
Inverse monoids of higher dimensional strings

David Janin,
research project PoSET

CNRS LaBRI & INRIA Bordeaux,
Bordeaux INP, University of Bordeaux

@ICTAC 2015, Cali, Columbia, October 2015



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



Design tool for music systems

My own wish list
I simple, to be used by artists, kids and myself,
I efficient, to do live music,
I both concurrent and parallel, just as live music,
I modular and hierarchical, for incremental design,
I multi time-scaled: from causal to continuous time, idem,
I mathematically robust, to go beyond one shot prototyping,

with many more requirements that will appear on the way.



So let’s start

From strings to higher dimensional strings

with music modeling in the background,



So let’s start

From strings to higher dimensional strings

with music modeling in the background,



Sequential composition and refinement

An (abstract) musical exemple

• • •A B

Is this satisfactory ?
In musical refinement, temporal overlaps are common features.



Sequential composition and refinement

An (abstract) musical exemple

• • •A B

• • • • •
a1 a2 a3 a4

Is this satisfactory ?
In musical refinement, temporal overlaps are common features.



Sequential composition and refinement

An (abstract) musical exemple

• • •A B

• • • • •
a1 a2 a3 a4 • • •

b1 b2 b3

Is this satisfactory ?
In musical refinement, temporal overlaps are common features.



Sequential composition and refinement

An (abstract) musical exemple

• • •A B

• • • • •
a1 a2 a3 a4 • • •

b1 b2 b3

•a5 •a6

• b0

Is this satisfactory ?
In musical refinement, temporal overlaps are common features.



Parallel fork and refinement

Launching two musical streams

•
•

•

A

B

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



Parallel fork and refinement

Launching two musical streams

•
•

•

A

B

•
•

•
•
•

c a

c
b

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



Parallel fork and refinement

Launching two musical streams

•
•

•

A

B

•
•

•
••c a

b

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



Parallel fork/join and refinement

Launching/ending two musical streams

•
•

•

A

B

•
•

•
••c a

b

•
•

•

A

B

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



Parallel fork/join and refinement

Launching/ending two musical streams

•
•

•

A

B

•
•

•
••c a

b

•
•

•

A

B

•
•

•
•
•

a c
c

b

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



Parallel fork/join and refinement

Launching/ending two musical streams

•
•

•

A

B

•
•

•
••c a

b

•
•

•

A

B

•
•

•
••

a c

b

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



Parallel fork/join and refinement

Launching/ending two musical streams

•
•

•

A

B

•
•

•
••c a

b

•
•

•

A

B

•
•

•
••

a c

b

We consider graphs that are deterministic and co-deterministic,
or, more generally with hyper-edges, locally unambiguous.



So far

We have
I locally non ambiguous labeled (hyper-)graphs,
I with a “causal/temporal” interpretation

I synchronization points : vertices,
I causal/temporal flows : edges.

Question
I how to compose these graphs ?
I what generators ?
I how to refine them ?

Answer
I model: higher dimensional strings (HDS) !



So far

We have
I locally non ambiguous labeled (hyper-)graphs,
I with a “causal/temporal” interpretation

I synchronization points : vertices,
I causal/temporal flows : edges.

Question
I how to compose these graphs ?
I what generators ?
I how to refine them ?

Answer
I model: higher dimensional strings (HDS) !



So far

We have
I locally non ambiguous labeled (hyper-)graphs,
I with a “causal/temporal” interpretation

I synchronization points : vertices,
I causal/temporal flows : edges.

Question
I how to compose these graphs ?
I what generators ?
I how to refine them ?

Answer
I model: higher dimensional strings (HDS) !



So far

We have
I locally non ambiguous labeled (hyper-)graphs,
I with a “causal/temporal” interpretation

I synchronization points : vertices,
I causal/temporal flows : edges.

Question
I how to compose these graphs ?
I what generators ?
I how to refine them ?

Answer
I model: higher dimensional strings (HDS) !



Higher dimensional strings (HDS)
Birooted graphs (or cospans)

Ip Iq

G
(p, q)

in out

with graph domain G , and labeling root morphisms in and out from
edgeless graphs Ip and Iq . . . and some connectivity assumptions.

Birooted graph products

Ip Iq Ir

G1 G2

Iqout1 in2in1 out2



Higher dimensional strings (HDS)
Birooted graphs (or cospans)

Ip Iq

G
(p, q)

in out

with graph domain G , and labeling root morphisms in and out from
edgeless graphs Ip and Iq . . . and some connectivity assumptions.

