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Abstract. In 1974 R. Fagin proved that properties of structures whighia NP
are exactly the same as those expressible by existentiahdemrder sentences,
that is sentences of the forrthere existP such thatyp, whereP is a tuple of
relation symbols. ang is a first order formula. Fagin was also the first to study
monadic NP: the class of properties expressible by existes#cond order sen-
tences where all the quantified relations are unary.

In [AFS00] Ajtai, Fagin and Stockmeyer introduclesed monadid\P: the class
of properties which can be expressed by a kind of monadicnseomder exis-
tential formula, where the second order quantifiers canrlatese with first order
quantifiers. In order to prove that such alternation of qufets gives substantial
additional expressive power they construct graph propsfl; andP»: P is ex-
pressible by a sentence with the quantifier prefix in the fags 3 (av)* * but
not by a boolean combination of sentences from monadic ERv{th the prefix
of the form3~(av)*) and P, is expressible by a senten& (av)* 3" (av)* but
not by a Boolean combination of sentences of the fah* 3* (2v)*. A natural
guestion arises here whether the hierarchy inside closedbatic NP, defined by
the number of blocks of second order existential quantifierstrict.

In this paper we present a technology for proving some noressbility results
for monadic second order logic. As a corollary we get a newygeproof of the
two results from [AFS00] mentioned above. With our techgyplae can also
make a first small step towards an answer to the hierarchytoqureby showing
that the hierarchy inside closed monadic NP does not codaps a first order
level. The monadic complexity of properties definable ineld&zmu-calculus is
also considered as our technology also applies to the meubas itself.

1 Introduction

1.1 Previous works

In 1974 R. Fagin proved that the properties of structureskvhie in\/P are exactly
the same as those expressible by existential second omtenses, known also as!

* This paper has been written while the author was visitingotatwire Bordelais de Recherche
en Informatique, in Bordeaux, France. | was also supporyeediish KBN grant 2 PO3A 018
18

1 In this paper we use the symbalsv for the first order quantifiers and, V for the monadic
second order quantifiers



sentences, i.e. sentences of the fotinere exist relations® such thatp, whereP is a
tuple of relation symbols (possibly of high arity) apds a first order formula.

Fagin was also the first to studyonadicNP: the class of properties expressible by
existential second order sentences where all quantifiatiork are unary. The reason
for studying this class was the belief that it could servetaaining ground for attacking
the “real problems” like whether NP equals co-NP. It is nattht® show ([F75]) that
monadicN P is different from monadic co-NP. A much stronger result haenebeen
proved by Matz and Thomas ([MT97]). They show that the mondikrarchy, the
natural monadic counterpart of the polynomial hierarchstrict (a property is in the
k-th level of the monadic hierarchy if it is expressible byeatence of monadic second
order logic where all the second order quantifiers are at éginning and there are at
mostk — 1 alternations between second order existential and secatedt aniversal
quantifiers).

An important part of research in the area of monadic NP is @evto the possi-
bility of expressing different variations of graph conneity. Already Fagin’s proof
that monadic NP is different from monadic co-NP is based enfalet that connectiv-
ity of undirected graphs is not expressible by a sentencednadic X'}, while non-
connectivity obviously is. Then de Rougemont [dR87] andv@atitick [S95] proved
that connectivity is not in monadic NP even in the presena@gbus built-in relations.

However, as observed by Kanellakis, the property of reathaffor undirected
graphs) is in monadic NP (reachability is the problem if,dagiven graph and two dis-
tinguished nodes andt, there is a path fromto ¢ in this graph). It follows that connec-
tivity, although not in monadic NP, is expressible by a folaaf the formvzvy 31390.
This observation leads to the studyabsed monadic NPthe class of properties ex-
pressible by a sentence with quantifier prefix of the f¢r@i (av)*)*, and of theclosed
monadic hierarchythe class of properties expressible by a sentence withtifjean
prefix of the form(( 3% (av)*)*( V* (av)*)*)*.

