# Inverse monoids of higher dimensional strings



#### David Janin, research project PoSET CNRS LaBRI & INRIA Bordeaux, Bordeaux INP, University of Bordeaux @ICTAC 2015, Cali, Columbia, October 2015

#### My own wish list

- simple, to be used by artists, kids and moveling
- efficient, to do live music
- both concurrent and parallel, inclusion live music,
- modular and hierarchical, ior incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and the simple
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, ior incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music
- both concurrent and parallel, insulas live music,
- modular and hierarchical, ior incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music
- both concurrent and parallel, insulas live music,
- modular and hierarchical, incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, justicas live music,
- modular and hierarchical, ior incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel,
- modular and hierarchical, in incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, ior incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, modular design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, for incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, for incremental design,
- multi time-scaled: from causal to continuous time, idem,

mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, for incremental design,
- multi time-scaled: from causal to continuous time, idem,

mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, for incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, for incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

#### My own wish list

- simple, to be used by artists, kids and myself,
- efficient, to do live music,
- both concurrent and parallel, just as live music,
- modular and hierarchical, for incremental design,
- multi time-scaled: from causal to continuous time, idem,
- mathematically robust, to go beyond one shot prototyping,

# So let's start

#### From strings to higher dimensional strings

with music modeling in the background,

# So let's start

From strings to higher dimensional strings

with music modeling in the background,

An (abstract) musical exemple



Is this satisfactory ? In musical refinement, temporal overlaps are common features.

< □ > < @ > < Ξ > < Ξ > <</p>



An (abstract) musical exemple

Is this satisfactory ?

temporal overlaps are common features.





Is this satisfactory ?

temporal overlaps are common features.

An (abstract) musical exemple



Is this satisfactory ? In musical refinement, temporal overlaps are common features.

Launching two musical streams



We consider graphs that are deterministic and co-deterministic, or, more generally with hyper-edges, locally unambiguous.

< = > < @ > < = > < = >

#### Launching two musical streams



We consider graphs that are deterministic and co-deterministic, or, more generally with hyper-edges, locally unambiguous.

イロト イタト イヨト イヨト

#### Launching two musical streams



We consider graphs that are deterministic and co-deterministic, or, more generally and proper edges, locally unambiguous.

イロト イポト イミト イミト

Launching/ending two musical streams



We consider graphs that are deterministic and co-deterministic, or, more generally more redges, locally unambiguous.

イロト イポト イミト イミト

#### Launching/ending two musical streams



We consider graphs that are deterministic and co-deterministic, or, more generally more redges, locally unambiguous.

イロト イポト イミト イミト

#### Launching/ending two musical streams



#### We consider graphs that are deterministic and co-deterministic, or, more generalized and an ended edges. locally unambiguous.

メロトメ(部)トメミトメミト

### Launching/ending two musical streams



We consider graphs that are deterministic and co-deterministic, or, more generally with hyper-edges, locally unambiguous.

メロトメ母トメミトメミト

### We have

#### locally non ambiguous labeled (hyper-)graphs,

- with a "causal/temporal" interpretation
  - synchronization points : vertices,
  - causal/temporal flows : edges.

### Question

- how to compose these graphs
- what generators ?
- how to refine them ?

#### swer

Schodel: higher dimensional strings (HDS) !

#### We have

- locally non ambiguous labeled (hyper-)graphs,
- with a "causal/temporal" interpretation
  - synchronization points : vertices,
  - causal/temporal flows : edges.

### Question

- how to compose these graphs
- what generators ?
- how to refine them ?

#### swer

Model: higher dimensional strings (HDS) !

#### We have

- locally non ambiguous labeled (hyper-)graphs,
- with a "causal/temporal" interpretation
  - synchronization points : vertices,
  - causal/temporal flows : edges.

### Question

- how to compose these graphs ?
- what generators ?
- how to refine them ?

Schodel: higher dimensional strings (HDS) !

#### We have

- locally non ambiguous labeled (hyper-)graphs,
- with a "causal/temporal" interpretation
  - synchronization points : vertices,
  - causal/temporal flows : edges.

### Question

- how to compose these graphs ?
- what generators ?
- how to refine them ?

#### Answer

model: higher dimensional strings (HDS) !

Birooted graphs (or cospans)





with graph domain G, and labeling root morphisms in and out from edgeless graphs  $I_p$  and  $I_q$  ... and some connectivity assumptions.

Birooted graph prod



Birooted graphs (or cospans)



with graph domain G, and labeling root morphisms in and out from edgeless graphs  $I_p$  and  $I_q$  ... and some connectivity assumptions.