Birooted graph products

Ip Iq Ir

G1 G2

Iqout1 in2in1 out2



Higher dimensional strings (HDS)
Birooted graphs (or cospans)

Ip Iq

G
(p, q)

in out

with graph domain G , and labeling root morphisms in and out from
edgeless graphs Ip and Iq . . . and some connectivity assumptions.

Birooted graph products via pushout

Ip Iq Ir

G1 G2

Iqout1 in2in1 out2

G

h1 h2



Higher dimensional strings (HDS)
Birooted graphs (or cospans)

Ip Iq

G
(p, q)

in out

with graph domain G , and labeling root morphisms in and out from
edgeless graphs Ip and Iq . . . and some connectivity assumptions.

Birooted graph products via pushout

Ip Iq Ir

G1 G2

Iqout1 in2in1 out2

G

h1 h2in out
(p, q) · (q, r) = (p, r)



A product example

Two components

1 1

2 2
a

b b
1

2 2

1
b

c
b

Step 1: synchronization (or root gluing)

1

2

1

2

b

a

b b
c

b

Step 2: fusion (or gluing propagation)

1

2

1

2

b

a

b
c

b



A product example

Two components

1 1

2 2
a

b b
1

2 2

1
b

c
b

Step 1: synchronization (or root gluing)

1

2

1

2

b

a

b b
c

b

Step 2: fusion (or gluing propagation)

1

2

1

2

b

a

b
c

b



A product example

Two components

1 1

2 2
a

b b
1

2 2

1
b

c
b

Step 1: synchronization (or root gluing)

1

2

1

2

b

a

b b
c

b

Step 2: fusion (or gluing propagation)

1

2

1

2

b

a

b
c

b



A product example

Two components

1 1

2 2
a

b b
1

2 2

1
b

c
b

Step 1: synchronization (or root gluing)

1

2

1

2

b

a

b b

c
b

Step 2: fusion (or gluing propagation)

1

2

1

2

b

a

b
c

b



A product example

Two components

1 1

2 2
a

b b
1

2 2

1
b

c
b

Step 1: synchronization (or root gluing)

1

2

1

2

b

a

b b

c
b

Step 2: fusion (or gluing propagation)

1

2

1

2

b

a

b
c

b



Computing product

Lemma (Bideterminization)
Every (connected) graph has a maximal locally non ambiguous
image under graph (connecting) morphism.
This maximal image is computable in linear time.

An example

1

4

2

53
b

a

a
a

b(G1)
1 2

3

a

b a(G2)
η

Computing product in two steps
I synchronization: glue roots (pushout in graphs),
I fusion: apply bideterminization (max. unambiguous image).



Computing product

Lemma (Bideterminization)
Every (connected) graph has a maximal locally non ambiguous
image under graph (connecting) morphism.
This maximal image is computable in linear time.

An example

1

4

2

53
b

a

a
a

b(G1)
1 2

3

a

b a(G2)
η

Computing product in two steps
I synchronization: glue roots (pushout in graphs),
I fusion: apply bideterminization (max. unambiguous image).



Computing product

Lemma (Bideterminization)
Every (connected) graph has a maximal locally non ambiguous
image under graph (connecting) morphism.
This maximal image is computable in linear time.

An example

1

4

2

53
b

a

a
a

b(G1)
1 2

3

a

b a(G2)
η

Computing product in two steps
I synchronization: glue roots (pushout in graphs),
I fusion: apply bideterminization (max. unambiguous image).



Computing product

Lemma (Bideterminization)
Every (connected) graph has a maximal locally non ambiguous
image under graph (connecting) morphism.
This maximal image is computable in linear time.

An example

1

4

2

53
b

a

a
a

b(G1)
1 2

3

a

b a(G2)
η

Computing product in two steps
I synchronization: glue roots (pushout in graphs),
I fusion: apply bideterminization (max. unambiguous image).



Refinement (by examples)
Hyper directed edges and product HS(A)

1

2

1

2
a

1

2

1

2
b

1

2
a

1

2
b

Hyper directed edges replacement via ϕ : A→ HS(B)
1

2

1

2
ϕ(a)

1

2

1

2
ϕ(b)

1

2

1

2
ϕ(a) · ϕ(b)

that (may ?) simply induces a morphism from HS(A) to HS(B).