In [AFS00] and [AFS98] Ajtai, Fagin and Stockmeyer argud ttlased monadic
NP is even a more interesting object of study than monadicitN®still a subclass of
NP (and also the k-th level of closed monadic hierarchy Isatubclass of the k-th
level of polynomial hierarchy), it is defined by a simple spnand it is closed under
first order quantifications. In order to prove that such alition of quantifiers gives
substantial additional expressive power they construagtlypropertie®; andP, such
thatP; is expressible by a sentence with the quantifier prefix in lags¢av)* 3 (av)*,
but not by a Boolean combination of sentences from monadigilRvith the prefix
of the form 3*(av)*) andP, is expressible by a senten&(av)* 3(av)* but not by
a Boolean combination of sentences of the fgem)* 3% (av)*. The non expressibility
results forP; andP, in [AFS00] are by no means easy and constitute the main teghni
contribution of this long paper. As the authors wriBar most difficult result is the fact
that there is an undirected graph property that is in closegnadic NP but not in
the first order/Boolean closure of monadic NP. In the gameesponding to the first
order/Boolean closure of monadic NP, played over graplgsand G1, the spoiler not
only gets to choose which 6f, and G, he wishes to color , but he does not have to
make his selection until after a number of pebbling moveshw®ah played. Thus, not
only are we faced with the situation where the spoiler getshimose which structure



to color, but apparently also for the first time, we are beiogcéd to consider a game
where there are pebbling rounds both before and after theroay round.

There are many natural open questions in the area, mostrofsteded in [AFSOQ]:
is the hierarchy inside closed monadic NP strict ? We meaa ther hierarchy defined
by the number of blocks of second order existential quardifialternating with first
order quantifiers. Is there any property in the monadic hi¢na(or, equivalently, in the
closed monadic hierarchy) which is not in closed monadic N¥tRe closed monadic
hierarchy strict ? These questions seem to be quite hardirsed do not know any
property in the (closed) monadic hierarchy which would netelxpressible by a sen-
tence with quantifier prefi@™ (va)* 3" (va)*.

1.2 Our contribution

In this paper we present an inductive and compositionaltelclyy for proving some
non expressibility results for monadic second order lolgigarticular, our technology
gives an alternative simple solution to all the technicabbems described in the cita-
tion from [AFS00Q] above. But unlike the construction in [ABG, which is specific for
first order/Boolean closure of monadic NP, our technologyriversal: it deals with
first order/Boolean closure of most monadic classes.

To be more precise, we show how to construct, for any givepgntgS not express-
ible by a sentence with quantifier prefix in some non tri/idhssiV, two properties
bool (S) andreach(S) which are not much harder thahand such that (1) property
bool (S) cannot be expressed by boolean combination of sentendesjuanntifier pre-
fix in W and (2) property-each(S) cannot be expressed by a sentence with quantifier
prefix vw wherev € (3 + v)* is a block of first order quantifiers and € W. Saying
thatbool (S) andreach(S) arenot much harder thay we mean that ifS is expressible
by a sentence with quantifier prefix in some cl&shenbool(S) is expressible by a
sentence with the prefix of the formv wherev € V andreach(S) is expressible by
a sentence with the prefix of the for@vv wherev € V. The non expressibility proof
for reach generalizes the second author’s proof of the fact that ticeieachability is
not expressible by a sentence with the prefix of the fora)* 3 (va)* [M99].

Our lower bounds are proved in the language of Ehrenfeuditéé games. To
show that, for exampleseach(S) cannot be expressed by a sentence with a prefix
of the formvaw wherew € W we assume as (inductive) hypothesis that there are
two structuresP? € S andR ¢ S such that Duplicator has a winning strategy in the
game (corresponding to the prefiX on (P, R). Then we show how to apply some
graph composition methods to get, frdtand R, new structures’ € reach(S) and
R, ¢ reach(S) such that Duplicator has a winning strategy in the game ésponding
to the new prefixraw) on (P, R;). But since we know nothing abodt and R our
knowledge abouf’, and R; is quite limited, so the strategy for Duplicator uses as a
black box the unknown Duplicator’s strategy in a game BnR).

