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Abstract. In 1974 R. Fagin proved that properties of structures which are in NP
are exactly the same as those expressible by existential second order sentences,
that is sentences of the form:there exist~P such that', where ~P is a tuple of
relation symbols. and' is a first order formula. Fagin was also the first to study
monadic NP: the class of properties expressible by existential second order sen-
tences where all the quantified relations are unary.
In [AFS00] Ajtai, Fagin and Stockmeyer introduceclosed monadicNP: the class
of properties which can be expressed by a kind of monadic second order exis-
tential formula, where the second order quantifiers can interleave with first order
quantifiers. In order to prove that such alternation of quantifiers gives substantial
additional expressive power they construct graph propertiesP1 andP2: P1 is ex-
pressible by a sentence with the quantifier prefix in the class(98)� E�(98)� 1 but
not by a boolean combination of sentences from monadic NP (i.e with the prefix
of the form

E�(98)�) andP2 is expressible by a sentence
E�(98)� E�(98)� but

not by a Boolean combination of sentences of the form(98)� E�(98)�. A natural
question arises here whether the hierarchy inside closed monadic NP, defined by
the number of blocks of second order existential quantifiers, is strict.
In this paper we present a technology for proving some non expressibility results
for monadic second order logic. As a corollary we get a new, easy, proof of the
two results from [AFS00] mentioned above. With our technology we can also
make a first small step towards an answer to the hierarchy question by showing
that the hierarchy inside closed monadic NP does not collapse on a first order
level. The monadic complexity of properties definable in Kozen’s mu-calculus is
also considered as our technology also applies to the mu-calculus itself.

1 Introduction

1.1 Previous works

In 1974 R. Fagin proved that the properties of structures which are inNP are exactly
the same as those expressible by existential second order sentences, known also as�11? This paper has been written while the author was visiting Laboratoire Bordelais de Recherche
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sentences, i.e. sentences of the form:there exist relations~P such that', where~P is a
tuple of relation symbols (possibly of high arity) and' is a first order formula.

Fagin was also the first to studymonadicNP: the class of properties expressible by
existential second order sentences where all quantified relations are unary. The reason
for studying this class was the belief that it could serve as atraining ground for attacking
the “real problems” like whether NP equals co-NP. It is not hard to show ([F75]) that
monadicNP is different from monadic co-NP. A much stronger result has even been
proved by Matz and Thomas ([MT97]). They show that the monadic hierarchy, the
natural monadic counterpart of the polynomial hierarchy, is strict (a property is in the
k-th level of the monadic hierarchy if it is expressible by a sentence of monadic second
order logic where all the second order quantifiers are at the beginning and there are at
mostk � 1 alternations between second order existential and second order universal
quantifiers).

An important part of research in the area of monadic NP is devoted to the possi-
bility of expressing different variations of graph connectivity. Already Fagin’s proof
that monadic NP is different from monadic co-NP is based on the fact that connectiv-
ity of undirected graphs is not expressible by a sentence in monadic�11 , while non-
connectivity obviously is. Then de Rougemont [dR87] and Schwentick [S95] proved
that connectivity is not in monadic NP even in the presence ofvarious built-in relations.

However, as observed by Kanellakis, the property of reachability (for undirected
graphs) is in monadic NP (reachability is the problem if, fora given graph and two dis-
tinguished nodess andt, there is a path froms to t in this graph). It follows that connec-
tivity, although not in monadic NP, is expressible by a formula of the form8x8y E~P'.
This observation leads to the study ofclosed monadic NP, the class of properties ex-
pressible by a sentence with quantifier prefix of the form( E�(98)�)�, and of theclosed
monadic hierarchy, the class of properties expressible by a sentence with quantifier
prefix of the form(( E�(98)�)�( A�(98)�)�)�.