**Birooted** graph



Birooted graphs (or cospans)



with graph domain G, and labeling root morphisms *in* and *out* from edgeless graphs  $I_p$  and  $I_q$  ... and some connectivity assumptions.

Birooted graph products via pushout



Birooted graphs (or cospans)



with graph domain G, and labeling root morphisms *in* and *out* from edgeless graphs  $I_p$  and  $I_q$  ... and some connectivity assumptions.

Birooted graph products via pushout




Step 1: synchronization (or row gluing)



Step 2: insion (or gluing propagation)



Two components





Step 2: filsion (or gluing propagation)



Two components



Step 1: synchronization (or root gluing)



Step 2: Motion (or gluing propagation)  $2 \rightarrow 0 \rightarrow 2$   $b \qquad b \qquad b$  $1 \rightarrow 0 \rightarrow 0$ 

Two components



Step 1: synchronization (or root gluing)



Step 25 ison (or gluing propagation)  $_2 \rightarrowtail _{\bigcirc} \xrightarrow{a} _{\bigcirc} \xrightarrow{a} _{\bigcirc} \xrightarrow{a}$ 

Two components



Step 1: synchronization (or root gluing)



Step 2: fusion (or gluing propagation)



### Lemma (Bideterminization)

Every (connected) graph has a maximal locally non ambiguous image under graph (connecting) morphism. This maximal image is computable in linear time.

An example



Compliting product in two steps

- synchronization glue roots (pushout in graphs).
- fusion: apply bideterminization (max. unambiguous image).

### Lemma (Bideterminization)

Every (connected) graph has a maximal locally non ambiguous image under graph (connecting) morphism. This maximal image is computable in linear time.



Complicing product in two steps

- synchronization glue roots (pushout in graphs).
- fusion: apply bideterminization (max. unambiguous image).

## Lemma (Bideterminization)

Every (connected) graph has a maximal locally non ambiguous image under graph (connecting) morphism. This maximal image is computable in linear time.

An example



Communing product in two steps

- synchronization glue roots (pushout in graphs)
- fusion: apply bideterminization (max. unambiguous image).

## Lemma (Bideterminization)

Every (connected) graph has a maximal locally non ambiguous image under graph (connecting) morphism. This maximal image is computable in linear time.

An example



Computing product in two steps

- synchronization: glue roots (pushout in graphs),
- fusion: apply bideterminization (max. unambiguous image).

# Refinement (by examples)

Hyper directed edges and product HS(A)



Hyper directed edges replacement via arphi: A o HS(B)





that (may ?) simply induces a morphism from HS(A) to  $HS(\underline{B})$ .

## Refinement (by examples)

Hyper directed edges and product HS(A)



that (may ?) simply induces a morphism from HS(A) to  $HS(\underline{A})$ .

## Refinement (by examples)

Hyper directed edges and product HS(A)



Hyper directed edges replacement via  $\varphi: A \to HS(B)$ 



that (may ?) simply induces a morphism from HS(A) to HS(B).



### Strings and monoids



VS

Higher dimensional strin





VS

Higher dimensional strings





VS

Higher dimensional strings and inverse monoids



# Monoid of higher dimensional strings

#### Theorem

Birooted graphs with product (extended by zero) form a monoid.

#### Theorem

Submonoids of finite birooted graphs with bounded root size are finitely generated.

# Monoid of higher dimensional strings

### Theorem Birooted graphs with product (extended by zero) form a monoid.

#### Theorem

Submonoids of finite birooted graphs with bounded root size are finitely generated.

# Monoid of higher dimensional strings

#### Theorem

Birooted graphs with product (extended by zero) form a monoid.

#### Theorem

Submonoids of finite birooted graphs with bounded root size are finitely generated.

### Generator examples



Some products a generators  $(T_{2,a}, J_2, F_2, T_{2,a})$   $(F_2, T_{2,a}, T_{2,a}, J_2)$   $(T_{2,b}, P_{2,1,2}, T_{2,a}, P_{2,1,2})$  1 1 1 1 2 1 1 2 2 b 2a b c b 2 b 2



Some products of generators  $(T_{2,a} \cdot J_2 \cdot F_2 \cdot T_{2,\bar{a}})$   $(F_2 \cdot T_{2,a} \cdot T_{2,c} \cdot J_2)$   $(T_{2,b} \cdot P_{2,1,2} \cdot T_{2,a} \cdot P_{2,1,2})$   $1 \rightarrow 1$   $1 \rightarrow 1$   $1 \rightarrow 1$   $1 \rightarrow 1$  $2 \rightarrow a$   $2 \rightarrow b$  2