With our technology we can make the first small step answehiedierarchy ques-
tions. To be more precise, we show that the hierarchy indime=d monadic NP does

2 see definition below



not collapse on any first order level. Since we do not needte ifahe w (the prefix
which does not expres$) contains, or not, universal second order quantifiers atyari
of results of this kind can also be proved with our technolabgut the structure of
closed monadic hierarchy.

A new, very easy, proof of the results from [AFS00] is just eotlary of our method.

It also appears that - with minor modifications - the aboveiatide constructions
can also be applied inside Kozen’s mu-calculus [Ko83]. Tusstitutes a first small
step towards trying to understand, over finite models, tlesddptive) complexity (in
terms of patterns of FO and/or monadic quantifiers’ prefixpifperties definable in
the mu-calculus.

2 Technical Part

2.1 Structures

All the structures we consider in this paper are finite grafutiected or not). The
signature of the structures may also contain some additioray relations (“colors”)
and constantss(andt).

2.2 Games

Definition 1. 1. A pattern of a monadic gam@r just patterr) is any word over the
alphabet{v,3, V, 3, ®}.
2. Ifwis a pattern then the pattend (dual tow) is inductively defined ag, v, V7,
Jv or @7 if w equalsav, vu, Ju, Vv or v respectively. The dual of the empty
word is the empty word.

v and 3 still keep the meaning of universal and existential firsteorduantifiers,
while V and 3 are universal and existential monadic second order (saftdiers. As
you will soon seeb should be understood as a sort of boolean closure of a game. We
will use the abbreviatio'O for the regular expressiof + 3).

Definition 2. Let P and R be two relational structures over the same signature et
be some pattern. An Ehrenfeucht-Fraissé game with patteomer (P, R) is then the
following game between 2 players, called Spoiler and Dapdic

1. If w is the empty word then the game is over and Duplicator winsafdubstruc-
tures induced inP and in R by all the constants in the signature are isomorphic.
Spoiler wins if they are not isomorphic.

2. If w is nonempty then:

(@) If w = 2v (w = vv) for somev then a new constant symbeolis added to
the signature, Spoiler chooses the interpretatior of P (R resp.) and then
Duplicator chooses the interpretation ofin R (P resp.). Then they play the
game with patterm on the enriched structures.



(b) Ifw = JFv (w = Vo) for somev then a new unary relation symb@lis added
to the signature, Spoiler chooses the interpretatiorCoifh P (R resp.) and
then Duplicator chooses the interpretation@fin R (P resp.) Then they play
the game with pattern on the enriched structures.

(c) If w = ®v for somev then Spoiler can decide if he prefers to continue with the
game with patterm or rather with@. Then they play the game with the pattern
chosen by Spoiler.

The part of the game described by item (a) is called a firstromwend, or pebbling
round. The part described by item (b) is a second order raamzhloring round.

Definition 3. We say that a property (i.e a class of structurés)s expressible by a
patternw if for each two structure® € S andR ¢ S Spoiler has a winning strategy
in the game with patterm on (P, R). If W is a set of patterns then we say tlfais
expressible i if there exists av € W such thatS is expressible by.

The following theorem illustrates the links between gamas lagics. We skip its
proof as well known ( see for example [EF] and [AFS00]):

Theorem 1. 1. Monadic NP is exactly the class of properties expressipld* FO*;

2. The boolean closure of monadic NP is exactly the classopfesties expressible by
®I*FO*;

3. The first order closure of monadic NP is exactly the claggaferties expressible
by FO* & 3*FO*;

4. 2k-th level of the monadic hierarchy is exactly the cldgzaperties expressible by
(3* V*)kFO*,

5. 2k-th level of the closed monadic hierarchy is exactlydiass of properties ex-
pressible by FO* 3* V*)*FO*;

6. Closed monadic NP is exactly the class of properties ssjise by( FO* 3*)*;

The last theorem motivates:

Definition 4. A non trivial class of game patterifer just clasg is a set of game pat-
terns denoted by a regular expression without union oveathleabet{ ¢, 3, V, FO},
which ends withFO* and contains at least on¥™ or 3*

In the sequel, all classes of game patterns we consider arginial.

