
From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Overlapping tile automata:
towards a language theory of overlapping structures

David Janin
LaBRI, Université de Bordeaux

Computer Science in Russia,
Ekaterinburg, june 2013



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

1. From strings to overlapping tiles

As an introduction



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
1

Memoryless resulting value s · w : string

• •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b •



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
a

Memoryless resulting value s · w : string

• •a • •b • •a

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a •



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
ab

Memoryless resulting value s · w : string

• •a • •b • •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b •



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄

Memoryless resulting value s · w : string

• •a • •b • •a

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b•



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄ā

Memoryless resulting value s · w : string

• •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b•



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄

Memoryless resulting value s · w : string

• •a

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b• •b•



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄b

Memoryless resulting value s · w : string

• •a • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •a • •b• •b •



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄bb

Memoryless resulting value s · w : string

• •a • •b • •b

Resulting value with linear memory: overlapping tiles

•• •a • •b • •
a 6= b

• •b• •b • Undefined !



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

From strings to strings with memory
Alphabet A = {a, b, c, · · · } and dual alphabet Ā = {ā, b̄, c̄, · · · }

Right action sequence w with add (A) or remove (Ā)
abb̄āb̄bb

Memoryless resulting value s · w : string

• •a • •b • •b

Resulting value with tree-shaped memory: birooted trees

•• •a • •b • •a • •b• •b

•

•

•b
(see ICALP 2013)



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

(Towards) non classical language theory

What language theoretic tools ?
Automata, partial algebra, logic. . . for languages of sequences of
actions ?



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

2. Overlapping tiles monoids

Towards McAlister (inverse) monoid [5]



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles

• •
u1 •• •

u2 •• •
u3

(positive)

(u)



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles

• •
u1 •• •

u2 •• •
u3

(negative)

(u′)



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles product

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles product

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)

Synchronization



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles product

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)

• •
w1 •• •

w2 •• •
w3

(u · v)

Fusion when u1u2 ∨s v1 6= 0 and u3 ∨p v2v3 6= 0



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

The monoid TA of overlapping tiles (McAlister 70’s)

Given alphabet A:

Overlapping tiles

• •
u1 •• •

u2 •• •
u3

(u)

• •
v1 •• •

v2 •• •
v3

(v)

(u · v) 0

and undefined otherwise



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Inverses

Monoid T 0
A is an inverse monoid [6, 4]

Inverses : u · u−1 · u = u and u−1 · u · u−1 = u−1 (unique)

(u) • •
u1 •• •

u2 •• •
u3

(u−1) • •
u1 •• •

u2 •• •
u3



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Inverses and idempotents
Monoid T 0

A is an inverse monoid [6, 4]

Inverses : u · u−1 · u = u and u−1 · u · u−1 = u−1 (unique)

(u) • •
u1 •• •

u2 •• •
u3

(u−1) • •
u1 •• •

u2 •• •
u3

Idempotents : e · e = e (or projections uu−1 and u−1u)

(uR = u · u−1) • •
u1 ••••• •

u2 • •
u3

(uL = u−1 · u) • •
u1 • •

u2 ••••• •
u3



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Natural order

Definition: 0 ≤ v ≤ u

(u) • •
u1 •• •

u2 •• •
u3

(v) • •
v ′1 • •

u1 •• •
u2 •• •

u3 • •
v ′3

Lemma
v ≤ u iff v = vRu iff v = uvL

Lemma (subunits vs idempotents vs self inverse)
e ≤ 1 iff e · e = e iff e−1 = e



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

3. Overlapping tile automata

Automata for overlapping tiles



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Overlapping tiles as FO-structures

Induced FO-structure
Every non zero overlapping tile u, e.g.

(u) • •ab •• •abc •• •b

is just seen as a linear directed graph with labeled edge and
distinguished input and output vertex, e.g.