### Simplest generators



with  $a^R = a \cdot a^{-1}$  and  $a^L = a^{-1} \cdot a^{-1}$ 

#### Induced monoid

Generated elements are finite birooted trees



Simplest generators and left and right projections



with  $a^R = a \cdot a^{-1}$  and  $a^L = a^{-1} \cdot a$ 

#### Induced monoid

Generated elements are finite birooted trees



Simplest generators and left and right projections



with  $a^R = a \cdot a^{-1}$  and  $a^L = a^{-1} \cdot a$ 

#### Induced monoid

Generated elements are finite birooted trees



Simplest generators and left and right projections



with  $a^R = a \cdot a^{-1}$  and  $a^L = a^{-1} \cdot a$ 

### Induced monoid

Generated elements are finite birooted trees.



Simplest generators and left and right projections



with  $a^R = a \cdot a^{-1}$  and  $a^L = a^{-1} \cdot a$ 

### Induced monoid

Generated elements are finite birooted trees.



Simplest generators and left and right projections



with  $a^R = a \cdot a^{-1}$  and  $a^L = a^{-1} \cdot a$ 

### Induced monoid

Generated elements are finite birooted trees.



They form the free inverse monoid generated by A.

### Lemma (Characterization)

A birooted graph  $B = \langle in : I_p \to G, out : I_q \to G \rangle$  is idempotent if and only if in = out (hence p = q).



#### Lemma (Semi-lattice property)

Idempotents commute hence form a semi-lattice with  $B_1 \wedge B_2 = B_1 \cdot B_2$ 

I = I = I = I
I = I

#### Lemma (Characterization)

A birooted graph  $B = \langle in : I_p \to G, out : I_q \to G \rangle$  is idempotent if and only if in = out (hence p = q).



Lemma (Semi-lattice property) Idempotents commute here form a semi-lattic with  $B_1 \wedge B_2 = B_1 \cdot B_2$ 

### Lemma (Characterization)

A birooted graph  $B = \langle in : I_p \to G, out : I_q \to G \rangle$  is idempotent if and only if in = out (hence p = q).



Lemma (Semielattice property)

Idempotents commute hence form a semi-lattice with  $B_1 \wedge B_2 = B_1 \cdot B_2$ 

< □ > < □ > < □ > < □ > < □ > < □ >

### Lemma (Characterization)

A birooted graph  $B = \langle in : I_p \to G, out : I_q \to G \rangle$  is idempotent if and only if in = out (hence p = q).



### Lemma (Semi-lattice property)

Idempotents commute hence form a semi-lattice with  $B_1 \wedge B_2 = B_1 \cdot B_2$ .

### Inverse monoid properties: semigroup inverses

### Lemma (Semigroup Inverse) Take $B = \langle in : I_p \to G, out : I_q \to G \rangle$ . Take $C = \langle out : I_q \to G, in : I_p \to G \rangle$ . Then $B = B \cdot C \cdot B$ and $C = C \cdot B \cdot C$ .

That is, C is a semigroup inverse of B

And, since idempotents commute:

Corollary

The monoid of higher dimensional strings is an red inverse monoid, i.e. every element B has a unique inverse  $B^{-1}$ .

## Inverse monoid properties: semigroup inverses

### Lemma (Semigroup Inverse) Take $B = \langle in : I_p \to G, out : I_q \to G \rangle$ . Take $C = \langle out : I_q \to G, in : I_p \to G \rangle$ . Then $B = B \cdot C \cdot B$ and $C = C \cdot B \cdot C$ .



That is, C is a semigroup inverse of B.

And, since idempotents commute:

**The monoid** of higher dimensional strings is an red inverse monoid, i.e. every element B has a **unique inverse** B<sup>-1</sup>.

## Inverse monoid properties: semigroup inverses

### Lemma (Semigroup Inverse) Take $B = \langle in : I_p \to G, out : I_q \to G \rangle$ . Take $C = \langle out : I_q \to G, in : I_p \to G \rangle$ . Then $B = B \cdot C \cdot B$ and $C = C \cdot B \cdot C$ .



That is, C is a semigroup inverse of B.

And, since idempotents commute:

### Corollary

The monoid of higher dimensional strings is an red inverse monoid, i.e. every element B has a unique inverse  $B^{-1}$ .