2.3 Graph operations

The techniques we are going to present are inductive and asittgmal. Inductive
means here that we will assume as a hypothesis that thererigparfy expressible
by some class of patterd®; but not byl and then, under this hypothesis, we will
prove that there is a property expressible in the cla$¥; but not in the clas§ W
whereV; and V' will be some (short) prefixes. The wombmpositionalmeans here
that the pair of structure@y w, Rvw) (on which Duplicator has a winning strategy
in aVW game) will be directly constructed from the pair of strues(Py,, Ry ) (on



which Duplicator has a winning strategy iri#l& game). For this construction we do not
need to know anything about the original structures.

In the sequel, we will assume that all our structures are ectad and that the
signature contains a constan{for sourcg. This is possible thanks to the following
natural definition and obvious lemma:

Definition 5. Let S be a property of structures (with the signature without ¢ans
s). Thencone(S) is the property of structures (with the same signature,ared with
constant): For everyz distinct froms there is an edge fromto = and the substructure
induced by all the vertices distinct frosrhas the propertys.

Lemma 1. If S is expressible by thencone(S) also is. IfS is not expressible by
then there is a pair of connected structufdd R) (see Definition 6 below) such th&t
has the propertyone(S), R does not, and Duplicator has a winning strategy in the
gameonP, R). m

Now we introduce some notations for graph operations. Asusementioned we
assume that all the graphs we are dealing with are connentbthave some distin-
guished node. Some of them will also have another distinguished nioder targed.

) I

(2 | om @“ '
Q <O

Connected pair of graphB; and P

P+ P

Fig. 1. Some graph operations.

Definition 6. 1. LetU denote the graph containing just two verticesindt, and one
edgeE (s, t).

2. If Ais aset of graphs, theB'§, , P (X' 4 P) is the union of all graphs iod with
all the s vertices identified (resp. and all thevertices identified). We will use also
the notation¥s P (X5!P) if A contains justc copies of the same structure. If
there are only two elements, s#&#/and R in A, then we writeP+R (or P+R)
instead of o5, , P (or U 4 P).

3. If P is a graph with constants and ¢ then P.R (or PR for short) is the graph
being a union ofP and R with ¢ of P identified withs of R (so thats of the new
graph is thes of P and thet of the new graph is theof R if it exists.

4. If Ais a set of graphs then the graght,. , (U P) will be called aconnected set of
graphs f there are just two elements id then we will call it aconnected pair of
graphs



2.4 Some simple lemmas about games

Let us start with an obvious lemma, which would remain trusnewithout the assump-
tion that the relations introduced during the second ordends are unary:

Lemma 2. If the graphsP and R are isomorphic then Duplicator has a winning strat-
egy in thew game on P, R) whatevenw is. &

The following Lemmas 3-5 are not much harder to prove thatmen? but the
assumption that games are monadic is crucial here:

Lemma 3. If Duplicator has winning strategies ils games or{ P, , R;) and on(Ps, R»)
then he also has winning strategiesirgames of{ P, +P», Ry +R»),0n (P, -+ Ps, R1+R>)
and On(Png, Rle). |

Lemma 4. For every structure” and patternw there exists a number such that pro-
videdm > n then Duplicator has winning strategies in theggames or{ X> P, X . | P)
and(Zstp, X5t | P)

m

Proof. Induction on the structure af. Use the fact that for a structuréof some fixed
size there are only finitely many colorings of it, so if we hamough copies some
colorings must repeat many times

Lemma 5. Let P be a connected pair of structuréy and P, and letR be a connected
pair of structuresk; andR,. Suppose for some (non trivijklassl’ there existe € V'
such that Spoiler has a winning strategy on thgames or(P;, R;) and on(P, R»).
Then there existey € 3V such that Spoiler has a winning strategy in thhegames on
(P, R).

