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1. From strings to overlapping tiles

As an introduction
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
1

Memoryless resulting value s · w : string

• •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b •
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
a

Memoryless resulting value s · w : string

• •a • •b • •a

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a •
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
ab

Memoryless resulting value s · w : string

• •a • •b • •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b •
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄

Memoryless resulting value s · w : string

• •a • •b • •a

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b•
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄ā

Memoryless resulting value s · w : string

• •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b•
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄

Memoryless resulting value s · w : string

• •a

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b• •b•
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄b

Memoryless resulting value s · w : string

• •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b• •b •
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From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄bb

Memoryless resulting value s · w : string

• •a • •b • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •
a 6= b

• •b• •b • Undefined !



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄bb

Memoryless resulting value s · w : string

• •a • •b • •b

Resulting value with tree-shaped memory: birooted trees

•• •a • •b • •a • •b• •b

•

•

•b
(see ICALP 2013)
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(Towards) non classical language theory

What language theoretic tools ?
Automata, partial algebra, logic. . . for languages of sequences of
actions ?
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2. Overlapping tiles monoids

Towards McAlister (inverse) monoid [5]
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The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles

• •
u1 •• •

u2 •• •
u3

(positive)

(u)
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The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles

• •
u1 •• •

u2 •• •
u3

(negative)

(u′)
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The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles product

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)
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The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles product

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)

Synchronization
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The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles product

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)

• •
w1 •• •

w2 •• •
w3

(u · v)

Fusion when u1u2 ∨s v1 6= 0 and u3 ∨p v2v3 6= 0
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The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)

(u · v) 0

and undefined otherwise
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Inverses

Monoid T 0
A is an inverse monoid [6, 4]

Inverses : u · u−1 · u = u and u−1 · u · u−1 = u−1 (unique)

(u) • •
u1 •• •

u2 •• •
u3

(u−1) • •
u1 •• •

u2 •• •
u3
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Inverses and idempotents
Monoid T 0

A is an inverse monoid [6, 4]

Inverses : u · u−1 · u = u and u−1 · u · u−1 = u−1 (unique)

(u) • •
u1 •• •

u2 •• •
u3

(u−1) • •
u1 •• •

u2 •• •
u3

Idempotents : e · e = e (or projections uu−1 and u−1u)

(uR = u · u−1) • •
u1 ••••• •

u2 • •
u3

(uL = u−1 · u) • •
u1 • •

u2 ••••• •
u3
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Natural order

Definition: 0 ≤ v ≤ u

(u) • •
u1 •• •

u2 •• •
u3

(v) • •
v ′1 • •

u1 •• •
u2 •• •

u3 • •
v ′3

Lemma
v ≤ u iff v = vRu iff v = uvL

Lemma (subunits vs idempotents vs self inverse)
e ≤ 1 iff e · e = e iff e−1 = e
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3. Overlapping tile automata

Automata for overlapping tiles



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Overlapping tiles as FO-structures

Induced FO-structure
Every non zero overlapping tile u, e.g.

(u) • •ab •• •abc •• •b

is just seen as a linear directed graph with labeled edge and
distinguished input and output vertex, e.g.

(u) • •a • •b • •a • •b • •c • •b• •

with :
domain dom(u) as set of vertices,
relations a→⊆ dom(u)× dom(u),
one for every letter a ∈ A, as edge relations,
and input inu and output outu ∈ dom(u).
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Overlapping tile automata

Automaton : A = 〈Q, δ,W 〉
with a (finite) set of states Q, a transition table δ : A→ P(Q ×Q)
and an acceptance pairs W ⊆ Q × Q.

Run of A on a tile u : ρ : dom(u)→ Q
such that, if x a→ y then (ρ(x), ρ(y)) ∈ δ(a)
for every x , y ∈ dom(u), every a ∈ A,

(u) • •a • •b • •a • •b • •c • •b• •
q0 q1 q2 q3 q4 q5 q6

with (q0, q1), (q2, q3) ∈ δ(a), (q1, q2), (q3, q4), (q5, q6) ∈ δ(b) and
(q4, q5) ∈ δ(c).

Accepting : (ρ(inu), ρ(outu)) ∈ W
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Tile automata languages
Recognized languages L(A)

defined as the set of (non zero) overlapping tile u such that there
is a an accepting run of A on u.

Remark
Every language L recognized by an automaton is upward closed in
the natural order and definable in MSO.

Theorem (MSO↑)
A language of overlapping tiles L ⊆ TA − 0 is recognized by a finite
state tile automaton if and only if L is definable in MSO and
upward closed.

Corollary
This class of languages if closed under union, intersection,
projection, inverse, and . . . upward closed product or star.
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4. Quasi-recognizability

Algebras for the boolean closure of upward closed MSO definable
languages
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Towards an associated algebra
Induced premorphism
Let A = 〈Q, δ,∆,W 〉 be an automaton and let

ϕ : TA → P(Q × Q)

be the mapping defined by ϕ(0) = ∅ and, for every non zero tile u.

