Automata, algebras and logic for languages of labeled birooted trees

(overlapping tile languages)

David Janin, LaBRI, Université de Bordeaux ICALP - 2013 - Riga, Latvia

Labeled birooted trees

Languages

Automata : MSO[↑]

Algebra : BOOL(MSO $^{\uparrow}$)

(ロ) (日) (日) (日) (日) (日) (日)

Conclusion

Plan of the talk

Labeled birooted trees

3 Automata : MSO[↑]

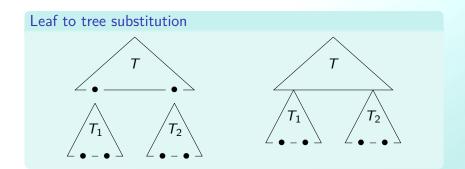
4 Algebra : $BOOL(MSO^{\uparrow})$

5 Conclusion

イロン 不良 とくせい イロン

= nar

Algebras for finite trees : the functional approach



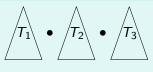
Remark

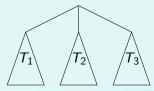
Infinitely many sorts/unbounded arity

Conclusion

Algebras for finite trees : the forest approach

Forest concatenation and conversion to trees





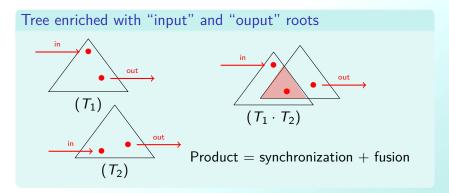
(ロ) (日) (日) (日) (日) (日) (日)

Remark

Two sorted algebra

イロン (日) イモン (日) 日 ののの

Algebras for finite trees : the (overlapping) tile approach



Remark

Partial product (made complete with a zero). A modeling facility in computational music [1, 2]

Labeled birooted trees

Languages

Automata : MSO^{\uparrow}

Algebra : BOOL(MSO $^{\uparrow}$)

(ロ) (日) (日) (日) (日) (日) (日)

Conclusion

Question Automata, algebras and logic for languages of overlapping tiles ?

(ロシ (四) (日) (日) (日) (日) (日)

1. Labeled birooted trees

Musing around Scheiblich-Munn presentation of the Free inverse monoids

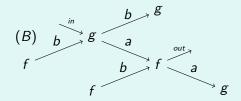
(ロ) (日) (日) (日) (日) (日) (日)

Labeled Munn's trees (or birooted *F*-trees)

Let F be a finite vertex alphabet, let A be a finite edge alphabet A.

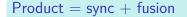
Birooted F-tree

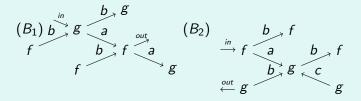
A finite directed tree-shaped graph with *F*-labeled vertices and *A*-labeled edges, both forward and backward deterministic,

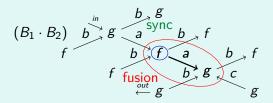


with distinguished input root and output output root.

Birooted *F*-trees product





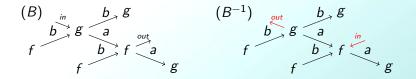


or the undefined birooted tree 0 when fusion fails.

An inverse semigroup

Semigroup/Monoid

The set $\mathcal{B}(F)$ of birooted *F*-tree is a semigroup. When *F* is a singleton, it is isomorphic to FIM(A). Otherwise, it is extended with a unit 1.



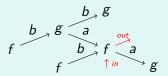
Lemma (Inverses)

For every $B \in \mathcal{B}(F)$ there exists a unique $B^{-1} \in \mathcal{B}(F)$ such that $B \cdot B^{-1} \cdot B = B$ and $B^{-1} \cdot B \cdot B^{-1} = B^{-1}$

Left and right projections (and Green's relations)

Elements $B \cdot B^{-1}$ and $B^{-1} \cdot B$ are idempotents $B^R = B \cdot B^{-1}$

and $B^L = B^{-1} \cdot B$



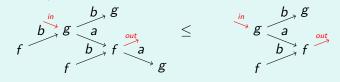
with $B^R = C^R$ iff $B\mathcal{R}C$ (resp. $B^L = C^L$ iff $B\mathcal{L}C$).