Proof. The strategy of Spoiler is to take as his first constant thecsoaf P; in P.
Duplicator must answer either with the sourcefaf or of R», and so he must make a
commitment on which of the two structures is going to playrtile of P, in R now. The
cases are symmetric, so let us assume he decid®s.0rhen Spoiler uses his strategy
for thev game on( Py, R;) to win the game. Actually, Spoiler must force Duplicator to
moves only inside the structuré% andR;. This can achieved with one more coloring
round (at any time in the game) subsequently playinguagame for somev € V
sinceV is non trivial. The next remark makes this observation moeeise. B

Remark 6 After the first round, when Spoiler picks the sourcePpfand Duplicator
answers by the source &, Spoiler must force Duplicator to restrict the moves of the
remaining game only to the structuré% and R; . In other words, Spoiler needs to be
sure that each time he picks a constant indityé R, ) Duplicator actually answers with

a constant insideR; (P;). This can be secured with the use of an additional coloring
round: Spoiler paints’; (or Ry, he is as happy with & round as with a¥ one) with
some color leaving the rest @ unpainted. Duplicator must answer by paintifity
(P1) with this color, leaving the rest df unpainted. Otherwise, this will be detected by
Spoiler with the use of the final first order rounds. Noticet e additional coloring
round can take place at any moment of the game, and so thatrdtegy is available
for Spoiler for somal” game sincé’ is a nontrivial class of patterns.

3 see Definition 4



2.5 Atool for the boolean closure

LetS be any property. Then, a connected pair of structtres-U R will be calledSS
if both the structure$” and R belong toS, SS if exactly one of them belongs t§ and
SS otherwise.

Definition 7. For a propertyS definebool (S) as the propertythe structure is a con-
nected set of connected pairs of structures, and at leasifdhese pairs iSS .

Lemma 7. Suppose a propert§ is not expressible in clasd’, but bothS and its
complemens are expressible in some other clags Thenbool(S) is not expressible
in ®W butis expressible i3V,

Proof. Let us first show that there exists € V' such that, provide® € bool(S) and
R ¢ bool(S), Spoiler has a winning strategy in thew game on( P, R). This will prove
that propertybool (S) is expressible byaV'.

First observe that if? is not a connected set of pairs then either the verticds aif
distance less than 2 fromdo not form a tree, or there is a vertex at distance 2 fsom
whose degree is not 3, @ is not connected, or there is a vertext distance 2 from
s such that the structure resulting from removingand all the three adjacent edges)
from R has less than 3 connected components. In each of those qasks 8an win
some game inV for every nontriviall”.

If R is a connected set of pairs then in his first move Spoiler takdsis constant
the source of soméS pair in P. Duplicator must answer by showing a source of some
pair in R. There are two cases: either Duplicator shows a source of dhpair in R
or a source of som&S pair in R. In each of the two cases we may think that one pair
of structures has been selectedHdrand one inR. Spoiler can restrict the game to the
two selected pairs (see Remark 6). Then we use Lemma 5 to firégiroof.

Now we will show that whatever a pattesw is, wherew € W, there exist two
structuresP € bool(S) andR ¢ bool (S) such that Duplicator has a winning strategy in
the®w game on(P, R). Let (Py, R;) be such a pair of structuresth@t € S, Ry ¢ S
and Duplicator has a winning strategy in theggame on(P;, R, ). Let c be some huge
constant. LetR = X¢ (U(UP,+UP,)+U(UR1+URy)). SOR is a connected set
of 2c connected pairs; of them areSS andc areSS. Obviously,R ¢ bool(S). Let
P = R+U(UP,+UR,) be R with one more pair, &S one, so thal’ € bool(S).

Now, if Spoiler in his first move decides to play the gaimen P and R then remark
thatP is Q1+Q2+Q3 WhereQ1 = Eg (U(UP1+UP1)), Q2 = Zg (U(UR1+UR1))
andQ@s; = U(UR,+UP,) while R is Q4+Q5+Qs WhereQ, = X5 (U(UP,+UPy)),

Qs = ¥ | (UWUR+URy)) andQs = U(UR,+UR,). We know that Duplica-
tor has a winning strategies in games or(Q1, Q4) (by Lemma 2), onQ@-,Qs) (by
Lemma 4) and oriQs, Qs) (by Lemma 3, since he has a winning strategy in game
on (P, Ry)). So, again by Lemma 3 he has a winning strategy game on(P, R).

