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Plan of the talk

I. Modeling music: from opera to bebop.
II. From birooted words to higher dimensional strings.
III. A bit of dinning philosophy.
IV. Towards a language theory of higher dimensional

strings.
a. Definable languages.
b. Walking automata.
c. Non deterministic automata.

V. Quasi-recognizable languages.
VI. Conclusion: back to music.
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1. Music modeling

From opera, to arabesques down to bebop.
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Opera is the only medium in which everyone can be talking at the
same time and still manage to understand each other. . .

Amadeus, XVIIIth century,
(from M. Forman in eponym movie)

Centuries later, this has become common practice in
communication networks.

Question
Are there other musical techniques or metaphors that can be used
in computer systems modeling ?
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A musical example

Extracted from Debussy’s arabesques : andantino con moto
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interleaved motivs in soprano voice,
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an underlying frame in the medium,
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arpegios to hear the harmony,
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and a bass line. . .
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What modeling langage for music ?
A language for musical analysis (learning)

partition =⇒ structure =⇒ intention

A language for musical writing (or musical programing)

partition⇐= structure⇐= intention

An expressive language

With sequential and parallel composition operators
with partial overlaps, and hierarchical description mechanisms. . .

A usable language

with basic good programming properties such as compositionality,
reusability, etc. . .
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My little blue suede shoes (Ch. Parker)

 

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

!# ("!!&&&%9 !!!"$ !!!!

!# ("!!&&&%12 & !) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

(a) (a)

(b)(a)

Analysis
Three exposures of the same motiv (a) followed by a conclusive
variation (b)
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Modeling motiv (a)

 

! " !# $! ! ! !% &&& ' " ! !! !! ! ! !! ! ! ! " ! ! !! " !# $

! " !#! ! ! ! (4 % &&& ! ! " !
# "! ! ! ! ) !& !! * !

(#!"!&&&%8 !!!"$ ! !!!!
(#!"!&&&%11 !&!) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

modeled by
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4

1 1 1 1

1

(a)



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Modeling motiv (b)

 

! " !# $! ! ! !% &&& ' " ! !! !! ! ! !! ! ! ! " ! ! !! " !# $

! " !#! ! ! ! (4 % &&& ! ! " !
# "! ! ! ! ) !& !! * !

(#!"!&&&%8 !!!"$ ! !!!!
(#!"!&&&%11 !&!) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

modeled by

4

1 1 1 1

7

3 22

4

1 1 1 1

1

(b)
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Resulting modeling

1

4

1 1 1 1

7

3 22

4

1 1 1 1

15 8

(b)

4

1 1 1 1

3

1 11

4

1 1 1 1

11 5

(a)

4

1 1 1 1

3

1 11

4

1 1 1 1

11 5

(a)

4

1 1 1 1

3

1 11

4

1 1 1 1

11 1

(a)

Drawbacks:
insertion of silences with various length,
logical structure (3x(a) + (b)) rather lost.
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Alternative approach

Explicit first beat anticipation (anacrusis) [Jan13b]:

 

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

!# ("!!&&&%9 !!!"$ !!!!

!# ("!!&&&%12 & !) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

and fill with silence till the logical end (second bars):

corpanacrouse

4

1 1 1 1

3

1 11

4

1 1 1 1

1

8
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do the same for the second motiv:

 

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

!# ("!!&&&%9 !!!"$ !!!!

!# ("!!&&&%12 & !) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

which gives:

corpanacrouse

4

1 1 1 1

7

3 22

4

1 1 1 1

1

8



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The resulting sequential composition:

corpanac.

43 4 8

1

corpanac.

43 4 8

1

corpanac.

43 4 8

1

8

corpanac

47 4

1

1

(a)
(a)

(a)
(b)

with local overlaps.
Here comes back the logical structure: 3x(a) + (b) !
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Synchronization vs realization windows
Idea [Jan12b]
Distinguish for every musical pattern:

s1 s4d1 s2 d3s3d2

Synchronization Window

Realization Window

entry exit

Old idea
Already implicitly present in musical modeling with LOCO [DH88],
but somehow basic in automation or software systems.

Remark
In theory of music: such a distinction generalizes bars and
metrics. . .
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Pattern product : 1. synchronisation

1 42 3

entry sync. point

1 42 3

exit

X

Y
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Pattern product : 2. fusion

entry

1 2
1

4
43

exit

Downstream fusion

Upstream fusion 

X

Y
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Induced algebra : the continuous case

1 42 3Y
1 42 3X u1 u2 u3

v1 v2 v3

Synchronization structures : DA = R× R× R, with product

(x1, x2, x3)︸ ︷︷ ︸
X

. (y1, y2, y3)︸ ︷︷ ︸
Y

= (max(x1, y1 − x2), x2 + y2,max(y3, x3 − y2))︸ ︷︷ ︸
X .Y

with fusion of underlying audio or musical patterns defined by
mixing and crossfading. In practice, we obtain an music pattern
algebra [BJM12], later turned into a prototype software [JBD13].