Refinement (by examples)
Hyper directed edges and product HS(A)

1

2

1

2
a

1

2

1

2
b

1

2
a

1

2
b

Hyper directed edges replacement via ϕ : A→ HS(B)
1

2

1

2
ϕ(a)

1

2

1

2
ϕ(b)

1

2

1

2
ϕ(a) · ϕ(b)

that (may ?) simply induces a morphism from HS(A) to HS(B).



Refinement (by examples)
Hyper directed edges and product HS(A)

1

2

1

2
a

1

2

1

2
b

1

2
a

1

2
b

Hyper directed edges replacement via ϕ : A→ HS(B)
1

2

1

2
ϕ(a)

1

2

1

2
ϕ(b)

1

2

1

2
ϕ(a) · ϕ(b)

that (may ?) simply induces a morphism from HS(A) to HS(B).



Any relevant mathematical properties ?

Strings

vs

Higher dimensional strings

1

2

3

1

2



Any relevant mathematical properties ?

Strings and monoids

vs

Higher dimensional strings

1

2

3

1

2



Any relevant mathematical properties ?

Strings

vs

Higher dimensional strings

1

2

3

1

2



Any relevant mathematical properties ?

Strings

vs

Higher dimensional strings and inverse monoids

1

2

3

1

2



Monoid of higher dimensional strings

Theorem
Birooted graphs with product (extended by zero) form a monoid.

Theorem
Submonoids of finite birooted graphs with bounded root size are
finitely generated.



Monoid of higher dimensional strings

Theorem
Birooted graphs with product (extended by zero) form a monoid.

Theorem
Submonoids of finite birooted graphs with bounded root size are
finitely generated.



Monoid of higher dimensional strings

Theorem
Birooted graphs with product (extended by zero) form a monoid.

Theorem
Submonoids of finite birooted graphs with bounded root size are
finitely generated.



Generator examples
(12)

1 1

2 2

(P2,1,2)
1 2

2 1

(T2,a)
1 1

2 2
a

(T2,ā)
1 1

2 2
a

(F2)
1 1

2

(J2)
1

2
1

Some products of generators
(T2,a · J2 · F2 · T2,ā)

1 1

2 2
a

(F2 · T2,a · T2,b · T2,c · J2)

1 1

a b c

(T2,b · P2,1,2 · T2,a · P2,1,2)

1

2

1

2

a

b



Generator examples
(12)

1 1

2 2

(P2,1,2)
1 2

2 1

(T2,a)
1 1

2 2
a

(T2,ā)
1 1

2 2
a

(F2)
1 1

2

(J2)
1

2
1

Some products of generators
(T2,a · J2 · F2 · T2,ā)

1 1

2 2
a

(F2 · T2,a · T2,b · T2,c · J2)

1 1

a b c

(T2,b · P2,1,2 · T2,a · P2,1,2)

1

2

1

2

a

b



The particular case of birooted trees

Simplest generators
(a) a

(a−1) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



The particular case of birooted trees

Simplest generators and left and right projections
(a) a

(a−1) a

(aR) a
(aL) a

with aR = a · a−1 and aL = a−1 · a

Induced monoid
Generated elements are finite birooted trees.

a
a
b

b

They form the free inverse monoid generated by A.



Inverse monoid properties: idempotents

Lemma (Characterization)
A birooted graph B = 〈in : Ip → G , out : Iq → G〉 is idempotent
if and only if in = out (hence p = q).

a
a
b

b

Lemma (Semi-lattice property)
Idempotents commute hence form a semi-lattice
with B1 ∧ B2 = B1 · B2.



Inverse monoid properties: idempotents

Lemma (Characterization)
A birooted graph B = 〈in : Ip → G , out : Iq → G〉 is idempotent
if and only if in = out (hence p = q).

a
a
b

b

Lemma (Semi-lattice property)
Idempotents commute hence form a semi-lattice
with B1 ∧ B2 = B1 · B2.



Inverse monoid properties: idempotents

Lemma (Characterization)
A birooted graph B = 〈in : Ip → G , out : Iq → G〉 is idempotent
if and only if in = out (hence p = q).

a
a
b

b

Lemma (Semi-lattice property)
Idempotents commute hence form a semi-lattice
with B1 ∧ B2 = B1 · B2.