If Spoiler decides in his first round to continue witi rather thanw then take
Q1,Q2,Qs as before buQ, = X7_, (U(UP+UPR)), Qs = X7 (U(UR1+URy))
Qs = U(UP,+UP,) and use the same reasoning, using the fact that Duplicasca ha
winning strategy in thev game on( R, P;). &



2.6 Atool for first order quantifiers

Now the signature of our structures will contain additionahry relation symbo{7
(for gatg. For a given structuré’, and for two its vertices, y, such thalG(y) holds

let P, , be the structure consisting of the connected componeRtef z}, containing

y as its sourceP — {z} is here understood to be the structure resulting fiorafter
removingz and all its adjacent edges. & ,, could be read as "the structure you enter
from z crossing the gatg” (see Figure 2).

Fig. 2. P, is the structure you enter fromcrossing the gatg.

Definition 8. LetS be some property of structures. Then readhyill be the following
property (of a structureP): there is a path from to ¢ such that for every: on this path
it holds that (i)z ¢ G and (ii) for everyy such that£(z, y) andG(y) the structure?, ,
has the property.

By apath froms to t we mean a subséf of the set of vertices of the structure such
thats,t € H, each ofs andt has exactly one adjacent vertexih and each element
of H which is neither nort has exactly 2 adjacent verticeskh The fact thatd is a
path is expressible b O*.

Lemma 8. 1. Suppose a propertyis not expressible in some clads. Then reach§)
is not expressible id"O* W
2. Suppose a property is expressible in some claBg. Then reachf) is expressible
in the classIw V.

Proof. 1. First of all we will show that ifS is not expressible ifi’, then also reacl) is
not expressible ii’. For a givenw € W there are structuréd andR such thatP € S,
R ¢ S and Duplicator has a winning strategy in thggame or( P, R). Consider a struc-
tureT whose only elements aset, =, y, whose edges ai(s, z), E(z,t), E(z,y) and
for which G (y) holds. LetP, be the union off" and P, with y of T" identified withs of
P.Thes andt of Py ares andt of T'. Let Ry be the structure constructed in the same
way fromT and R. Then obviouslyPy € reach(S), Ry & reach(S) and Duplicator
has a winning strategy in the game on( P, Ry). Notice that bothP, and Ry have the
following property :

(*) (property of structure Q) ifr is reachable frons or from ¢ by a path disjoint
from G and if y is such thatG(y) and E(z,y) thenQ,, contains neithes of ) nort

of Q.



Now let P and R be structures, both satisfying (*) and such tate reach(S),
R & reach(S) and Duplicator has a winning strategy imvagame on(P, R). In order
to prove our claim it is enough (by induction) to constructistures(P;, R;) both
satisfying (*) and such thaP, € reach(S), Ry ¢ reach(S) and Duplicator has a
winning strategy in &3w game on(P;, R; ). Letn be a huge enough constant. Define:
Ry = (X8Y(PR))++ (X8 (RP)) and P, = R+ PP. ObviouslyP; € reach(S) and
R; ¢ reach(S) hold. Now will show a winning strategy for Duplicator invaw game
on (P, Ry). In his first round Spoiler selects some constar®in Duplicator answers
with the same constant iRy, (this is possible sinc&; can be viewed as a subsetf).
Now notice that after this first rounl; can be seen as

RP+PR++(Z5 | (PR))+ (X5 (RP))

andP; as
RPHPRH(Z% [ (PR))+- (X% [ (RP))+PP

where the constant selected in the first round is in the RB3t+PR, both inR; and in
P,. By Lemma 2 and Lemma 3 it is now enough to show that Duplidad&sra winning
strategy in the remainingw game on( P, R») where

Py = X5 (PR))++(X5 | (RP))+PP

and
Ry = X30 (PR))+(Z5L, (RP))

Let Spoiler select some constanti.