Theorem
We obtain a monoid, i.e. a set equipped with an associative
product and a neutral element.
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2. Formal Models

Models for (abstract description of) music
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Starting from the known world : a word based model

Musical objects

• • •B C

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.
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Starting from the known world : a word based model

Musical objects refinement

• • •B C

• • • • •
b1 b2 b3 b4

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.
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Starting from the known world : a word based model

Musical objects refinement

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.
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Starting from the known world : a word based model

Musical objects refinement with overlaps

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

•b5 •b6

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.
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Starting from the known world : a word based model

Musical objects refinement with overlaps

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

•b5 •b6

• c0

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.
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Starting from the known world : a word based model

Musical objects refinement with overlaps

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

•b5 •b6

• c0

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.
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Labeled Munn’s trees (or birooted F -trees)

Birooted F -tree
Let A and F two finite alphabets. F -labeled vertices and A-labeled
edges

(B) hin

f

a out

g
a

f

b

with input root (in) and output root (out).
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Labeled Munn’s trees (or birooted F -trees)

Birooted F -tree
Let A and F two finite alphabets. F -labeled vertices and A-labeled
edges

(B) hin

f

a out

g
a

f

b

with input root (in) and output root (out).
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Birooted F -trees product
A rich algebraic structure:

Product
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F ).
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Birooted F -trees product
A rich algebraic structure:

Product = sync
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out

SYNC
h

in

f
a

g
a

f
b f

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F ).



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Birooted F -trees product
A rich algebraic structure:

Product = sync + fusion
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out

FUSION
h

in

f
a

g
a

f
b f

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F ).
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Birooted F -trees product
A rich algebraic structure:

Product = sync + fusion
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out
(B · C)

h
in

f
a

g
a

f
b f

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F ).
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An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F ) is an inverse monoid [Law98].
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An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F ) is an inverse monoid [Law98].
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An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

hin out

f
a

g
a

f
b

(B · B−1︸ ︷︷ ︸
BR

)

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F ) is an inverse monoid [Law98].
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An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

hin out

f
a

g
a

f
b

(B · B−1︸ ︷︷ ︸
BR

) h
f

a out

in g
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i.e. B(F ) is an inverse monoid [Law98].
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The natural order

Sub birooted tree
hin

f
a out

g
a

f
b

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.
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The natural order

Sub birooted tree
hin

f
a out

g
a

f
b

hin

f
a out
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We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.
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The natural order

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.
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The natural order

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤hin

f
a out

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.
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The natural order and the idempotents

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤hin

f
a out

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.
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Extending F -terms algebras

F -terms
With ρ(f ) = 2, ρ(g) = 1 and ρ(h) = 0:

f (g(h), f (f (h, h))) f
g

f
h

h

ha
b a

b

a

Observation
Classical (mono-rooted) F -trees can be encoded as idempotent
birooted F -trees.
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Extending F -terms algebras

F -terms
With ρ(f ) = 2, ρ(g) = 1 and ρ(h) = 0:

f (g(h), f (f (h, h))) f
g

f
h

h

ha
b a

b

a
in

out

Observation
Classical (mono-rooted) F -trees can be encoded as idempotent
birooted F -trees.
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Higher dimensional strings ?
Remark (The product as a pushout)

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].
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Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].
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Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f g

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].
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Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f g

D

f ′ g ′

i

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].
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Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f ginB·C outB·C

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].
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Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f ginB·C outB·C

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].
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3. Dining philosophy

More modeling experiments
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The dining philosophers

ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

c3

c2c1

c4
c0

Goal
An incremental modeling of the dining philosopher problem and
solution by means of birooted tree algebra.
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Forks’ local and global state modeling

Ingredients
Edge label: c0, c1, . . . , cn−1, one per philosopher.
Vertex label: •, v ∈ V for some set V of local state values of forks.

•

vk
ck

(Sk)

•

v0
c0

vk
ck vn−1

cn−1

(S)

States = Idempotent birooted trees
Local states Sk , global state S with

S ≤ Sk for every 0 ≤ k < n, and S =
∏

k Sk
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•
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Philosophers’ local states and transitions
Philosopher’s states
The state Pk of philosopher ϕk is of the form Pk = Sk · Sk+1, i.e.
built from the state of the two neighbor forks.