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ < ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ <

The natural order

Definition (Natural Order)

For every B and C, let $B \leq C$ when $B = B^R C$ (equivalently $B = CB^L$).



Lemma

The natural order is stable under product and the idempotents are the subunits $U(\mathcal{B}(F)) = \{B \in \mathcal{B}(F) : B \leq 1\}.$

Labeled birooted trees

Languages

Automata : MSO^{\uparrow} Algebra : $BOOL(MSO^{\uparrow})$

Conclusion

2. Languages

From REC to MSO

イロン イロン イモン イモン 三 うえぐ

Languages of birooted F-trees

Operations on languages

- Given *M* and $N \subseteq \mathcal{B}(F) 0$:
 - sum : $M + N = M \cup N$,
 - product : $M \cdot N = \{B \cdot C : B \in M, C \in N, B \cdot C \neq 0\}$,
 - star : $M^* = \bigcup_{n \in \mathbb{N}} M^n$ with $M^0 = \{1\}$ and $M^{n+1} = M \cdot M^n$,
 - inverse : $M^{-1} = \{B^{-1} : B \in M\}$,
 - idempotent projection : $M^E = \{B : B \in M, B \cdot B = B\},\$
 - left and right projection : $M^L = \{B^{-1} \cdot B : B \in M\}$ and $M^R = \{B \cdot B^{-1} : B \in M\}$,
 - others ...

with upward or downward closed variants.

A EXABY E VQQ

First facts

Theorem (Robustness)

The class of languages of birooted trees definable in MSO is closed under all operators including upward and downward closure w.r.t. the natural order.

Lemma (Hierarchy)

 $REC \subset REG \subset 1$ - $REG \subseteq \cdots \subseteq k$ - $REG \subseteq \cdots \subseteq MSO$

where k in k-REG is the maximum allowed nested-depth of context projection operators.

Question

Automata/algebras for a rich class of languages of birooted trees ?

 $REC \subset ? \subset MSO$

Automata : MSO^{\uparrow} Algebra : $BOOL(MSO^{\uparrow})$

(ロ) (日) (日) (日) (日) (日)

3. Automata : MSO[↑]

Non deterministic automata for languages of birooted \mathcal{F} -trees Walking automata are considered elsewhere [3].

Birooted F-tree automata

Automaton : $\mathcal{A} = \langle Q, \delta, \Delta, W \rangle$

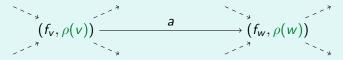
with a (finite) set of states Q, a state table $\delta : F \to \mathcal{P}(Q)$, a transition table $\Delta : A \to \mathcal{P}(Q \times Q)$ and an acceptance condition $W \subseteq Q \times Q$.

Run of \mathcal{A} on $B : \rho : dom(B) \rightarrow Q$

with, for every $v \in dom(B)$

• state coherence : $\rho(\mathbf{v}) \in \delta(f_{\mathbf{v}})$,

and for every for $w \in dom(B)$ with $v \stackrel{a}{\rightarrow} w$ for some $a \in A$:



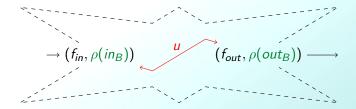
• transition coherence : $(\rho(v), \rho(w)) \in \Delta(a)$.

・ 4 三 ・ 三 ・ の々の

Tile automata languages

Accepting runs

Run $\rho : dom(B) \to Q$ of \mathcal{A} on B is accepting when $(\rho(in_B), \rho(out_B)) \in W$.



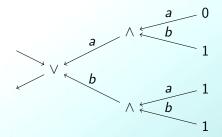
Recognized language L(A)

The language L(A) is defined as the set of (non zero) birooted *F*-tree $B \in \mathcal{B}(F)$ such that there is a an accepting run of A on B.

An example: boolean birooted trees

Fact

One can define (via a bottom tree automaton) the birooted F-tree automaton for (some closure of) the language of *idempotent birooted boolean trees* that "evaluate" to true.



Remark

Birooted tree automata languages belongs to $Mon \Sigma_1$.

Expressiveness

Remark

Every language L recognized by an automaton is upward closed in the natural order.

Theorem (MSO[↑])

A language of birooted F-trees $L \subseteq \mathcal{B}(F)$ is recognized by a finite state tile automaton if and only if L is definable in MSO and upward closed.

