^�jjVal = jj�jjVal \ jj�jjValjjhai�jjVal = fs : 9s0:(s; s0) 2 R(a)^ s0 2 jj�jjValgjj[a]�jjVal = fs : 8s0:(s; s0) 2 R(a)) s0 2 jj�jjValgjj�X:�(X)jjVal = T fS0�S : jj�jjV al[S0=X]�S0gjj�X:�(X)jjVal = S fS0�S : S0�jj�jjV al[S0=X]ghere Val [S0=X] is the valuation such that,Val [S0=X](X) = S0 andVal [S0=X](Y) =Val(Y) for Y 6= X. We shall write M; s;Valj=� when s 2 jj�jjMVal .2.1. De�nition (Binding). We call a formula well named i� every variable isbound at most once in the formula and free variables are distinct from boundvariables. For a variableX bound in a well named formula� there exists a uniquesubterm of � of the form �X:�(X), from now on called the binding de�nitionof X in � and denoted D�(X). We will omit subscript � when it causes noambiguity.We call X a �-variable when � = �, otherwise we call X a �-variable.The function D� assigning to every bound variable its binding de�nition in� will be called the binding function associated with �.2.2. De�nition (Dependency order). Given a formula � we de�ne the de-pendency order over the bound variables of �, denoted ��, as the least partialorder relation such that if X occurs free in D�(Y) then X �� Y . We will saythat a bound variable Y depends on a bound variable X in � when X �� Y .2.3. De�nition. Variable X in �X:�(X) is guarded i� every occurrence of X in�(X) is in the scope of some modality operator h i or []. We say that a formulais guarded i� every bound variable in the formula is guarded.2.4. Proposition (Kozen). Every formula is equivalent to some guarded for-mula.This proposition allows us to restrict ourselves to guarded, well-named for-mulas. From now on, we shall only consider formulas of this kind. This restrictionis not essential to what follows but simpli�es de�nitions substantially.In construction of our tableaux we shall distinguish some occurrences ofconjunction which should not be reduced by ordinary (and) rule.2.5. De�nition. We extend the syntax of the �-calculus by allowing new con-struction of the form a! A, where a is an action and A is a �nite set of formu-las. Such a formula will be semantically equivalent to Vfhai�j� 2 Ag^ [a]WA.Namely state q satis�es formula a! A when any formula of A is satis�ed by atleast one a-successor of state q, and any a-successor of state q satis�es at leastone formula of A. We adopt the convention that the conjunction of the emptyset of formulas is the formula > and disjunction of the empty set is ?.

2.6. Remark. A formula hai� is equivalent to a! f�;>g and a formula [a]�is equivalent to a! f�g _ a! ;. It follows that any formula can be writtenwith this new construction in place of modalities. All the notions de�ned in thissection like bound variable de�nitions, guardedness, etc. extend to formulas withthis new construction.3 \Operational semantics"Here we will describe alternative \operational" semantics for the formulas of the�-calculus. We will show that a formula is satis�ed in a state s of a structure Mwith a valuationVal i� there is a consistent marking of a tableau for the formula.This characterization gives us a tool for proving equivalence of formulas.Let
 be a well-named, guarded formula where construction a! A is usedinstead of hai� and [a]� constructions.3.1.De�nition. We de�ne the system of tableau rules S
 parameterized by aformula
, or rather its binding function:(and) f�; �; Cgf�^ �;Cg (or) f�;Cg f�;Cgf� _ �;Cg(�) f�(X); Cgf�X:�(X); Cg (�) f�(X); Cgf�X:�(X); Cg(reg) f�(X); CgfX;Cg whenever X is a bound variable of
and D
 (X) = �X:�(X)(mod) f�g [fWB : a! B 2 fCg; B 6= Ag for every a! A 2 fCg; � 2 AfCgwith W ; interpreted as ?.3.2. Remark. The rule (mod) has as many premises as there are formulas inthe sets A such that a! A 2 C. For instancef�1; �3g f�2; �3g f�1 _ �2; �3g f�1g f�2gfa! f�1; �2g; a! f�3g; b! f�1; �2ggis an instance of the rule.3.3. Remark. We see applications of the rules as a process of reduction. Givena �nite set of formulas C we want to derive, we look for the rule the conclusionof which matches our set. Then we apply the rule and obtain the assumptionsof the instance of the rule whose conclusion is C.3.4.De�nition. A tableau for
 is a pair hT; Li, where T is a tree and L is alabeling function such that:1. the root of T is labeled by f
g,