ϕ(u) = {(ρ(inu), ρ(outu)) ∈ Q × Q : run ρ of A on u}

Lemma
The mapping ϕ recognizes L(A) in the sense that
L(A) = ϕ−1(ϕ(L(A))).

Remark
With X ⊆ P(Q × Q) the language ϕ−1(X )− 0 ⊆ TA is
Boolf (MSO↑).
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Towards an associated algebra

Lemma
The sub-monoid induced by ϕ(TA) ordered by inclusion is a
partially ordered monoid.

Lemma
The mapping ϕ is a ∨-premorphism, i.e. for every B and C ∈ TA:

if B ≤ C then ϕ(B) ⊆ ϕ(C)

ϕ(B · C) ⊆ ϕ(B) · ϕ(C)

Question
Find a more complete axiomatization of these ordered monoids and
premorphisms ?
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Algebras for languages of overlapping tiles
Definition (Adequately ordered monoid)
A monoid S such that:

the order is stable, i.e. for every x , y and z ∈ S, if x ≤ y then
z · x ≤ z · y and x · z ≤ x · y ,
subunits are idempotents, i.e. for every
x ∈ U(S) = {x ∈ S : x ≤ 1} we have xx = x ,
for every x ∈ S, both the left projection
xL = min{z ∈ U(S) : x · z = x} and the right projection
xR = min{z ∈ U(S) : z · x = x} exists (in U(S)).

Examples
(1) Every trivially ordered monoid with xL = xR = 1.
(2) Every naturally ordered inverse monoid with xL = x−1x and
xR = xx−1.
(3) Every finite partially ordered monoid with idempotent subunits.
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Algebras for languages of overlapping tiles

Definition (Adequate premorphism)
A mapping ϕ : S → T with S and T two adequately ordered
monoids such that:

ϕ is monotonic, submultiplicative with ϕ(1) = 1.
ϕ preserves disjoint product, i.e. for every x and y ∈ S such
that x · y 6= 0 and xL ∨ yR = 1 we have ϕ(x · y) = ϕ(x) ·ϕ(y),
ϕ preserves left and right projections, i.e. for every x ∈ S we
have ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R .

Example
The canonical mapping ϕ : TA → P(Q × Q) induced by an
automaton A.
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Quasi-recognizable languages

Definition
A language L ⊆ TA is quasi-recognizable (QREC) when there
exists a finite adequately ordered monoid S and an adequate
premorphism ϕ : TA → S such that L = ϕ−1(ϕ(L)).

Lemma (Effectiveness)
Let ϕ : TA → S be an adequate premorphism with finite S.
For every B ∈ TA, the image ϕ(B) of B is computable in linear
time in B.

Proof.
Thanks to some canonical disjoint decomposition property.
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Expressiveness of QREC

Theorem
A language L is QREC if and only if L is a finite boolean
combination of languages recog. by finite state automata, i.e.
QREC=BOOL(MSO↑).

proof.
(QREC) ⇒ MSO : simulate disjoint decomposition.

(QREC + MSO) ⇒ BOOL(MSO↑) : let ϕ : TA → S an adequate
premorphism with finite S. For every x ∈ S we have:

ϕ−1(x) =

 ⋃
y∈x↑

ϕ−1(y)


︸ ︷︷ ︸

MSO↑

∩

 ⋃
y∈x↓

ϕ−1(y)


︸ ︷︷ ︸

MSO↓
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Expressiveness of QREC

proof (continued).
BOOL(MSO↑) ⇒ QREC : since MSO↑ ⊆ QREC and QREC is
closed under complement, it suffices to prove closure under union.
Let ϕ1 : TA → S1 and ϕ2 : TA → S1 two adequate premorphisms
with finite S1 and S2.
Then S1 × S2 is adequately ordered and

ϕ = 〈ϕ1, ϕ2〉 : TA → S1 × S2

recognizes the union of any languages L1 and L2 resp. recognized
by ϕ1 and ϕ2.
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5. Beyond automata

Where we eventually show that QREC is strictly included in MSO
(this result is obtained after the presentation, following Marc
Zeitoun remark)
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BOOL(MSO↑) vs MSO

Theorem
There are MSO definable languages of tiles that are not QREC
henceforth, equivalently, not BOOL(MSO↑).

Proof.
Take un = (1, an, 1), en = un · u−1

n and L = {e2n : n ∈ ω}.
(e0 ∈ L) ••

(e1 6∈ L) ••• •a

(e2 ∈ L) ••• •aa

(e3 6∈ L) ••• •aaa

(e4 ∈ L) ••• •aaaa

etc. . .
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6. Conclusion
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Works in progress

QREC and languages of finite trees [1].
Tile programming [2].
Musical tiles [3]
“Syntactic” adequately ordered monoid ?
Birooted infinite words or even trees ?
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