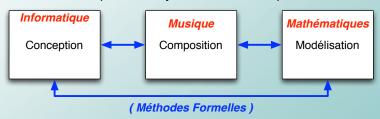
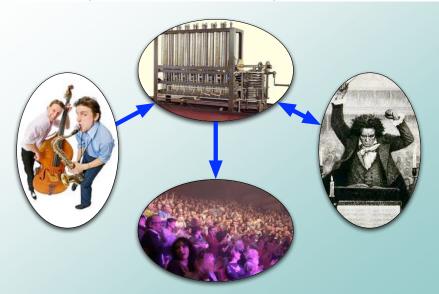
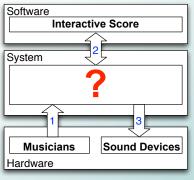
Architecture temps-réel paresseuse pour la musique interactive


David Janin, LaBRI, Université de Bordeaux France

JIM 2012 Journées d'Informatique Musicale, Mons, Belgique, Mai 2012


Contexte de recherche

La musique est, depuis des siècles, le langage du temps, de l'espace, du parallélisme, de l'interaction,...

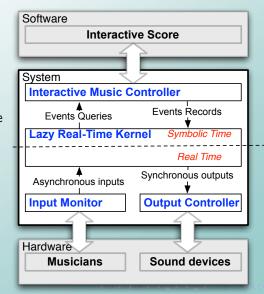

La *modélisation formelle* du langage et de la performance musicale peut-elle nous conduire à de nouvelles *métaphores* ou *paradigmes* utiles à la conception des systèmes informatique ?

Musique Interactive Assistée par Ordinateur

Une problématique système

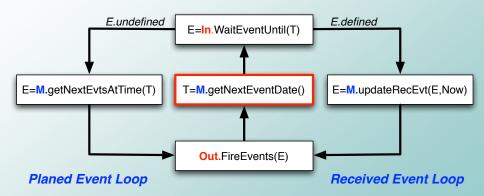
Trois tâches à coordonner

- 1. Entrées :
- acquisition (temps-réel)
- 2. Interprétations partition : analyse (temps-symbolique)
- 3. Production sonore : restitution (temps réel)


Deux flux de contrôle concurrents

Contrôlés par deux types d'évènements

- Impromptus (musicien) : mode réactif, asynchrone,
- 2. Planifiés (partition) : mode actif, synchrone.


Noyau temps-réel paresseux

```
do {
  wait E = inputEvent()
  until E = plannedEvent()
} while E.isDefined
```


Deux boucles concurrentes

Un noyau système de type « Lazy Real-Time »

Temps réel vs temps symbolique

Temps réel
$$T$$
 et temps symbolique N
 $tempo = \frac{dN}{dT}$

Mises à jour

Hypothèse de modélisation: le *tempo* est constant entre deux évènements.

Ainsi, selon le cas:

$$\Delta T = \Delta N/tempo$$

$$\Delta N = \Delta T * tempo$$

Propriétés : partition interactive

Anticipation musicale limitée

A chaque instant, le système n'a besoin que de (la date de) l'évènement planifié suivant.

Sémantique opérationnelle

Tous ce passe comme si une partition interactive est un automate temporisé avec, pour chaque état possible, une date limite de réaction : date du prochain évènement planifié.

Travail en cours

Développement d'une algèbre adaptée d'opérateurs de composition de partition interactive (voir http://www.labri.fr/janin).

Propriétés : gestion du temps-réel

Mise en œuvre

Mis en œuvre avec dates calculées. La fonction système date() ne sert que de référence pour calcul de précision (de l'ordre de la ms).

Stabilité

Auto-stabilisation en reprise sur interruption.

Propriétés : Modules de production sonore

Travail en cours

Développement d'une version «bas-niveau» des opérateurs de haut niveau autant pour la gestion d'évènement de control discret (MIDI) ou des flux audios « continus» (fichiers de sons).

Perspectives

Mise en œuvre d'un module «élastique» à la volée pour la gestion des variations de tempo sur flux audio bufferisés.

En matière de conclusion