Inverse monoid properties: idempotents

Lemma (Characterization)
A birooted graph B = 〈in : Ip → G , out : Iq → G〉 is idempotent
if and only if in = out (hence p = q).

a
a
b

b

Lemma (Semi-lattice property)
Idempotents commute hence form a semi-lattice
with B1 ∧ B2 = B1 · B2.



Inverse monoid properties: semigroup inverses

Lemma (Semigroup Inverse)
Take B = 〈in : Ip → G , out : Iq → G〉. Take
C = 〈out : Iq → G , in : Ip → G〉. Then B = B · C · B and
C = C · B · C.

a
a
b

b
a

a
b

b

That is, C is a semigroup inverse of B.

And, since idempotents commute:

Corollary
The monoid of higher dimensional strings is an red inverse monoid,
i.e. every element B has a unique inverse B−1.



Inverse monoid properties: semigroup inverses

Lemma (Semigroup Inverse)
Take B = 〈in : Ip → G , out : Iq → G〉. Take
C = 〈out : Iq → G , in : Ip → G〉. Then B = B · C · B and
C = C · B · C.

a
a
b

b
a

a
b

b

That is, C is a semigroup inverse of B.

And, since idempotents commute:

Corollary
The monoid of higher dimensional strings is an red inverse monoid,
i.e. every element B has a unique inverse B−1.



Inverse monoid properties: semigroup inverses

Lemma (Semigroup Inverse)
Take B = 〈in : Ip → G , out : Iq → G〉. Take
C = 〈out : Iq → G , in : Ip → G〉. Then B = B · C · B and
C = C · B · C.

a
a
b

b
a

a
b

b

That is, C is a semigroup inverse of B.

And, since idempotents commute:

Corollary
The monoid of higher dimensional strings is an red inverse monoid,
i.e. every element B has a unique inverse B−1.



Inverse monoid properties: natural order and morphisms

Definition (Natural order)
B1 ≤ B2 when B1 = B1 · B−1

1 · B2.

a
a
b

b ≤ a
b

Lemma
Then B1 ≤ B2 if and only if
there is a root preserving morphism ϕ : B2 → B1.



Inverse monoid properties: natural order and morphisms

Definition (Natural order)
B1 ≤ B2 when B1 = B1 · B−1

1 · B2.

a
a
b

b ≤ a
b

Lemma
Then B1 ≤ B2 if and only if
there is a root preserving morphism ϕ : B2 → B1.



Inverse monoid properties: natural order and morphisms

Definition (Natural order)
B1 ≤ B2 when B1 = B1 · B−1

1 · B2.

a
a
b

b ≤ a
b

Lemma
Then B1 ≤ B2 if and only if
there is a root preserving morphism ϕ : B2 → B1.



Inverse monoid properties: natural order and morphisms

Definition (Natural order)
B1 ≤ B2 when B1 = B1 · B−1

1 · B2.

a
a
b

b ≤ a
b

Lemma
Then B1 ≤ B2 if and only if
there is a root preserving morphism ϕ : B2 → B1.



What about loops ?

Directed cycles in graphs

• •

••

• •a
b

c

d
e

could be forbidden with causal/temporal semantics of arrows.



What about loops ?

Directed cycles in graphs

• •

••

• •a
b

c

d
e

could be forbidden with causal/temporal semantics of arrows.



What about loops ?

Directed cycles in graphs

• •

••

• •a
b

c

d
e

could be forbidden with causal/temporal semantics of arrows.



Causal higher dimensional strings

Remark
The property “there is a cycle” is invariant under product.
These birooted graphs form a semigroup ideal ⊥.

Quotient by ideal
By quotient (by ideal) all non causal element of ⊥ collapse to zero:
the forbidden model.

Definition
Caudal HDS(A) = HDS(A)/⊥



Causal higher dimensional strings

Remark
The property “there is a cycle” is invariant under product.
These birooted graphs form a semigroup ideal ⊥.

Quotient by ideal
By quotient (by ideal) all non causal element of ⊥ collapse to zero:
the forbidden model.

Definition
Caudal HDS(A) = HDS(A)/⊥



Causal higher dimensional strings

Remark
The property “there is a cycle” is invariant under product.
These birooted graphs form a semigroup ideal ⊥.

Quotient by ideal
By quotient (by ideal) all non causal element of ⊥ collapse to zero:
the forbidden model.

Definition
Caudal HDS(A) = HDS(A)/⊥



What about language theory of HDS ?

