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Algebras for finite trees : the functional approach

Leaf to tree substitution
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Remark
Infinitely many sorts/unbounded arity
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Algebras for finite trees : the forest approach

Forest concatenation and conversion to trees

T1 • T2 • T3

T1 T2 T3

Remark
Two sorted algebra
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Algebras for finite trees : the (overlapping) tile approach

Tree enriched with “input” and “ouput” roots
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Product = synchronization + fusion

Remark
Partial product (made complete with a zero). A modeling facility
in computational music [1, 2]
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Question
Automata, algebras and logic for languages of overlapping tiles ?
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1. Labeled birooted trees

Musing around Scheiblich-Munn presentation of the Free inverse
monoids
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Labeled Munn’s trees (or birooted F -trees)

Let F be a finite vertex alphabet, let A be a finite edge alphabet A.

Birooted F -tree
A finite directed tree-shaped graph with F -labeled vertices and
A-labeled edges, both forward and backward deterministic,
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with distinguished input root and output output root.
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Birooted F -trees product

Product = sync + fusion
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or the undefined birooted tree 0 when fusion fails.
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An inverse semigroup

Semigroup/Monoid
The set B(F ) of birooted F -tree is a semigroup.
When F is a singleton, it is isomorphic to FIM(A).
Otherwise, it is extended with a unit 1.
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Lemma (Inverses)
For every B ∈ B(F ) there exists a unique B−1 ∈ B(F ) such that

B · B−1 · B = B and B−1 · B · B−1 = B−1
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Left and right projections (and Green’s relations)

Elements B · B−1 and B−1 · B are idempotents
BR = B · B−1
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and BL = B−1 · B
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with BR = CR iff BRC (resp. BL = CL iff BLC).
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The natural order

Definition (Natural Order)
For every B and C , let B ≤ C when B = BRC (equivalently
B = CBL).
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Lemma
The natural order is stable under product and the idempotents are
the subunits U(B(F )) = {B ∈ B(F ) : B ≤ 1}.
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2. Languages

From REC to MSO
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Languages of birooted F -trees

Operations on languages
Given M and N ⊆ B(F )− 0:

sum : M + N = M ∪ N,
product : M · N = {B · C : B ∈ M,C ∈ N,B · C 6= 0},
star : M∗ =

⋃
n∈NMn with M0 = {1} and Mn+1 = M ·Mn,

inverse : M−1 = {B−1 : B ∈ M},
idempotent projection : ME = {B : B ∈ M,B · B = B},
left and right projection : ML = {B−1 · B : B ∈ M} and
MR = {B · B−1 : B ∈ M},
others . . .

with upward or downward closed variants.
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First facts

Theorem (Robustness)
The class of languages of birooted trees definable in MSO is closed
under all operators including upward and downward closure w.r.t.
the natural order.

Lemma (Hierarchy)

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO

where k in k-REG is the maximum allowed nested-depth of context
projection operators.

Question
Automata/algebras for a rich class of languages of birooted trees ?

REC ⊂ ? ⊂ MSO
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3. Automata : MSO↑

Non deterministic automata for languages of birooted F -trees
Walking automata are considered elsewhere [3].
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Birooted F -tree automata
Automaton : A = 〈Q, δ,∆,W 〉
with a (finite) set of states Q, a state table δ : F → P(Q), a
transition table ∆ : A→ P(Q × Q) and an acceptance condition
W ⊆ Q × Q.

Run of A on B : ρ : dom(B)→ Q
with, for every v ∈ dom(B)

state coherence : ρ(v) ∈ δ(fv ),
and for every for w ∈ dom(B) with v a→ w for some a ∈ A:

(fv , ρ(v)) (fw , ρ(w))
a

transition coherence : (ρ(v), ρ(w)) ∈ ∆(a).
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Tile automata languages

Accepting runs
Run ρ : dom(B)→ Q of A on B is accepting when
(ρ(inB), ρ(outB)) ∈W .