Inverse monoid properties: natural order and morphisms

## Definition (Natural order) $B_1 \leq B_2$ when $B_1 = B_1 \cdot B_1^{-1} \cdot B_2$



Lemma Then  $B_1 \leq B_2$  if and only if there is a root preserving morphism  $arphi: B_2 
ightarrow B_1.$  Inverse monoid properties: natural order and morphisms

## Definition (Natural order) $B_1 \leq B_2$ when $B_1 = B_1 \cdot B_1^{-1} \cdot B_2$ .

Lemma Then  $B_1 \leq B_2$  if and only if there is a root preserving morphism  $arphi: B_2 
ightarrow B_1.$ 

メロトメタトメミトメミト
Inverse monoid properties: natural order and morphisms

## Definition (Natural order) $B_1 \leq B_2$ when $B_1 = B_1 \cdot B_1^{-1} \cdot B_2$ .



Lemma Then  $B_1 \leq B_2$  if and only if there is a root preserving morphism  $\varphi: B_2 
ightarrow B_1$ . Inverse monoid properties: natural order and morphisms

## Definition (Natural order) $B_1 \leq B_2$ when $B_1 = B_1 \cdot B_1^{-1} \cdot B_2$ .



Lemma Then  $B_1 \leq B_2$  if and only if there is a root preserving morphism  $\varphi : B_2 \rightarrow B_1$ .

## What about loops ?

### Directed cycles in graphs

could be forbidden with causal/temporal semantics of arrows

メロン メタン メミン メミン

## What about loops ?

### Directed cycles in graphs



could be forbidden with causal/temporal semantics of arrows.

メロトメタトメミトメミト

## What about loops ?

### Directed cycles in graphs



could be forbidden with causal/temporal semantics of arrows.

メロトメタトメミトメミト

# Causal higher dimensional strings

### Remark

The property "there is a cycle" is invariant under product. These birooted graphs form a semigroup ideal  $\perp$ .

### Quotient by ideal

By quotient (by ideal) all non causal element of  $\bot$  collapse to zero: the forbidden model.

### Definition Caudal HDS(A) = HDS(A)

# Causal higher dimensional strings

### Remark

The property "there is a cycle" is invariant under product. These birooted graphs form a semigroup ideal  $\perp$ .

### Quotient by ideal

By quotient (by ideal) all non causal element of  $\perp$  collapse to zero: the forbidden model.

Definition Caudal HDS(A) = HDS(A)

# Causal higher dimensional strings

### Remark

The property "there is a cycle" is invariant under product. These birooted graphs form a semigroup ideal  $\perp$ .

### Quotient by ideal

By quotient (by ideal) all non causal element of  $\perp$  collapse to zero: the forbidden model.

Definition Caudal  $HDS(A) = HDS(A)/\bot$ 

- grids are finitely generated !
- hence emptiness of MSO definable languages of HDS is undecidable,
- but disjoint products allows to define large classes of languages with decidable cases

- grids are finitely generated !
- hence emptiness of MSO definable languages of HDS is undecidable,
- but disjoint products allows to define large classes of languages with decidable cases

- grids are finitely generated !
- hence emptiness of MSO definable languages of HDS is undecidable,
- but disjoint products allows to define large classes of languages with decidable cases

- grids are finitely generated !
- hence emptiness of MSO definable languages of HDS is undecidable,
- but disjoint products allows to define large classes of languages with decidable cases.



























From squares to grids



As a consequence, MSO languages of HDS have undecidable emptiness.

From squares to grids



Such a node "clashes" in the gluing !'

Undecidability comes from complex glueing !

# Controlled glueing: disjoint product

#### Definition

A product is a disjoint product when it is limited to roots glueing i.e. trivial fusion phase.

Viewing a disjoint product



Controlled glueing: disjoint product

#### Definition

A product is a disjoint product when it is limited to roots glueing, i.e. trivial fusion phase.



Controlled glueing: disjoint product

#### Definition

A product is a disjoint product when it is limited to roots glueing, i.e. trivial fusion phase.

Viewing a disjoint product



#### Lemma

Though partial, the disjoint product is associative

### Corollary

Partial algebra techniques [Bur86] and MSO type theory [She75] apply leading to a decidable, expressive and efficient MSO language theory.

The case of the oted trees detailed in [BJ14, Jan15] with disjoint products and projections.

### Lemma Though partial, the disjoint product is associative.

### Corollary

Partial algebra techniques [Bur86] and MSO type theory [She75] apply leading to a decidable, expressive and efficient MSO language theory.

The case of the oted trees detailed in [BJ14, Jan15] with disjoint products and projections.

#### Lemma

Though partial, the disjoint product is associative.

### Corollary

Partial algebra techniques [Bur86] and MSO type theory [She75] apply leading to a decidable, expressive and efficient MSO language theory.

The case of booted trees detailed in [BJ14, Jan15] with disjoint products and p

#### Lemma

Though partial, the disjoint product is associative.