In [AFS00] and [AFS98] Ajtai, Fagin and Stockmeyer argue that closed monadic
NP is even a more interesting object of study than monadic NP:it is still a subclass of
NP (and also the k-th level of closed monadic hierarchy is still a subclass of the k-th
level of polynomial hierarchy), it is defined by a simple syntax and it is closed under
first order quantifications. In order to prove that such alternation of quantifiers gives
substantial additional expressive power they construct graph propertiesP1 andP2 such
thatP1 is expressible by a sentence with the quantifier prefix in the class(98)� E�(98)�,
but not by a Boolean combination of sentences from monadic NP(i.e with the prefix
of the form

E�(98)�) andP2 is expressible by a sentence
E�(98)� E(98)� but not by

a Boolean combination of sentences of the form(98)� E�(98)�. The non expressibility
results forP1 andP2 in [AFS00] are by no means easy and constitute the main technical
contribution of this long paper. As the authors write:Our most difficult result is the fact
that there is an undirected graph property that is in closed monadic NP but not in
the first order/Boolean closure of monadic NP. In the game corresponding to the first
order/Boolean closure of monadic NP, played over graphsG0 andG1, the spoiler not
only gets to choose which ofG0 andG1 he wishes to color , but he does not have to
make his selection until after a number of pebbling moves hadbeen played. Thus, not
only are we faced with the situation where the spoiler gets tochoose which structure
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to color, but apparently also for the first time, we are being forced to consider a game
where there are pebbling rounds both before and after the coloring round.

There are many natural open questions in the area, most of them stated in [AFS00]:
is the hierarchy inside closed monadic NP strict ? We mean here the hierarchy defined
by the number of blocks of second order existential quantifiers, alternating with first
order quantifiers. Is there any property in the monadic hierarchy (or, equivalently, in the
closed monadic hierarchy) which is not in closed monadic NP ?Is the closed monadic
hierarchy strict ? These questions seem to be quite hard: so far we do not know any
property in the (closed) monadic hierarchy which would not be expressible by a sen-
tence with quantifier prefix

E�(89)� E�(89)�.
1.2 Our contribution

In this paper we present an inductive and compositional technology for proving some
non expressibility results for monadic second order logic.In particular, our technology
gives an alternative simple solution to all the technical problems described in the cita-
tion from [AFS00] above. But unlike the construction in [AFS00], which is specific for
first order/Boolean closure of monadic NP, our technology isuniversal: it deals with
first order/Boolean closure of most monadic classes.

To be more precise, we show how to construct, for any given propertyS not express-
ible by a sentence with quantifier prefix in some non trivial2 classW , two propertiesbool(S) andrea
h(S) which are not much harder thanS and such that (1) propertybool(S) cannot be expressed by boolean combination of sentences with quantifier pre-
fix in W and (2) propertyrea
h(S) cannot be expressed by a sentence with quantifier
prefix vw wherev 2 (9 + 8)� is a block of first order quantifiers andw 2 W . Saying
thatbool(S) andrea
h(S) arenot much harder thanS we mean that ifS is expressible
by a sentence with quantifier prefix in some classV thenbool(S) is expressible by a
sentence with the prefix of the form99v wherev 2 V andrea
h(S) is expressible by
a sentence with the prefix of the form

E8v wherev 2 V . The non expressibility proof
for rea
h generalizes the second author’s proof of the fact that directed reachability is
not expressible by a sentence with the prefix of the form(89)� E�(89)� [M99].

Our lower bounds are proved in the language of Ehrenfeucht-Fraïssé games. To
show that, for example,rea
h(S) cannot be expressed by a sentence with a prefix
of the form 89w wherew 2 W we assume as (inductive) hypothesis that there are
two structuresP 2 S andR 62 S such that Duplicator has a winning strategy in the
game (corresponding to the prefixw) on (P;R). Then we show how to apply some
graph composition methods to get, fromP andR, new structuresP1 2 rea
h(S) andR1 62 rea
h(S) such that Duplicator has a winning strategy in the game (corresponding
to the new prefix89w) on (P1; R1). But since we know nothing aboutP andR our
knowledge aboutP1 andR1 is quite limited, so the strategy for Duplicator uses as a
black box the unknown Duplicator’s strategy in a game on(P;R).

With our technology we can make the first small step answeringthe hierarchy ques-
tions. To be more precise, we show that the hierarchy inside closed monadic NP does

2 see definition below
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not collapse on any first order level. Since we do not need to care if thew (the prefix
which does not expressS) contains, or not, universal second order quantifiers a variety
of results of this kind can also be proved with our technologyabout the structure of
closed monadic hierarchy.