We shall see that:
I grids are finitely generated !
I hence emptiness of MSO definable languages of HDS is

undecidable,
I but disjoint products allows to define large classes of

languages with decidable cases.



What about language theory of HDS ?

We shall see that:
I grids are finitely generated !
I hence emptiness of MSO definable languages of HDS is

undecidable,
I but disjoint products allows to define large classes of

languages with decidable cases.



What about language theory of HDS ?

We shall see that:
I grids are finitely generated !
I hence emptiness of MSO definable languages of HDS is

undecidable,
I but disjoint products allows to define large classes of

languages with decidable cases.



What about language theory of HDS ?

We shall see that:
I grids are finitely generated !
I hence emptiness of MSO definable languages of HDS is

undecidable,
I but disjoint products allows to define large classes of

languages with decidable cases.



Higher-dimensionality and related undecidability

From squares to grids

a

a

b b
1

2

1

2

a

a

b b
1

2

1 2

a

a

b b

1 2

1 2

a

a

b b
1

2

1

2

a

a

b b

1 2

1 2

a

a

b b
1

2

1 2

1

2

a

a

b b
1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b
1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b
1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

1 2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b b1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b ba

a

b b1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b ba

a

b ba

a

b b1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b ba

a

b ba

a

b b1

2



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b ba

a

b ba

a

b b1

2

As a consequence, MSO languages of HDS have undecidable
emptiness.



Higher-dimensionality and related undecidability

From squares to grids

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b ba

a

b ba

a

b b1

2

Such a node “clashes” in the gluing !’

Undecidability comes from complex glueing !



Controlled glueing: disjoint product

Definition
A product is a disjoint product when it is limited to roots glueing,
i.e. trivial fusion phase.

Viewing a disjoint product

(B1)
1

2

1

2

G1

(B2)
1

2

1

2

G2

(B1 · B2)
1

2

G1

1

2

G2



Controlled glueing: disjoint product

Definition
A product is a disjoint product when it is limited to roots glueing,
i.e. trivial fusion phase.

Viewing a disjoint product

(B1)
1

2

1

2

G1

(B2)
1

2

1

2

G2

(B1 · B2)
1

2

G1

1

2

G2



Controlled glueing: disjoint product

Definition
A product is a disjoint product when it is limited to roots glueing,
i.e. trivial fusion phase.

Viewing a disjoint product

(B1)
1

2

1

2

G1

(B2)
1

2

1

2

G2

(B1 · B2)
1

2

G1

1

2

G2



Disjoint product and partial algebra

Lemma
Though partial, the disjoint product is associative.

Corollary
Partial algebra techniques [Bur86] and MSO type theory [She75]
apply leading to a decidable, expressive and efficient MSO
language theory.

The case of birooted trees
detailed in [BJ14, Jan15] with disjoint products and projections.



Disjoint product and partial algebra

Lemma
Though partial, the disjoint product is associative.

Corollary
Partial algebra techniques [Bur86] and MSO type theory [She75]
apply leading to a decidable, expressive and efficient MSO
language theory.

The case of birooted trees
detailed in [BJ14, Jan15] with disjoint products and projections.



Disjoint product and partial algebra

Lemma
Though partial, the disjoint product is associative.

Corollary
Partial algebra techniques [Bur86] and MSO type theory [She75]
apply leading to a decidable, expressive and efficient MSO
language theory.

The case of birooted trees
detailed in [BJ14, Jan15] with disjoint products and projections.



Disjoint product and partial algebra

Lemma
Though partial, the disjoint product is associative.

Corollary
Partial algebra techniques [Bur86] and MSO type theory [She75]
apply leading to a decidable, expressive and efficient MSO
language theory.

The case of birooted trees
detailed in [BJ14, Jan15] with disjoint products and projections.



Disjoint product and graphs of bounded tree-width

Lemma
The tree-width of a disjoint product is bounded by the max.
tree-width of the components (roots seen as hyper-edges).

Corollary
MSO model checking techniques over graphs of bounded
tree-width also apply [CE12].

Remark
In disjoint product, the number of roots strictly controls the
amount of gluing.



Disjoint product and graphs of bounded tree-width

Lemma
The tree-width of a disjoint product is bounded by the max.
tree-width of the components (roots seen as hyper-edges).

Corollary
MSO model checking techniques over graphs of bounded
tree-width also apply [CE12].