Proof.

Slightly technical encoding of automata for mono-rooted tree (with distinguished vertex output) into birooted tree automata. $\hfill\square$

Corollary

This class of languages if closed under union, intersection, (upward closed) product, (upward closed) star, projection...

Automata : MSO^{\uparrow} Algebra : $BOOL(MSO^{\uparrow})$

(ロシ (四) (日) (日) (日) (日) (日)

4. Algebra : BOOL(MSO[↑])

Ordered monoids with local units and premorphisms

EXTEX E DQC

Towards an associated algebra

Induced premorphism

Let $\mathcal{A} = \langle \mathcal{Q}, \delta, \Delta, \mathcal{W}
angle$ be an automaton and let

$$\varphi:\mathcal{B}(F)\to\mathcal{P}(Q imes Q)$$

be the mapping defined by $\varphi(0) = \emptyset$, $\varphi(1) = I_Q$ and, for every non trivial $B = \langle t, u \rangle$, $\varphi(B)$ is the set of pair $(\rho(1), \rho(u))$ for runs ρ of \mathcal{A} over B.

Lemma

The mapping φ recognizes L(A) in the sense that $L(A) = \varphi^{-1}(\varphi(L(A))).$

Question

What can we say about $\varphi^{-1}(X)$ for $X \subseteq \mathcal{P}(Q \times Q)$?

Towards an associated algebra: objects

Lemma

The sub-monoid M_{φ} induced by $\varphi(\mathcal{B}(F))$ ordered by inclusion is a partially ordered monoid (with stable order).

Lemma

The sub-monoid M_{φ} is closed under "left" and "right" projection defined, for every $X \subseteq Q \times Q$ by

$$X^L = \{(oldsymbol{q},oldsymbol{q}) \in Q imes Q : \exists oldsymbol{p}, (oldsymbol{p},oldsymbol{q}) \in X\}$$

and

$$X^R = \{(p, p) \in Q \times Q : \exists q, (p, q) \in X\}$$

with the (characterizing) properties

 $X^{L} = \min\{Y \le 1 : X \cdot Y = X\} \text{ and } X^{R} = \min\{Y \le 1 : Y \cdot X = X\}$

Towards an associated algebra: arrows

Lemma

The mapping $\varphi : \mathcal{B}^1(F) \to M_{\varphi}$ is a premorphism, i.e. for every B and $C \in \mathcal{B}(F)$:

- monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$
- sub-multiplicative: $\varphi(B \cdot C) \leq \varphi(B) \cdot \varphi(C)$

Lemma (Adequacy)

For every $B \in \mathcal{B}^1(F)$,

$$\varphi(X^L) = (\varphi(X))^L$$
 and $\varphi(X^R) = (\varphi(X))^R$

and, for every B and $C \in \mathcal{B}^1(F)$

if $B \cdot C$ is disjoint then $\varphi(B \cdot C) = \varphi(B) \cdot \varphi(C)$

(ロ) (日) (日) (日) (日) (日) (日)

Effectivity

Lemma (Effectivity)

As $\mathcal{B}^1(F)$ is finitely generated by disjoint product and left and right projection, $\varphi(B)$ is effectively computable in linear time.

Definition (QREC)

A language $L \subseteq \mathcal{B}(F)$ is QREC when there is an adequate premorphism

 $\varphi: \mathcal{B}^1(F) \to S$

into an finite adequately ordered monoid S such that

$$L = \varphi^{-1}(\varphi(L))$$

Expressiveness

Theorem

A language $L \subseteq \mathcal{B}(F)$ is QREC if and only if L is a finite boolean combination of languages recog. by finite state automata, i.e. $QREC=BOOL(MSO^{\uparrow})$

proof.

 $(QREC) \Rightarrow MSO$: simulate disjoint decomposition.

 $(QREC + MSO) \Rightarrow BOOL(MSO^{\uparrow}) : let \varphi : \mathcal{B}(F) \rightarrow S$ an adequate premorphism with finite *S*. For every $x \in S$ we have:

$$\varphi^{-1}(x) = \underbrace{\left(\bigcup_{y \in x^{\uparrow}} \varphi^{-1}(y)\right)}_{\mathsf{MSO}^{\uparrow}} \cap \underbrace{\left(\bigcup_{y \in x^{\downarrow}} \varphi^{-1}(y)\right)}_{\mathsf{MSO}^{\downarrow}}$$

= 990

何をくまたくまた

(ロ) (日) (日) (日) (日) (日)

Expressiveness

proof (continued).