A new, very easy, proof of the results from [AFS00] is just a corollary of our method.

It also appears that - with minor modifications - the above inductive constructions
can also be applied inside Kozen’s mu-calculus [Ko83]. Thisconstitutes a first small
step towards trying to understand, over finite models, the (descriptive) complexity (in
terms of patterns of FO and/or monadic quantifiers’ prefix) ofproperties definable in
the mu-calculus.

2 Technical Part

2.1 Structures

All the structures we consider in this paper are finite graphs(directed or not). The
signature of the structures may also contain some additional unary relations (“colors”)
and constants (s andt).
2.2 Games

Definition 1. 1. A pattern of a monadic game(or just pattern) is any word over the
alphabetf8; 9; A; E;�g.

2. Ifw is a pattern then the pattern�w (dual tow) is inductively defined as8�v, 9�v,
A�v,E�v or ��v if w equals9v, 8v,

Ev,
Av or �v respectively. The dual of the empty

word is the empty word.8 and9 still keep the meaning of universal and existential first order quantifiers,
while

A
and

E
are universal and existential monadic second order (set) quantifiers. As

you will soon see� should be understood as a sort of boolean closure of a game. We
will use the abbreviationFO for the regular expression(8+ 9).
Definition 2. LetP andR be two relational structures over the same signature. Letw
be some pattern. An Ehrenfeucht-Fraïssé game with patternw over (P;R) is then the
following game between 2 players, called Spoiler and Duplicator:

1. If w is the empty word then the game is over and Duplicator wins if the substruc-
tures induced inP and inR by all the constants in the signature are isomorphic.
Spoiler wins if they are not isomorphic.

2. If w is nonempty then:
(a) If w = 9v (w = 8v) for somev then a new constant symbol
 is added to

the signature, Spoiler chooses the interpretation of
 in P (R resp.) and then
Duplicator chooses the interpretation of
 in R (P resp.). Then they play the
game with patternv on the enriched structures.
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(b) If w = Ev (w = Av) for somev then a new unary relation symbolC is added
to the signature, Spoiler chooses the interpretation ofC in P (R resp.) and
then Duplicator chooses the interpretation ofC in R (P resp.) Then they play
the game with patternv on the enriched structures.

(c) If w = �v for somev then Spoiler can decide if he prefers to continue with the
game with patternv or rather with�v. Then they play the game with the pattern
chosen by Spoiler.

The part of the game described by item (a) is called a first order round, or pebbling
round. The part described by item (b) is a second order round,or coloring round.

Definition 3. We say that a property (i.e a class of structures)S is expressible by a
patternw if for each two structuresP 2 S andR 62 S Spoiler has a winning strategy
in the game with patternw on (P;R). If W is a set of patterns then we say thatS is
expressible inW if there exists aw 2 W such thatS is expressible byw.

The following theorem illustrates the links between games and logics. We skip its
proof as well known ( see for example [EF] and [AFS00]):

Theorem 1. 1. Monadic NP is exactly the class of properties expressibleby
E�FO�;

2. The boolean closure of monadic NP is exactly the class of properties expressible by� E�FO�;
3. The first order closure of monadic NP is exactly the class ofproperties expressible

byFO� � E�FO�;
4. 2k-th level of the monadic hierarchy is exactly the class of properties expressible by( E� A�)kFO�;
5. 2k-th level of the closed monadic hierarchy is exactly theclass of properties ex-

pressible by(FO� E� A�)kFO�;
6. Closed monadic NP is exactly the class of properties expressible by(FO� E�)�;

The last theorem motivates:

Definition 4. A non trivial class of game patterns(or just class) is a set of game pat-
terns denoted by a regular expression without union over thealphabetf�; E; A; FOg,
which ends withFO� and contains at least one

A� or
E�

In the sequel, all classes of game patterns we consider are non trivial.

2.3 Graph operations

The techniques we are going to present are inductive and compositional. Inductive
means here that we will assume as a hypothesis that there is a property expressible
by some class of patternsW1 but not byW and then, under this hypothesis, we will
prove that there is a property expressible in the classV1W1 but not in the classV W
whereV1 andV will be some (short) prefixes. The wordcompositionalmeans here
that the pair of structures(PVW ; RVW ) (on which Duplicator has a winning strategy
in aV W game) will be directly constructed from the pair of structures(PW ; RW ) (on
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which Duplicator has a winning strategy in aW game). For this construction we do not
need to know anything about the original structures.