(fin, ρ(inB)) (fout , ρ(outB))
u

Recognized language L(A)

The language L(A) is defined as the set of (non zero) birooted
F -tree B ∈ B(F ) such that there is a an accepting run of A on B.
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An example: boolean birooted trees
Fact
One can define (via a bottom tree automaton) the birooted F -tree
automaton for (some closure of) the language of idempotent
birooted boolean trees that “evaluate” to true.
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1
b

1a

1
b

Remark
Birooted tree automata languages belongs to MonΣ1.
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Expressiveness
Remark
Every language L recognized by an automaton is upward closed in
the natural order.

Theorem (MSO↑)
A language of birooted F -trees L ⊆ B(F ) is recognized by a finite
state tile automaton if and only if L is definable in MSO and
upward closed.

Proof.
Slightly technical encoding of automata for mono-rooted tree (with
distinguished vertex output) into birooted tree automata.

Corollary
This class of languages if closed under union, intersection, (upward
closed) product, (upward closed) star, projection. . .
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4. Algebra : BOOL(MSO↑)

Ordered monoids with local units and premorphisms
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Towards an associated algebra
Induced premorphism
Let A = 〈Q, δ,∆,W 〉 be an automaton and let

ϕ : B(F )→ P(Q × Q)

be the mapping defined by ϕ(0) = ∅, ϕ(1) = IQ and, for every non
trivial B = 〈t, u〉, ϕ(B) is the set of pair (ρ(1), ρ(u)) for runs ρ of
A over B.

Lemma
The mapping ϕ recognizes L(A) in the sense that
L(A) = ϕ−1(ϕ(L(A))).

Question
What can we say about ϕ−1(X ) for X ⊆ P(Q × Q) ?
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Towards an associated algebra: objects
Lemma
The sub-monoid Mϕ induced by ϕ(B(F )) ordered by inclusion is a
partially ordered monoid (with stable order).

Lemma
The sub-monoid Mϕ is closed under “left” and “right” projection
defined, for every X ⊆ Q × Q by

XL = {(q, q) ∈ Q × Q : ∃p, (p, q) ∈ X}

and
XR = {(p, p) ∈ Q × Q : ∃q, (p, q) ∈ X}

with the (characterizing) properties

XL = min{Y ≤ 1 : X ·Y = X} and XR = min{Y ≤ 1 : Y ·X = X}
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Towards an associated algebra: arrows

Lemma
The mapping ϕ : B1(F )→ Mϕ is a premorphism, i.e. for every B
and C ∈ B(F ):

monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C)

sub-multiplicative: ϕ(B · C) ≤ ϕ(B) · ϕ(C)

Lemma (Adequacy)
For every B ∈ B1(F ),

ϕ(XL) = (ϕ(X ))L and ϕ(XR) = (ϕ(X ))R

and, for every B and C ∈ B1(F )

if B · C is disjoint then ϕ(B · C) = ϕ(B) · ϕ(C)
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Effectivity

Lemma (Effectivity)
As B1(F ) is finitely generated by disjoint product and left and
right projection, ϕ(B) is effectively computable in linear time.

Definition (QREC)
A language L ⊆ B(F ) is QREC when there is an adequate
premorphism

ϕ : B1(F )→ S

into an finite adequately ordered monoid S such that

L = ϕ−1(ϕ(L))
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Expressiveness

Theorem
A language L ⊆ B(F ) is QREC if and only if L is a finite boolean
combination of languages recog. by finite state automata, i.e.

QREC=BOOL(MSO↑)

proof.
(QREC) ⇒ MSO : simulate disjoint decomposition.