(u) • •a • •b • •a • •b • •c • •b• •

with :
domain dom(u) as set of vertices,
relations a→⊆ dom(u)× dom(u),
one for every letter a ∈ A, as edge relations,
and input inu and output outu ∈ dom(u).



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Overlapping tile automata

Automaton : A = 〈Q, δ,W 〉
with a (finite) set of states Q, a transition table δ : A→ P(Q ×Q)
and an acceptance pairs W ⊆ Q × Q.

Run of A on a tile u : ρ : dom(u)→ Q
such that, if x a→ y then (ρ(x), ρ(y)) ∈ δ(a)
for every x , y ∈ dom(u), every a ∈ A,

(u) • •a • •b • •a • •b • •c • •b• •
q0 q1 q2 q3 q4 q5 q6

with (q0, q1), (q2, q3) ∈ δ(a), (q1, q2), (q3, q4), (q5, q6) ∈ δ(b) and
(q4, q5) ∈ δ(c).

Accepting : (ρ(inu), ρ(outu)) ∈ W



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Tile automata languages
Recognized languages L(A)

defined as the set of (non zero) overlapping tile u such that there
is a an accepting run of A on u.

Remark
Every language L recognized by an automaton is upward closed in
the natural order and definable in MSO.

Theorem (MSO↑)
A language of overlapping tiles L ⊆ TA − 0 is recognized by a finite
state tile automaton if and only if L is definable in MSO and
upward closed.

Corollary
This class of languages if closed under union, intersection,
projection, inverse, and . . . upward closed product or star.



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

4. Quasi-recognizability

Algebras for the boolean closure of upward closed MSO definable
languages



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Towards an associated algebra
Induced premorphism
Let A = 〈Q, δ,∆,W 〉 be an automaton and let

ϕ : TA → P(Q × Q)

be the mapping defined by ϕ(0) = ∅ and, for every non zero tile u.

ϕ(u) = {(ρ(inu), ρ(outu)) ∈ Q × Q : run ρ of A on u}

Lemma
The mapping ϕ recognizes L(A) in the sense that
L(A) = ϕ−1(ϕ(L(A))).

Remark
With X ⊆ P(Q × Q) the language ϕ−1(X )− 0 ⊆ TA is
Boolf (MSO↑).



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Towards an associated algebra

Lemma
The sub-monoid induced by ϕ(TA) ordered by inclusion is a
partially ordered monoid.

Lemma
The mapping ϕ is a ∨-premorphism, i.e. for every B and C ∈ TA:

if B ≤ C then ϕ(B) ⊆ ϕ(C)

ϕ(B · C) ⊆ ϕ(B) · ϕ(C)

Question
Find a more complete axiomatization of these ordered monoids and
premorphisms ?



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Algebras for languages of overlapping tiles
Definition (Adequately ordered monoid)
A monoid S such that:

the order is stable, i.e. for every x , y and z ∈ S, if x ≤ y then
z · x ≤ z · y and x · z ≤ x · y ,
subunits are idempotents, i.e. for every
x ∈ U(S) = {x ∈ S : x ≤ 1} we have xx = x ,
for every x ∈ S, both the left projection
xL = min{z ∈ U(S) : x · z = x} and the right projection
xR = min{z ∈ U(S) : z · x = x} exists (in U(S)).

Examples
(1) Every trivially ordered monoid with xL = xR = 1.
(2) Every naturally ordered inverse monoid with xL = x−1x and
xR = xx−1.
(3) Every finite partially ordered monoid with idempotent subunits.



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Algebras for languages of overlapping tiles

Definition (Adequate premorphism)
A mapping ϕ : S → T with S and T two adequately ordered
monoids such that:

ϕ is monotonic, submultiplicative with ϕ(1) = 1.
ϕ preserves disjoint product, i.e. for every x and y ∈ S such
that x · y 6= 0 and xL ∨ yR = 1 we have ϕ(x · y) = ϕ(x) ·ϕ(y),
ϕ preserves left and right projections, i.e. for every x ∈ S we
have ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R .