### Corollary

Partial algebra techniques [Bur86] and MSO type theory [She75] apply leading to a decidable, expressive and efficient MSO language theory.

#### The case of birooted trees

detailed in [BJ14, Jan15] with disjoint products and projections.

#### Lemma

The tree-width of a disjoint product is bounded by the may tree-width of the components (roots seen as hyper-edges)

#### Corollary

MSO model checking techniques over graphs of bounded tree-width also apply [CE12].

#### Remark

#### Lemma

The tree-width of a disjoint product is bounded by the max. tree-width of the components (roots seen as hyper-edges).

#### Corollary

MSO model checking techniques over graphs of bounded tree-width also apply [CE12].

#### Remark

#### Lemma

The tree-width of a disjoint product is bounded by the max. tree-width of the components (roots seen as hyper-edges).

### Corollary

MSO model checking techniques over graphs of bounded tree-width also apply [CE12].

#### Remark

#### Lemma

The tree-width of a disjoint product is bounded by the max. tree-width of the components (roots seen as hyper-edges).

### Corollary

MSO model checking techniques over graphs of bounded tree-width also apply [CE12].

#### Remark

# Conclusion

Done

- simple monoids for large classes of (birooted) graphs,
- an underlying rich and robust theory : inverse semigroups
- language theory and tools via non-det. automata [Jan15], partial algebra [Bur86, BJ14], and also walking automata [Jan16], etc...,

## Ongoing

- (fun) application in music system programming tools,
- causal and I/O modeling experiments.

### To be scheduled

- beyond music: multi-scale reactive hybrid systems modeling,
- connection with existing (and used) refinement methods,
- 🕨 development of a visual modeling/programming tool., ત્ર્ર

# Conclusion

Done

- simple monoids for large classes of (birooted) graphs,
- an underlying rich and robust theory : inverse semigroups,
- language theory and tools via non-det. automata [Jan15], partial algebra [Bur86, BJ14], and also welking automata [Jan16], etc....

## Ongoing

- (fun) application in music system programming tools,
- causal and I/O modeling experiments.

### To be scheduled

- beyond music: multi-scale reactive hybrid systems modeling,
- connection with existing (and used) refinement methods,
- > development of a visual modeling/programming tool.. 🚛

# Conclusion

Done

- simple monoids for large classes of (birooted) graphs,
- an underlying rich and robust theory : inverse semigroups,
- language theory and tools via non-det. automata [Jan15], partial algebra [Bur86, BJ14], and also walking automata [Jan16], etc...,

## Ongoing

- (fun) application in the system programming tools,
- causal and I/O modeling experiments.

### To be scheduled

- **beyond music** multi-scale reactive hybrid systems modeling,
- connection with existing (and used) refinement methods,
- > development of a visual modeling/programming tool.. 🚛
# Conclusion

Done

- simple monoids for large classes of (birooted) graphs,
- an underlying rich and robust theory : inverse semigroups,
- language theory and tools via non-det. automata [Jan15], partial algebra [Bur86, BJ14], and also walking automata [Jan16], etc...,

## Ongoing

- (fun) application in music system programming tools,
- causal and I/O modeling experiments,

#### **Selecheduled**

- beyond music multi-scale reactive hybrid systems modeling,
- connection with existing (and used) refinement methods,
- > development of a visual modeling/programming toલી., ત \_ ,

# Conclusion

Done

- simple monoids for large classes of (birooted) graphs,
- an underlying rich and robust theory : inverse semigroups,
- language theory and tools via non-det. automata [Jan15], partial algebra [Bur86, BJ14], and also walking automata [Jan16], etc...,

## Ongoing

- (fun) application in music system programming tools,
- causal and I/O modeling experiments,

#### To be scheduled

- beyond music: multi-scale reactive hybrid systems modeling,
- connection with existing (and used) refinement methods,
- development of a visual modeling/programming tool.

For a structured programing of time and space...



Thanks for your attention !

[BJ14] A. Blumensath and D. Janin. A syntactic congruence for languages of birooted trees. Semigroup Forum, 2014.

[Bur86] P. Burmeister.

A Model Theoretic Oriented Approach to Partial Algebras.

Akademie-Verlag, 1986.

[CE12] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, a language theoretic approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2012.

[Jan15] D. Janin.

On labeled birooted trees languages: Algebras, automata and logic.

Information and Computation, 243:222–248, 2015.

[Jan16] D. Janin.

Walking automata in free inverse monoids.

In Int. Conf. on Current Trends in Theo. and Prac. of Comp. Science (SOFSEM), 2016.

[She75] S. Shelah.

The monadic theory of order.

Annals of Mathematics, 102:379–419, 1975.