2. the sons of any node n are created and labeled according to the rules ofsystem S
 , with rule (mod) applied only when no other rule is applicable.Leaves and nodes where (mod) rule was applied will be called modal nodes. Theroot of T and sons of modal nodes will be called choice nodes. We will say thatm is near n i� there is a path from n to m in the tableau without an applicationof modal rule.3.5. Remark. Returning to our example of an instance of the rule (mod) fromRemark 3.2. If a node n is labeled by the conclusion of this instance then it has�ve sons labeled by corresponding assumptions. We will call a son obtained byreducing an action a an a-son. In our example n has three a-sons and two b-sons.Node n is a modal node, its sons are choice nodes.3.6. De�nition (Marking). For a tableau T = hT; Li we de�ne its markingwith respect to a structure M = hS;R; �i and state s0 to be a relationM�S�Tsatisfying the following conditions:1. (s0; r) 2M , where r is a root of T .2. If some pair (s;m) belongs to M and a rule other than (mod) was appliedin m, then for some son n of m, (s; n) 2M .3. If (s;m) 2M and rule (mod) was applied in a node m then for every actiona for which exists a formula of the form a! A in L(n):(a) for every a-son n of m there exists a state t such that (s; t) 2 R(a) and(t; n) 2M .(b) for every state t such that (s; t) 2 R(a) there exists an a-son n of m suchthat (t; n) 2M .3.7. De�nition (Trace). Given a path P of a tableau T = hT; Li, a trace onP will be a function F assigning a formula to every node in some initial segmentof P (possibly to the whole P), satisfying the following conditions:� If F (n) is de�ned then F (n) 2 L(n).� Let m be a node with F (m) de�ned and let n 2 P be a son of m. If a ruleapplied in m does not reduce the formula F (m) then F (n) = F (m). If F (m)is reduced in m then F (n) is one of the results of the reduction. This shouldbe clear for all the rules except (mod). In case m is a modal node and nis labeled by f�g [fWB : a! B 2 C;B 6= Ag for some a! A 2 L(m) and� 2 A, then F (n) = � if F (m) = a! A and F (n) = WB if F (m) = a! Bfor some a! B 2 C, B 6= A. Traces from other formulas end in node m.3.8. De�nition (�-trace). We say that there is a regeneration of a variableX on a trace F on some path i� for some node m and its son n on the pathF (m) = X and F (n) = �(X) with D
 (X) = �X:a(X), i.e. rule (reg) was appliedto variable X.We call a trace �-trace i� it is an in�nite trace (de�ned for the whole path)on which the smallest variable, with respect to �� ordering, regenerated i.o. isa �-variable. Similarly a trace will be called a �-trace i� it is an in�nite trace

where the the smallest variable, with respect to �� ordering, regenerated i.o. isa �-variable.3.9. Remark. Every in�nite trace is either a �-trace or a �-trace because allthe rules except regenerations decrease the size of formulas and formulas areguarded hence every formula is eventually reduced. Observe that even though�� is a partial ordering there is always the least variable required in the abovede�nition.3.10.De�nition (Consistent marking). Using notation from the De�nition 3.6,a markingM of T with respect toM and s is consistent with respect toM; s;Vali� it satis�es the following conditions:local consistency for every modal node m and state t, if (t;m) 2 M thenM; t;Valj=A0, where A0 is the set of all the literals occurring in L(m),global consistency for every path P = n0; n1; : : : of T such that for everyi = 0; 1; : : : there exist si with (si; ni) 2M there is no �-trace on P.The following theorem gives a characterization of satis�ability by means ofconsistent markings.3.11. Theorem. A positive guarded formula
 is satis�ed in a structure M,state s and valuation Val i� there exists a marking M of a tableau for
 consis-tent with M; s;Val.Proof. The proof uses trans�nite approximations of �xed point expressions andsignatures in the style of those de�ned in [9].4 A disjunctive normal form theoremIn this section we de�ne a notion of disjunctive formula and show that everyformula is equivalent to a disjunctive formula.4.1.De�nition. The set of disjunctive formulas, Fd is the smallest set de�nedby the following clauses:1. every variable is a disjunctive formula,2. if �; � 2 Fd then � _ � 2 Fd; if moreover X occurs only positively in � andnot in the context X ^
 for some
, then �X:�; �X:� 2 Fd,3. formula �1^ : : :^�n is a disjunctive formula provided that every �i is eithera literal or a formula of a form a! A with A�Fd. Moreover we require thatfor any action a there can be at most one conjunct of the form a! A among�1; : : : ; �n.4.2. Remark. Many properties can be \naturally" expressed by disjunctive for-mulas. For example the properties q holds almost always and q holds in�nitelyoften can be written as the following disjunctive formulas:�X:((a! fXg) _ �Y:(q^a! fY g)) �X:�Y:((q^ a! fXg) _ a! fY g)