•

vk+1

vk

ck+1

ck

(Pk)

• •
(Pk) (P ′k)

vk+1 v ′k

vk v ′k+1

ck+1

ck

ck

ck+1

a

(Tk)

Philosopher’s transition
A transition Tk of the philosopher ϕk is built by relating two local
state Pk and P ′k by some a-edge by Tk = Pk · a · P ′k with

TR
k ≤ Pk , T L

k ≤ P ′k and Tk = TR
k · a = a · T L

k = TR
k · a · T L

k
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Philosophers’ global states and transitions

Global transition
Of the form T = S · a · S ′ with TR ≤ S and T L ≤ S ′.

•

v0
c0

vk

ck
vn−1
cn−1

(S)

• •

v0
c0

vk

ck
vn−1
cn−1 a

v ′0
c0

v ′k
ck
v ′n−1
cn−1

(S) (S ′)

(T )

With local to global relationship

T =
(∏

0≤k<n TR
k

)
· a = a ·

(∏
0≤k<n T L

k

)
=

(∏
0≤k<n TR

k

)
· a ·

(∏
0≤k<n T L

k

)
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ck
v ′n−1
cn−1

(S) (S ′)

(T )

With local to global relationship

T =
(∏

0≤k<n TR
k

)
· a = a ·

(∏
0≤k<n T L

k

)
=

(∏
0≤k<n TR

k

)
· a ·

(∏
0≤k<n T L

k

)
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Chandy and Misra’s solution modeling

a well chosen set V of fork local state values,
the language Lk of local transitions of the form
Tk = Pk · a · P ′k that satisfies the algorithm, for every
philosopher ϕk with 0 ≤ k < n,
resulting global transitions defined by:

L =
∏
k

(Lk)R · a = a ·
∏
k

(Lk)L =
∏
k

(Lk)R · a ·
∏
k

(Lk)L

starting from initial state S0, infinite global behaviors are
given by

C = S0 · Lω

check the algorithm is correct by analyzing the language C !!!
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4. Languages

We need a simple but expressive notion of manageable languages
of birooted F -trees and, beyond, higher dimensional strings ?
What are the available language theoretic tools and concepts ?
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Languages of birooted F -trees

Languages X and Y ⊆ B(F )− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F ):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F ) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F )− 0 : ∃C ∈ X ,B ≤ C}.
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The known case of word languages

Definability classes of languages of words
A language L ⊆ A∗ is

REC when L = ϕ−1(ϕ(L)) for some morphism ϕ : A∗ → S
with finite monoid S,
REG when L is definable by a regular expression, i.e. definable
from finite languages combined with sum, product and star,
MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc. . . )
Over words, REC = REG = MSO︸ ︷︷ ︸

finite automata
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The new case of birooted F -tree languages
Classes of languages of F-trees
A language X ⊆ B(F ) is

REC when X = ϕ−1(ϕ(X )) for some morphism ϕ : A∗ → S
with finite monoid S,
k-REG when it is definable by a regular expression extended
by idempotent projection with nesting depth at most k,
MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)
The class MSO is closed under boolean, product, star, inverse,
projections, upward and downward closure. . .

Theorem (Expressiveness)
Over birooted F -trees,

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO
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Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F )→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.
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Walking automata and downward closed languages

A = 〈Q, q0,T , δ : (A + Ā + F )→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F ) for which there is an accepting walking run,
from the input root in initial state q0 to the output root in an
accepting state q ∈ T , possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])
REC↓ ⊂ REG↓ ⊂ 1-REG↓ ⊆ · · · ⊆ k-REG↓ ⊆ · · · ⊆ MSO↓

REC↓ by strongly deterministic walking automata,
REG↓ by non deterministic walking automata,
k-REG↓ by k-(invisible)-pebble walking automata,
MSO↓ by ω-(invisible)-pebble walking automata.
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Non det. automata and downward closed languages
Definition (Non deterministic automata – see e.g. [Tho97])

A = 〈Q,W , δ : (A + F )→ P(Q × Q)〉

with run that are markings ρ : dom(B)→ Q such that:
Vertex coherence: for all v ∈ dom(B) labeled by f ∈ F ,

(ρ(v), ρ(v)) ∈ δ(f )

Edge coherence: for all edge v a→ w in B,
(ρ(v), ρ(w)) ∈ δ(a)

A run in picture

f
in

g
a hb

f
c

gb

f
b

out

q1

q2

q3
q4

q5

q6

Coherence ex.:
(q2, q2) ∈ δ(g)

(q4, q3) ∈ δ(b)
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Vertex coherence: for all v ∈ dom(B) labeled by f ∈ F ,

(ρ(v), ρ(v)) ∈ δ(f )

Edge coherence: for all edge v a→ w in B,
(ρ(v), ρ(w)) ∈ δ(a)

A run in picture

f
in

g
a hb

f
c

gb

f
b

out

q1

q2

q3
q4

q5

q6

Coherence ex.:
(q2, q2) ∈ δ(g)

(q4, q3) ∈ δ(b)
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Non det. automata and downward closed languages
A = 〈Q,W , δ : (A + F )→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F ) for which there is an marking run ρ that
satisfies the acceptance condition (ρ(inB), ρ(outB)) ∈W .

