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I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,
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An (abstract) musical exemple
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So far

We have
I locally non ambiguous labeled (hyper-)graphs,
I with a “causal/temporal” interpretation

I synchronization points : vertices,
I causal/temporal flows : edges.

Question
I how to compose these graphs ?
I what generators ?
I how to refine them ?

Answer
I model: higher dimensional strings (HDS) !
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in out
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edgeless graphs Ip and Iq . . . and some connectivity assumptions.

Birooted graph products via pushout
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Computing product

Lemma (Bideterminization)
Every (connected) graph has a maximal locally non ambiguous
image under graph (connecting) morphism.
This maximal image is computable in linear time.

An example
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I fusion: apply bideterminization (max. unambiguous image).
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Theorem
Birooted graphs with product (extended by zero) form a monoid.

Theorem
Submonoids of finite birooted graphs with bounded root size are
finitely generated.
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The particular case of birooted trees
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(a) a

(a−1) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.
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They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



Inverse monoid properties: idempotents

Lemma (Characterization)
A birooted graph B = 〈in : Ip → G , out : Iq → G〉 is idempotent
if and only if in = out (hence p = q).

a
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b

Lemma (Semi-lattice property)
Idempotents commute hence form a semi-lattice
with B1 ∧ B2 = B1 · B2.
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Lemma (Semigroup Inverse)
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That is, C is a semigroup inverse of B.

And, since idempotents commute:

Corollary
The monoid of higher dimensional strings is an red inverse monoid,
i.e. every element B has a unique inverse B−1.
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Then B1 ≤ B2 if and only if
there is a root preserving morphism ϕ : B2 → B1.
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Causal higher dimensional strings

Remark
The property “there is a cycle” is invariant under product.
These birooted graphs form a semigroup ideal ⊥.

Quotient by ideal
By quotient (by ideal) all non causal element of ⊥ collapse to zero:
the forbidden model.

Definition
Caudal HDS(A) = HDS(A)/⊥
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undecidable,
I but disjoint products allows to define large classes of

languages with decidable cases.
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As a consequence, MSO languages of HDS have undecidable
emptiness.
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Such a node “clashes” in the gluing !’

Undecidability comes from complex glueing !
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Lemma
Though partial, the disjoint product is associative.
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amount of gluing.
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Conclusion
Done

I simple monoids for large classes of (birooted) graphs,
I an underlying rich and robust theory : inverse semigroups,
I language theory and tools via non-det. automata [Jan15],

partial algebra [Bur86, BJ14], and also walking
automata [Jan16], etc. . . ,

Ongoing
I (fun) application in music system programming tools,
I causal and I/O modeling experiments,

To be scheduled
I beyond music: multi-scale reactive hybrid systems modeling,
I connection with existing (and used) refinement methods,
I development of a visual modeling/programming tool.
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For a structured programing of time and space. . .

Thanks for your attention !
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