Remark
In disjoint product, the number of roots strictly controls the
amount of gluing.



Disjoint product and graphs of bounded tree-width

Lemma
The tree-width of a disjoint product is bounded by the max.
tree-width of the components (roots seen as hyper-edges).

Corollary
MSO model checking techniques over graphs of bounded
tree-width also apply [CE12].

Remark
In disjoint product, the number of roots strictly controls the
amount of gluing.



Disjoint product and graphs of bounded tree-width

Lemma
The tree-width of a disjoint product is bounded by the max.
tree-width of the components (roots seen as hyper-edges).

Corollary
MSO model checking techniques over graphs of bounded
tree-width also apply [CE12].

Remark
In disjoint product, the number of roots strictly controls the
amount of gluing.



Conclusion
Done

I simple monoids for large classes of (birooted) graphs,
I an underlying rich and robust theory : inverse semigroups,
I language theory and tools via non-det. automata [Jan15],

partial algebra [Bur86, BJ14], and also walking
automata [Jan16], etc. . . ,

Ongoing
I (fun) application in music system programming tools,
I causal and I/O modeling experiments,

To be scheduled
I beyond music: multi-scale reactive hybrid systems modeling,
I connection with existing (and used) refinement methods,
I development of a visual modeling/programming tool.



Conclusion
Done

I simple monoids for large classes of (birooted) graphs,
I an underlying rich and robust theory : inverse semigroups,
I language theory and tools via non-det. automata [Jan15],

partial algebra [Bur86, BJ14], and also walking
automata [Jan16], etc. . . ,

Ongoing
I (fun) application in music system programming tools,
I causal and I/O modeling experiments,

To be scheduled
I beyond music: multi-scale reactive hybrid systems modeling,
I connection with existing (and used) refinement methods,
I development of a visual modeling/programming tool.



Conclusion
Done

I simple monoids for large classes of (birooted) graphs,
I an underlying rich and robust theory : inverse semigroups,
I language theory and tools via non-det. automata [Jan15],

partial algebra [Bur86, BJ14], and also walking
automata [Jan16], etc. . . ,

Ongoing
I (fun) application in music system programming tools,
I causal and I/O modeling experiments,

To be scheduled
I beyond music: multi-scale reactive hybrid systems modeling,
I connection with existing (and used) refinement methods,
I development of a visual modeling/programming tool.



Conclusion
Done

I simple monoids for large classes of (birooted) graphs,
I an underlying rich and robust theory : inverse semigroups,
I language theory and tools via non-det. automata [Jan15],

partial algebra [Bur86, BJ14], and also walking
automata [Jan16], etc. . . ,

Ongoing
I (fun) application in music system programming tools,
I causal and I/O modeling experiments,

To be scheduled
I beyond music: multi-scale reactive hybrid systems modeling,
I connection with existing (and used) refinement methods,
I development of a visual modeling/programming tool.



Conclusion
Done

I simple monoids for large classes of (birooted) graphs,
I an underlying rich and robust theory : inverse semigroups,
I language theory and tools via non-det. automata [Jan15],

partial algebra [Bur86, BJ14], and also walking
automata [Jan16], etc. . . ,

Ongoing
I (fun) application in music system programming tools,
I causal and I/O modeling experiments,

To be scheduled
I beyond music: multi-scale reactive hybrid systems modeling,
I connection with existing (and used) refinement methods,
I development of a visual modeling/programming tool.



For a structured programing of time and space. . .

Thanks for your attention !



[BJ14] A. Blumensath and D. Janin.
A syntactic congruence for languages of birooted trees.
Semigroup Forum, 2014.

[Bur86] P. Burmeister.
A Model Theoretic Oriented Approach to Partial Algebras.

Akademie-Verlag, 1986.

[CE12] B. Courcelle and J. Engelfriet.
Graph structure and monadic second-order logic, a
language theoretic approach, volume 138 of Encyclopedia
of mathematics and its applications.
Cambridge University Press, 2012.

[Jan15] D. Janin.
On labeled birooted trees languages: Algebras, automata
and logic.
Information and Computation, 243:222–248, 2015.

[Jan16] D. Janin.



Walking automata in free inverse monoids.
In Int. Conf. on Current Trends in Theo. and Prac. of
Comp. Science (SOFSEM), 2016.

[She75] S. Shelah.
The monadic theory of order.
Annals of Mathematics, 102:379–419, 1975.