In the sequel, we will assume that all our structures are connected and that the
signature contains a constants (for source). This is possible thanks to the following
natural definition and obvious lemma:

Definition 5. Let S be a property of structures (with the signature without constants). Then
one(S) is the property of structures (with the same signature, enriched with
constants): For everyx distinct froms there is an edge froms tox and the substructure
induced by all the vertices distinct froms has the propertyS.

Lemma 1. If S is expressible byw then
one(S) also is. IfS is not expressible byw
then there is a pair of connected structures(P;R) (see Definition 6 below) such thatP
has the property
one(S), R does not, and Duplicator has a winning strategy in thew
game on(P;R).

Now we introduce some notations for graph operations. As we just mentioned we
assume that all the graphs we are dealing with are connected and have some distin-
guished nodes. Some of them will also have another distinguished nodet (for target).

t1=s2s1 t2

s1

s2

s

s1=s2 s1=s2 t1=t2

P1:P2P1 P2P1P2
Connected pair of graphsP1 andP2

P1P2P1 + P2 P1P2P1 ++ P2
Fig. 1.Some graph operations.

Definition 6. 1. LetU denote the graph containing just two vertices,s andt, and one
edgeE(s; t).

2. IfA is a set of graphs, then�sP2AP (�stP2AP ) is the union of all graphs inA with
all the s vertices identified (resp. and all thet vertices identified). We will use also
the notation�s
P (�st
 P ) if A contains just
 copies of the same structureP . If
there are only two elements, sayP andR in A, then we writeP+R (or P++R)
instead of of�sP2AP (or �stP2AP ).

3. If P is a graph with constantss and t thenP:R (or PR for short) is the graph
being a union ofP andR with t of P identified withs of R (so thats of the new
graph is thes ofP and thet of the new graph is thet ofR if it exists.

4. IfA is a set of graphs then the graph�sP2A(UP ) will be called aconnected set of
graphs. If there are just two elements inA then we will call it aconnected pair of
graphs.
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2.4 Some simple lemmas about games

Let us start with an obvious lemma, which would remain true even without the assump-
tion that the relations introduced during the second order rounds are unary:

Lemma 2. If the graphsP andR are isomorphic then Duplicator has a winning strat-
egy in thew game on(P;R) whateverw is.

The following Lemmas 3-5 are not much harder to prove that Lemma 2 but the
assumption that games are monadic is crucial here:

Lemma 3. If Duplicator has winning strategies inw games on(P1; R1) and on(P2; R2)
then he also has winning strategies inw games on(P1+P2; R1+R2),on(P1++P2; R1++R2)
and on(P1P2; R1R2).
Lemma 4. For every structureP and patternw there exists a numbern such that pro-
videdm � n then Duplicator has winning strategies in thew games on(�smP;�sm+1P )
and(�stmP;�stm+1P )
Proof. Induction on the structure ofw. Use the fact that for a structureP of some fixed
size there are only finitely many colorings of it, so if we haveenough copies some
colorings must repeat many times.

Lemma 5. LetP be a connected pair of structuresP1 andP2 and letR be a connected
pair of structuresR1 andR2. Suppose for some (non trivial3) classV there existsv 2 V
such that Spoiler has a winning strategy on thev games on(P1; R1) and on(P1; R2).
Then there existsw 2 9V such that Spoiler has a winning strategy in thew games on(P;R).
Proof. The strategy of Spoiler is to take as his first constant the source ofP1 in P .
Duplicator must answer either with the source ofR1 or ofR2, and so he must make a
commitment on which of the two structures is going to play therole ofP1 inR now. The
cases are symmetric, so let us assume he decides onR1. Then Spoiler uses his strategy
for thev game on(P1; R1) to win the game. Actually, Spoiler must force Duplicator to
moves only inside the structuresP1 andR1. This can achieved with one more coloring
round (at any time in thev game) subsequently playing aw-game for somew 2 V
sinceV is non trivial. The next remark makes this observation more precise.