 $\mathsf{BOOL}(\mathsf{MSO}^{\uparrow}) \Rightarrow \mathsf{QREC}$: since $\mathsf{MSO}^{\uparrow} \subseteq \mathsf{QREC}$ and QREC is closed under complement, it suffices to prove closure under union. Let $\varphi_1 : \mathcal{B}(F) \to S_1$ and $\varphi_2 : \mathcal{B}(F) \to S_1$ two adequate premorphisms with finite S_1 and S_2 . Then $S_1 \times S_2$ is adequately ordered and

$$\varphi = \langle \varphi_1, \varphi_2 \rangle : \mathcal{B}(F) \to S_1 \times S_2$$

recognizes the union of any languages L_1 and L_2 resp. recognized by φ_1 and φ_2 .

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ < ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ <

Fact

The language of birooted boolean idempotent trees that evaluate to true is quasi-recognized by a finite aperiodic adequately ordered monoid.

Thanks to Pin's semigroup software for analyzing the property of the recognizer.

Remark

Strictness of $QREC \subset MSO$ is witnessed by $L = \{a^{2n}a^{-2n} : n \in \mathbb{N}\}$ that is MSO but not QREC.

Labeled birooted trees

Languages

Automata : MSO^{\uparrow} Algebra : $BOOL(MSO^{\uparrow})$

うせん 聞 スポット ポット 通り入る

Conclusion

5. Conclusion

Labeled birooted trees

Conclusion

A work in progress

- Canonical automata/syntactic monoids ? Ehresmann ordered monoids ?
- Algebraic construction for (closed) product, stars ?
- Language classification ?
- Extension to infinite/continuous structures ?

シック ビー・ビー・ (中)・(日)

The underlying bigger picture

Based on Kellendonk models proposed for quasi-crystal structure description:

Inverse semigroup theory for computer science

- System programming tools and concepts [4] ?
- Robust mathematical framework shaped towards computer system modeling [5] ?
- Experiments in reactive music systems [2] and, beyond, reactive systems ?

- [1] D. Janin, "Vers une modélisation combinatoire des structures rythmiques simples de la musique," *Revue Francophone d'Informatique Musicale (RFIM)*, vol. 2, 2012.
- [2] D. Janin, F. Berthaut, and M. DeSainteCatherine, "Multi-scale design of interactive music systems : the libTuiles experiment," in *Sound and Music Computing (SMC)*, 2013.
- [3] D. Janin, "Walking automata in the free inverse monoid," Tech. Rep. RR-1464-12 (revised june 2013), LaBRI, Université de Bordeaux, 2013.
- [4] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati, "The T-calculus : towards a structured programming of (musical) time and space," in *Workshop on Functional Art, Music, Modeling and Design (FARM)*, ACM Press, october 2013.
- [5] D. Janin, "Modélisation algébrique du diner des philosophes," in Modélisation des Systèmes Réactifs (MSR), to appear in special issue of Journal Européen des Systèmes Automatisés (JESA), november 2013.

- [6] H. E. Scheiblich, "Free inverse semigroups," Semigroup Forum, vol. 4, pp. 351–359, 1972.
- [7] W. D. Munn, "Free inverse semigroups," *Proceeedings of the London Mathematical Society*, vol. 29, no. 3, pp. 385–404, 1974.
- [8] M. Pietrich, *Inverse semigroups*. Wiley, 1984.
- [9] M. V. Lawson, *Inverse Semigroups : The theory of partial symmetries*.
 World Scientific, 1998.
- [10] J. Kellendonk, "The local structure of tilings and their integer group of coinvariants," *Comm. Math. Phys.*, vol. 187, pp. 115–157, 1997.
- [11] J. Kellendonk and M. V. Lawson, "Tiling semigroups," Journal of Algebra, vol. 224, no. 1, pp. 140 – 150, 2000.
- [12] W. Thomas, "Logic for computer science: The engineering challenge," in *Informatics 10 Years Back, 10 Years Ahead.* (R. Wilhelm, ed.), vol. 2000 of *LNCS*, pp. 257–267, Springer, 2001.