If Spoiler selects a constant iBst | (PR))+ (X5 | (RP)) then Duplicator an-
swers with the same constant iy, and then wins easily. The only interesting case
is when Spoiler selects his constantiP. Suppose it is selected in the firBt (the
other case is symmetric). Then Duplicator answers by seigthhe same constant in
the P of somePR in R,. Notice thatP, = Q1+Q2++ (X3, (RP)) andRy =
Q3 +HQq+(Z2t (RP)), where@Q, = PP, @, = X* (PR)), Q3 = PR and
Q4+ = X35t ,(PR)), and where some constant is already fixed in the firstf @,
and in theP of 3. Now thew game remains to be played. But since Duplicator has a
winning strategy in thev game on(P, R) he also has (by Lemmas 2 and 3) a winning
strategy in av game on(@1, @3). By Lemma 4 he has a winning strategy imayame
on (Q2,Q4) and so, again by Lemma 3 we get a winning strategy for Duglidatthe
3w game on( Py, Ry).

2. Supposé € reach(S) andR ¢ reach(S). Spoiler, in his first move fixes a path
in P, as in the definition ofeach(S). Duplicator answers selecting a setin If the
set selected by Duplicator is not a path frerto ¢ then Spoiler only needs some fixed
number of first order rounds to win. If it is such a path themd¢haust be some on the
path, and somg such thatE(z,y), G(y) hold in R andR, , ¢ S. Now Spoiler uses
his two first order universal rounds to fix thas@ndy. Duplicator answers with some
two pointsz, t in P such thatE/(z,t) andG(¢) hold in P. But, sinceP € reach(S) it
turns out thatP, ; € S, so Spoiler can use rounds of the remainingame to secure
a win (a trick from Remark 6 will be needed here to restrictidhgame toP, ,, R. +).

]
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Remark 9 The role of predicaté/ is not crucial for the construction above. It could be
replaced by a graph gadget if the reader wishes toBgbeing a property of undirected
uncolored graphs.

Another way to avoid the unary relation G (as suggested byl atockmeyer) is to
definereach(S) as: there is a path froms to ¢ such that for every: on this path and
everyy such thatE(z,y) andy is not on this path, the structu®, , has the property
S.

2.7 Corollaries
As the first application of our toolkit we reprove the restiitan [AFS00]:

Theorem 2. There exists property; expressible if"O* 3* FO* but noting 3*FO*.
There exists propert)p, expressible inrd FO* 3* FO* but notinFO* & 3*FO*.

Proof. Let Cted be the property of connectivity. It is well known thétted is not
expressible ind* FO* but bothC'ted and its complement are expressiblewd”* FO*.
now takeP; = bool(cone(Cted)) andPy = reach(bool(cone(Cted))). Use Lemmas
7 and 8 to finish the proof.m

A new result we can prove is that even if the hierarchy insideesd monadic NP
collapses, it does not collapse on a first order level:

Theorem 3. If there is a property expressible IRO*W but not inW, whereW =
(3*FO*)* then there is a property expressible v O* W but not in FO*W.

Proof. This follows immediately from Lemma
Several similar results can be proved for the closed moradiarchy or reproved for
the monadic hierarchy (see [MT97] and [Ma99] sections 4cdl4Bb).

Itis interesting to remark that the inductive construcsipresented here are also de-
finable (with minor and insignificant variations) inside ks propositionak-calculus
[Ko83].

More precisely, given some unary predicatgone may define in thg-calculus
the new predicates that depend §nBool(S) = O(OS A ©-S) and Reach(S) =
pX.(O(G = S) A (©X v T)) which almost denote the same constructions (here
the “target” constant is replaced by the set of “possible targefd’and the “source”
constant is the implicit free FO variable in any mu-calculus formula)

From Lemmas 7 and 8 (which extend to these definitions insideriu-calculus)
and the fact that (the mu-calculus version of) directedhmahbdity : dreach = pX.(CXV
T) is not expressible ird* FO* while bothdreach and its complement are expressible
in 3vI*FO*, one has :

Corollary 1. There are propertiedk,; and R, definable in monadig-calculus such
that R, is expressible i'O* 3 FO* 3* FO* but notin® 3*FO* and R, is express-
iblein IFO*IFO* 3*FO* butnotinFO* ® 3*FO*.

Proof. Take R, = Bool(dreach) andR, = Reach(dreach) and apply Lemmas 7
and 8 to finish the proofm
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