Remark 6 After the first round, when Spoiler picks the source ofP1 and Duplicator
answers by the source ofR1, Spoiler must force Duplicator to restrict the moves of the
remaining game only to the structuresP1 andR1. In other words, Spoiler needs to be
sure that each time he picks a constant insideP1 (R1) Duplicator actually answers with
a constant insideR1 (P1). This can be secured with the use of an additional coloring
round: Spoiler paintsP1 (or R1, he is as happy with a

E
round as with a

A
one) with

some color leaving the rest ofP unpainted. Duplicator must answer by paintingR1
(P1) with this color, leaving the rest ofR unpainted. Otherwise, this will be detected by
Spoiler with the use of the final first order rounds. Notice that the additional coloring
round can take place at any moment of the game, and so that the strategy is available
for Spoiler for some9V game sinceV is a nontrivial class of patterns.

3 see Definition 4
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2.5 A tool for the boolean closure

LetS be any property. Then, a connected pair of structuresUP+UR will be calledSS
if both the structuresP andR belong toS, �SS if exactly one of them belongs toS and�S �S otherwise.

Definition 7. For a propertyS definebool(S) as the property:the structure is a con-
nected set of connected pairs of structures, and at least oneof those pairs is�SS .

Lemma 7. Suppose a propertyS is not expressible in classW , but bothS and its
complement�S are expressible in some other classV . Thenbool(S) is not expressible
in �W but is expressible in99V .

Proof. Let us first show that there existsw 2 V such that, providedP 2 bool(S) andR 62 bool(S), Spoiler has a winning strategy in the99w game on(P;R). This will prove
that propertybool(S) is expressible by99V .

First observe that ifR is not a connected set of pairs then either the vertices ofR at
distance less than 2 froms do not form a tree, or there is a vertex at distance 2 froms
whose degree is not 3, orR is not connected, or there is a vertexx at distance 2 froms such that the structure resulting from removingx (and all the three adjacent edges)
fromR has less than 3 connected components. In each of those cases Spoiler can win
some game in9V for every nontrivialV .

If R is a connected set of pairs then in his first move Spoiler takesas his constant
the source of some�SS pair inP . Duplicator must answer by showing a source of some
pair inR. There are two cases: either Duplicator shows a source of someSS pair inR
or a source of some�S �S pair inR. In each of the two cases we may think that one pair
of structures has been selected inP and one inR. Spoiler can restrict the game to the
two selected pairs (see Remark 6). Then we use Lemma 5 to finishthe proof.

Now we will show that whatever a pattern�w is, wherew 2 W , there exist two
structuresP 2 bool(S) andR 62 bool(S) such that Duplicator has a winning strategy in
the�w game on(P;R). Let (P1; R1) be such a pair of structures thatP1 2 S, R1 62 S
and Duplicator has a winning strategy in thew game on(P1; R1). Let 
 be some huge
constant. LetR = �s
 (U(UP1+UP1)+U(UR1+UR1)). SoR is a connected set
of 2
 connected pairs,
 of them are�S �S and
 areSS. Obviously,R 62 bool(S). LetP = R+U(UP1+UR1) beR with one more pair, aS �S one, so thatP 2 bool(S).

Now, if Spoiler in his first move decides to play the gamew onP andR then remark
thatP isQ1+Q2+Q3 whereQ1 = �s
 (U(UP1+UP1)), Q2 = �s
 (U(UR1+UR1))
andQ3 = U(UR1+UP1) whileR isQ4+Q5+Q6 whereQ4 = �s
 (U(UP1+UP1)),Q5 = �s
�1 (U(UR1+UR1)) andQ6 = U(UR1+UR1). We know that Duplica-
tor has a winning strategies inw games on(Q1; Q4) (by Lemma 2), on(Q2; Q5) (by
Lemma 4) and on(Q3; Q6) (by Lemma 3, since he has a winning strategy in aw game
on (P1; R1)). So, again by Lemma 3 he has a winning strategy inw game on(P;R).