4.3. Remark. Modulo the order of application of (and) rules, disjunctive for-mulas have unique tableaux. Moreover on any in�nite path there is one and onlyone in�nite trace.4.4. Theorem. For every formula there exists an equivalent disjunctive formula.Proof. Let T be a regular tableau for a formula
. A graph obtained from a treeby adding edges from some leaves to their ancestors will be called a tree withback edges. Added edges will be called back edges. First one needs to prove:4.5. Lemma. It is possible to construct a �nite tree with back edges Tl = hTl; Lli,satisfying the following conditions:1. Tl unwinds to T .2. Every node to which a back edge points can be assigned color magenta ornavy in such a way that for any in�nite path from the unwinding of Tl wehave: there is a �-trace on the path i� the highest node of Tl through whichthe path goes i.o. is colored magenta.To prove the lemma one takes a deterministic parity automaton A [6, 3]which recognizes paths of T having �-trace on them. Then one can run A onevery path of T . This gives an assignment of states of A to nodes of T . Obtainedtree is still regular and we can use parity condition to present it in the desiredform.Next one constructs from Tl a disjunctive formula b
 which has a tableauequivalent to T . The construction starts in the leaves of the tree and proceedsto the root. All back edges leading to a node n are assigned the same variableXn and the color of the node is used to decide which �xpoint operator shouldbe used to close this variable when we reach n in our construction.In [9] the general technique of model construction for the �-calculus formulaswas described. Till now it remains essentially the only known technique formodel construction (see [5] for di�erent approach). It turns out that in case ofdisjunctive formulas model construction is much easier. This is described in thefollowing theorem.4.6. Theorem. A closed disjunctive formula � is satis�able i� the formula � ob-tained from � by replacing all occurrences of �-variables by ? and all �-variablesby > is satis�able.Proof. Let T� and T� be tableaux for � and � respectively. There exists a func-tion h which for any node of T� gives us the corresponding node of T�, mappingvariables to corresponding constants. This situation is schematically representedin Figure 1. It is quite easy to show that if � is satis�able then � is satis�able.This can be done by induction on the structure of �.Conversely, assume � is satis�able and let M be a minimal (w.r.t. inclusion)marking of T� consistent w.r.t. some arbitrary model M for �. It is quite easy,using h�1 and the modal nodes occurring in M , to build a regular model of� together with a marking M 0 of T� consistent with that model such that no�-variable is ever regenerated on any path of that marking.

� � �a(X) a(X) a(X) a(X) a(>)hT� T��X:a(X) �X:a(>)
Fig. 1. Relation between T� and T�Because � in the above theorem is a disjunctive formula without �xpointoperators we have:4.7. Corollary. Satis�ability checking for disjunctive formulas can be done inlinear time.5 Automata for the �-calculusThe question we ask here is what concept of automaton characterizes the ex-pressive power of the �-calculus over transition systems.The idea of constructing automata able to deal with arbitrary branching wasalready considered in [1] but the construction proposed there would give us tobig expressive power.5.1.De�nition. A �-automaton is a tuple A = hQ;�p; �a; q0; �;
i where: Qis a �nite set of states, �p; �a are �nite alphabets called proposition and actionalphabets respectively, q0 2 Q is the initial state, � : Q! P(�p�(�a :! P(Q)))is a transition function and
 : Q!N is a indexing function de�ning acceptanceconditions. Here, �a :! P(Q) denotes the set of partial functions from �a toP(Q).5.2.De�nition. A labeled transition system restricted to �a and �p is a tupleT = hS; s0 2 S;R : �a ! P(S � S); � : S ! �piwhere s0 is the initial state, � de�nes labeling of states and R de�nes edgesbetween states together with their labeling.