(QREC + MSO) ⇒ BOOL(MSO↑) : let ϕ : B(F )→ S an
adequate premorphism with finite S. For every x ∈ S we have:

ϕ−1(x) =

 ⋃
y∈x↑

ϕ−1(y)


︸ ︷︷ ︸

MSO↑

∩

 ⋃
y∈x↓

ϕ−1(y)


︸ ︷︷ ︸

MSO↓
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Expressiveness

proof (continued).
BOOL(MSO↑) ⇒ QREC : since MSO↑ ⊆ QREC and QREC is
closed under complement, it suffices to prove closure under union.
Let ϕ1 : B(F )→ S1 and ϕ2 : B(F )→ S1 two adequate
premorphisms with finite S1 and S2.
Then S1 × S2 is adequately ordered and

ϕ = 〈ϕ1, ϕ2〉 : B(F )→ S1 × S2

recognizes the union of any languages L1 and L2 resp. recognized
by ϕ1 and ϕ2.
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Example

Fact
The language of birooted boolean idempotent trees that evaluate
to true is quasi-recognized by a finite aperiodic adequately ordered
monoid.

Thanks to Pin’s semigroup software for analyzing the property of
the recognizer.

Remark
Strictness of QREC ⊂ MSO is witnessed by L = {a2na−2n : n ∈ N}
that is MSO but not QREC.
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5. Conclusion
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A work in progress

Canonical automata/syntactic monoids ?
Ehresmann ordered monoids ?
Algebraic construction for (closed) product, stars ?
Language classification ?
Extension to infinite/continuous structures ?
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The underlying bigger picture

Based on Kellendonk models proposed for quasi-crystal structure
description:

Inverse semigroup theory for computer science

System programming tools and concepts [4] ?
Robust mathematical framework shaped towards computer
system modeling [5] ?
Experiments in reactive music systems [2] and, beyond,
reactive systems ?



Labeled birooted trees Languages Automata : MSO↑ Algebra : BOOL(MSO↑) Conclusion

[1] D. Janin, “Vers une modélisation combinatoire des structures
rythmiques simples de la musique,” Revue Francophone
d’Informatique Musicale (RFIM), vol. 2, 2012.

[2] D. Janin, F. Berthaut, and M. DeSainteCatherine, “Multi-scale
design of interactive music systems : the libTuiles experiment,” in
Sound and Music Computing (SMC), 2013.

[3] D. Janin, “Walking automata in the free inverse monoid,” Tech.
Rep. RR-1464-12 (revised june 2013), LaBRI, Université de
Bordeaux, 2013.

[4] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and
S. Salvati, “The T-calculus : towards a structured programming of
(musical) time and space,” in Workshop on Functional Art, Music,
Modeling and Design (FARM), ACM Press, october 2013.

[5] D. Janin, “Modélisation algébrique du diner des philosophes,” in
Modélisation des Systèmes Réactifs (MSR), to appear in special
issue of Journal Européen des Systèmes Automatisés (JESA),
november 2013.



Labeled birooted trees Languages Automata : MSO↑ Algebra : BOOL(MSO↑) Conclusion

[6] H. E. Scheiblich, “Free inverse semigroups,” Semigroup Forum,
vol. 4, pp. 351–359, 1972.

[7] W. D. Munn, “Free inverse semigroups,” Proceeedings of the
London Mathematical Society, vol. 29, no. 3, pp. 385–404, 1974.

[8] M. Pietrich, Inverse semigroups.
Wiley, 1984.

[9] M. V. Lawson, Inverse Semigroups : The theory of partial
symmetries.
World Scientific, 1998.

[10] J. Kellendonk, “The local structure of tilings and their integer group
of coinvariants,” Comm. Math. Phys., vol. 187, pp. 115–157, 1997.

[11] J. Kellendonk and M. V. Lawson, “Tiling semigroups,” Journal of
Algebra, vol. 224, no. 1, pp. 140 – 150, 2000.

[12] W. Thomas, “Logic for computer science: The engineering
challenge,” in Informatics - 10 Years Back, 10 Years Ahead.
(R. Wilhelm, ed.), vol. 2000 of LNCS, pp. 257–267, Springer, 2001.


	Labeled birooted trees
	Languages
	Automata : MSO"3222378 
	Algebra : BOOL(MSO"3222378 )
	Conclusion