If Spoiler decides in his first round to continue with�w rather thanw then takeQ1; Q2; Q3 as before butQ4 = �s
�1 (U(UP1+UP1)), Q5 = �s
 (U(UR1+UR1))Q6 = U(UP1+UP1) and use the same reasoning, using the fact that Duplicator has a
winning strategy in the�w game on(R1; P1).
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2.6 A tool for first order quantifiers

Now the signature of our structures will contain additionalunary relation symbolG
(for gate). For a given structureP , and for two its verticesx; y, such thatG(y) holds
letPx;y be the structure consisting of the connected component ofP �fxg, containingy as its source.P � fxg is here understood to be the structure resulting fromP after
removingx and all its adjacent edges. SoPx;y could be read as ”the structure you enter
from x crossing the gatey” (see Figure 2).

s tPx;y x
with G(y)P y

Fig. 2.Px;y is the structure you enter fromx crossing the gatey.

Definition 8. LetS be some property of structures. Then reach(S) will be the following
property (of a structureP ): there is a path froms to t such that for everyx on this path
it holds that (i)x 62 G and (ii) for everyy such thatE(x; y) andG(y) the structurePx;y
has the propertyS.

By apath froms to t we mean a subsetH of the set of vertices of the structure such
thats; t 2 H , each ofs andt has exactly one adjacent vertex inH and each element
of H which is neithers nor t has exactly 2 adjacent vertices inH . The fact thatH is a
path is expressible byFO�.
Lemma 8. 1. Suppose a propertyS is not expressible in some classW . Then reach(S)

is not expressible inFO�W ;
2. Suppose a propertyS is expressible in some classW . Then reach(S) is expressible

in the class
E88W .

Proof. 1. First of all we will show that ifS is not expressible inW , then also reach(S) is
not expressible inW . For a givenw 2W there are structuresP andR such thatP 2 S,R 62 S and Duplicator has a winning strategy in thew game on(P;R). Consider a struc-
tureT whose only elements ares; t; x; y, whose edges areE(s; x); E(x; t); E(x; y) and
for whichG(y) holds. LetP0 be the union ofT andP , with y of T identified withs ofP . Thes andt of P0 ares andt of T . LetR0 be the structure constructed in the same
way fromT andR. Then obviouslyP0 2 rea
h(S), R0 62 rea
h(S) and Duplicator
has a winning strategy in thew game on(P0; R0). Notice that bothP0 andR0 have the
following property :

(*) (property of structure Q) ifx is reachable froms or from t by a path disjoint
fromG and if y is such thatG(y) andE(x; y) thenQxy contains neithers of Q nor t
of Q.
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Now let P andR be structures, both satisfying (*) and such thatP 2 rea
h(S),R 62 rea
h(S) and Duplicator has a winning strategy in aw game on(P;R). In order
to prove our claim it is enough (by induction) to construct structures(P1; R1) both
satisfying (*) and such thatP1 2 rea
h(S), R1 62 rea
h(S) and Duplicator has a
winning strategy in a89w game on(P1; R1). Letn be a huge enough constant. Define:R1 = (�stn (PR))++(�stn (RP )) andP1 = R1++PP . ObviouslyP1 2 rea
h(S) andR1 62 rea
h(S) hold. Now will show a winning strategy for Duplicator in a89w game
on (P1; R1). In his first round Spoiler selects some constant inR1. Duplicator answers
with the same constant inP1 (this is possible sinceR1 can be viewed as a subset ofP1).
Now notice that after this first roundR1 can be seen asRP++PR++(�stn�1(PR))++(�stn�1(RP ))
andP1 as RP++PR++(�stn�1(PR))++(�stn�1(RP ))++PP
where the constant selected in the first round is in the firstRP++PR, both inR1 and inP1. By Lemma 2 and Lemma 3 it is now enough to show that Duplicatorhas a winning
strategy in the remaining9w game on(P2; R2) whereP2 = �stn�1(PR))++(�stn�1(RP ))++PP
and R2 = �stn�1(PR))++(�stn�1(RP ))
Let Spoiler select some constant inP2.