Example
The canonical mapping ϕ : TA → P(Q × Q) induced by an
automaton A.



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Quasi-recognizable languages

Definition
A language L ⊆ TA is quasi-recognizable (QREC) when there
exists a finite adequately ordered monoid S and an adequate
premorphism ϕ : TA → S such that L = ϕ−1(ϕ(L)).

Lemma (Effectiveness)
Let ϕ : TA → S be an adequate premorphism with finite S.
For every B ∈ TA, the image ϕ(B) of B is computable in linear
time in B.

Proof.
Thanks to some canonical disjoint decomposition property.



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Expressiveness of QREC

Theorem
A language L is QREC if and only if L is a finite boolean
combination of languages recog. by finite state automata, i.e.
QREC=BOOL(MSO↑).

proof.
(QREC) ⇒ MSO : simulate disjoint decomposition.

(QREC + MSO) ⇒ BOOL(MSO↑) : let ϕ : TA → S an adequate
premorphism with finite S. For every x ∈ S we have:

ϕ−1(x) =

 ⋃
y∈x↑

ϕ−1(y)


︸ ︷︷ ︸

MSO↑

∩

 ⋃
y∈x↓

ϕ−1(y)


︸ ︷︷ ︸

MSO↓



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Expressiveness of QREC

proof (continued).
BOOL(MSO↑) ⇒ QREC : since MSO↑ ⊆ QREC and QREC is
closed under complement, it suffices to prove closure under union.
Let ϕ1 : TA → S1 and ϕ2 : TA → S1 two adequate premorphisms
with finite S1 and S2.
Then S1 × S2 is adequately ordered and

ϕ = 〈ϕ1, ϕ2〉 : TA → S1 × S2

recognizes the union of any languages L1 and L2 resp. recognized
by ϕ1 and ϕ2.



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

5. Beyond automata

Where we eventually show that QREC is strictly included in MSO
(this result is obtained after the presentation, following Marc
Zeitoun remark)



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

BOOL(MSO↑) vs MSO

Theorem
There are MSO definable languages of tiles that are not QREC
henceforth, equivalently, not BOOL(MSO↑).

Proof.
Take un = (1, an, 1), en = un · u−1

n and L = {e2n : n ∈ ω}.
(e0 ∈ L) ••

(e1 6∈ L) ••• •a

(e2 ∈ L) ••• •aa

(e3 6∈ L) ••• •aaa

(e4 ∈ L) ••• •aaaa

etc. . .



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

6. Conclusion



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

Works in progress

QREC and languages of finite trees [1].
Tile programming [2].
Musical tiles [3]
“Syntactic” adequately ordered monoid ?
Birooted infinite words or even trees ?



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

[1] D. Janin.
Algebras, automata and logic for languages of labeled birooted
trees.
In Int. Col. on Aut., Lang. and Programming (ICALP), volume
7966 of LNCS, pages 318–329. Springer, 2013.

[2] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and
S. Salvati.
The T-calculus : towards a structured programming of
(musical) time and space.
Technical Report RR-1466-13, LaBRI, Université de Bordeaux,
2013.

[3] D. Janin, F. Berthaut, and M. DeSainteCatherine.
Multi-scale design of interactive music systems : the libTuiles
experiment.
In Sound and Music Computing (SMC), 2013.

[4] M. V. Lawson.
Inverse Semigroups : The theory of partial symmetries.



From strings to overlapping tiles Overlapping tiles monoids Overlapping tile automata Quasi-recognizability Beyond automata Conclusion

World Scientific, 1998.
[5] M. V. Lawson.

McAlister semigroups.
Journal of Algebra, 202(1):276 – 294, 1998.

[6] M. Pietrich.
Inverse semigroups.
Wiley, 1984.


	From strings to overlapping tiles
	Overlapping tiles monoids
	Overlapping tile automata
	Quasi-recognizability
	Beyond automata
	Conclusion