5.3. Remark. From given �nite sets of actions �a and literals Lp and giventransition system with some valuation it is straightforward to construct a labeledtransition system restricted to �a and �p = P(Lp). There is also an obvioustranslation in the opposite direction assuming, say, that all variables not in �pare always false and that there are no other edges.5.4. De�nition. For a restricted transition system T and an automaton A asthe above we de�ne a run of A on T to be an in�nite labeled tree T satisfyingthe following conditions:� The root is labeled by (q0; s0).� For any node of the tree labeled (q; s) there is a pair (p; f) 2 �(q) such thatp = �(s) and for every action a in the domain of f (assumed partial):? for every qa 2 f(a) there is a son labeled (qa; t) for some t with (s; t) 2R(a),? for every t with (s; t) 2 R(a) there is qa 2 f(a) and a son labeled (qa; t)The run is accepting i� for any path P, minf
(q) : q appears i.o. on Pg iseven.We would like to prove that automata of this kind have exactly the sameexpressive power as the �-calculus.5.5. Theorem. For any disjunctive formula
 there is an equivalent �-automaton.Proof. Let T be a tree with back edges unwinding into a tableau for
. Webuild an automaton recognizing exactly the models of
. Its set of states isQ = (CN � BV) where CN is the set of choice nodes (see De�nition 3.4).Transitions are build from a state (n;X) to a state (m;Y) whenever m is nearn, with Y the smallest variables regenerated on the path from n to m or � ifthere is no such.5.6. Theorem. For any �-automaton A we can construct an equivalent disjunc-tive formula.Proof. Construct a tree with back edges from the automaton in the style ofLemma 4.5. Then construct a formula from this tree.5.7. Corollary. �-automata are closed under all the connectives of the �-calculus.In particular they are closed under negation.5.8. Remark. A transition system is called labeled binary tree i� every statehas exactly two transitions: one labeled "l" and one labeled "r". Exactly thesame argument as in Theorem 4.4 shows that over labeled binary trees everyformula of the �-calculus is equivalent to a disjunctive formula where each spe-cial conjunction is of the form l ! f�lg^ r! f�rg^� with � containing onlyliterals. It follows that �-automata built from such formulas correspond exactlyto usual (non alternating) automata with so called parity condition[6, 3]. Thisshows that �-calculus is equivalent to Rabin automata and that �-automataare closed under boolean connectives. In particular this gives a proof of Rabin'scomplementation lemma.

References1. O. Bernholtz and O. Grumberg. Branching time temporal logic and amorphoustree automata. In Proc. 4th Conference on Concurrency Theory, volume 715 ofLecture Notes in Computer Science, pages 262{277. Springer-Verlag, 1993.2. E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics ofprograms. In 29th IEEE Symp. on Foundations of Computer Science, 1988.3. E.A. Emerson and C.S. Jutla. Tree automata, mu calculus and determinacy. InProc. FOCS 91, 1991.4. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-ence, 27:333{354, 1983.5. D. Kozen. A �nite model theorem for the propositional �-calculus. Studa Logica,47(3):234{241, 1988.6. A.W. Mostowski. Regular expressions for in�nite trees and a standard form ofautomta. In A. Skowron, editor, Fith Symposium on Computation Theory, volume208 of LNCS, pages 157{168, 1984.7. D.E. Muller and P.E. Schupp. Alternating automata on in�nite trees. TheoreticalComputer Science, 54:267{276, 1987.8. D. Niwi�nski. Fixed points vs. in�nite generation. In Proc. 3rd. IEEE LICS, pages402{409, 1988.9. R.S. Street and E.A. Emerson. An automata theoretic procedure for the proposi-tional mu-calculus. Information and Computation, 81:249{264, 1989.