If Spoiler selects a constant in�stn�1(PR))++(�stn�1(RP )) then Duplicator an-
swers with the same constant inR2 and then wins easily. The only interesting case
is when Spoiler selects his constant inPP . Suppose it is selected in the firstP (the
other case is symmetric). Then Duplicator answers by selecting the same constant in
the P of somePR in R2. Notice thatP2 = Q1++Q2++(�stn�1(RP )) andR2 =Q3++Q4++(�stn�1(RP )), whereQ1 = PP , Q2 = �stn�1(PR)), Q3 = PR andQ4 = �stn�2(PR)), and where some constant is already fixed in the firstP of Q1
and in theP of Q3. Now thew game remains to be played. But since Duplicator has a
winning strategy in thew game on(P;R) he also has (by Lemmas 2 and 3) a winning
strategy in aw game on(Q1; Q3). By Lemma 4 he has a winning strategy in aw game
on (Q2; Q4) and so, again by Lemma 3 we get a winning strategy for Duplicator in the9w game on(P2; R2).

2. SupposeP 2 rea
h(S) andR 62 rea
h(S). Spoiler, in his first move fixes a path
in P , as in the definition ofrea
h(S). Duplicator answers selecting a set inR. If the
set selected by Duplicator is not a path froms to t then Spoiler only needs some fixed
number of first order rounds to win. If it is such a path then there must be somex on the
path, and somey such thatE(x; y), G(y) hold inR andRx;y 62 S. Now Spoiler uses
his two first order universal rounds to fix thosex andy. Duplicator answers with some
two pointsz; t in P such thatE(z; t) andG(t) hold inP . But, sinceP 2 rea
h(S) it
turns out thatPz;t 2 S, so Spoiler can use rounds of the remainingw game to secure
a win (a trick from Remark 6 will be needed here to restrict thew game toPx;y; Rz;t).
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Remark 9 The role of predicateG is not crucial for the construction above. It could be
replaced by a graph gadget if the reader wishes to seeP2 being a property of undirected
uncolored graphs.

Another way to avoid the unary relation G (as suggested by Larry Stockmeyer) is to
definerea
h(S) as: there is a path froms to t such that for everyx on this path and
everyy such thatE(x; y) andy is not on this path, the structurePx;y has the propertyS.

2.7 Corollaries

As the first application of our toolkit we reprove the resultsfrom [AFS00]:

Theorem 2. There exists propertyP1 expressible inFO� E�FO� but not in� E�FO�.
There exists propertyP2 expressible in

EFO� E�FO� but not inFO� � E�FO�.
Proof. Let Cted be the property of connectivity. It is well known thatCted is not
expressible in

E�FO� but bothCted and its complement are expressible in88 E�FO�.
now takeP1 = bool(
one(Cted)) andP2 = rea
h(bool(
one(Cted))). Use Lemmas
7 and 8 to finish the proof.

A new result we can prove is that even if the hierarchy inside closed monadic NP
collapses, it does not collapse on a first order level:

Theorem 3. If there is a property expressible inFO�W but not inW , whereW =( E�FO�)k then there is a property expressible in
EFO�W but not inFO�W .

Proof. This follows immediately from Lemma 8
Several similar results can be proved for the closed monadichierarchy or reproved for
the monadic hierarchy (see [MT97] and [Ma99] sections 4.4 and 4.5).

It is interesting to remark that the inductive constructions presented here are also de-
finable (with minor and insignificant variations) inside Kozen’s propositional�-calculus
[Ko83].

More precisely, given some unary predicatesS, one may define in the�-calculus
the new predicates that depend onS: Bool(S) = 3(3S ^ 3:S) andRea
h(S) =�X:(2(G ) S) ^ (3X _ T )) which almost denote the same constructions (here
the “target” constantt is replaced by the set of “possible targets”T and the “source”
constants is the implicit free FO variable in any mu-calculus formula).

From Lemmas 7 and 8 (which extend to these definitions inside the mu-calculus)
and the fact that (the mu-calculus version of) directed reachability :drea
h = �X:(3X_T ) is not expressible in

E�FO� while bothdrea
h and its complement are expressible
in

E8 E�FO�, one has :

Corollary 1. There are propertiesR1 andR2 definable in monadic�-calculus such
thatR1 is expressible inFO� EFO� E�FO� but not in� E�FO� andR2 is express-
ible in

EFO� EFO� E�FO� but not inFO� � E�FO�.
Proof. TakeR1 = Bool(drea
h) andR2 = Rea
h(drea
h) and apply Lemmas 7
and 8 to finish the proof.
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