Remark
If X ⊆ B(F )− 0 is recognized by a (finite) automaton then X is
upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a])
A language X ⊆ B(F )− 0 is recognized by a non deterministic
finite state automaton A if and only if X ∈ MSO↑.
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Extension to higher dimensional strings

Question
What is the behavior of walking automata on more complex
structures ?
Idem for non deterministic automata ?
Relationship with graph acceptors (∃MSO) ?
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5. Quasi-recognizability

Quasi-inverse monoids and the (algebraic) boolean closure of FSA.
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Downward closed languages of an inverse monoid
Definition
Let S be an inverse monoid with natural order ≤. Let P↓(S) be
the set of its downward closed non empty subsets of S with the
point-wise extension of the product.

Lemma
Then P↓(S) ordered by inclusion is a ordered monoid with:

unit: X ·U(S) = X = U(X ) · X with U(S) = {z ∈ S : z ≤ 1},
stable order: for every Z if X ⊆ Y then Z · X ⊆ Z · Y and
X · Z ⊆ Y · Z,
idempotent subunits: if X ⊆ U(S) then X · X = X,
left and right local units: for every X ∈ P↓(S),

XR = {xR ≤ 1 : x ∈ X} =
⋂
{Z ⊆ U(S) : X · Z = X},

XL = {xL ≤ 1 : x ∈ X} =
⋂
{Z ⊆ U(S) : Z · X = X}.

But, it is not necessarily inverse !
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Quasi-inverse monoids

Generalizing the previous properties to ordered monoids:

Definition
A ordered monoid 〈S, ·, 1,≤〉 is adequately ordered when:

Stable order: if x ≤ y then z · x ≤ z · y and x · z ≤ y · z ,
Idempotent subunits: if x ≤ 1 then x · x = x ,
Left and right projections: for every x ∈ S, both projections

xL = min{z ≤ 1 : x · z = x}︸ ︷︷ ︸
behaves "like" x−1x

and xR = min{z ≤ 1 : z · x = x}︸ ︷︷ ︸
behaves "like" xx−1

exist.
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Examples of quasi-inverse monoids

Examples
Trivially ordered monoids with xL = xR = 1.
Inverse monoids with xL = x−1x and xR = xx−1.
Finite partially ordered monoid with idempotent subunits,

Remark
Such a definition is strongly related [Jan12a] with the studies of
semigroups with local units developed by the “York
School” [Fou77] with, in particular, U-semiadequate and
Ehresmann semigroups [Law91].
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Runs of non deterministic automata revisited

Let A = 〈Q, δ,W 〉 be a non det. automaton and let

ϕ : B(F )→ P(Q × Q)

be the mapping defined by ϕ(0) = ∅, ϕ(1) = IQ and, for every non
trivial F -tree B, the set ϕ(B) defined as the set of pairs
(ρ(inB), ρ(outB)) for runs ρ of A over B.

Lemma
The mapping ϕ recognizes L(A) in the sense that

L(A) = ϕ−1(ϕ(L(A)))
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Effectivity
Lemma
Let B ∈ B(F )− 0. Then ϕ(B) is definable in MSO and
computable in linear time.

Proof.
The mapping ϕ preserves:

left and right projections,
disjoint products (written B ∗ C),

in
• •B

out
• •C

and every birooted F -tree is definable as a linear size combination
of elementary trees with disjoint products and left and right
projections.
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Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F )→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F ).

Example
The canonical mapping ϕ : B(F )→ P(Q × Q) induced by an
automaton A.



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F )→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F ).

Example
The canonical mapping ϕ : B(F )→ P(Q × Q) induced by an
automaton A.



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F )→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F ).

Example
The canonical mapping ϕ : B(F )→ P(Q × Q) induced by an
automaton A.



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F )→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F ).

Example
The canonical mapping ϕ : B(F )→ P(Q × Q) induced by an
automaton A.



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F )→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F ).

Example
The canonical mapping ϕ : B(F )→ P(Q × Q) induced by an
automaton A.



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F )→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F ).

Example
The canonical mapping ϕ : B(F )→ P(Q × Q) induced by an
automaton A.



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Quasi-recognizable languages

Definition
A language L ⊆ B(F ) is quasi-recognizable (QREC) when there
exists a finite QI-monoid S and an adequate premorphism
ϕ : B(F )→ S such that L = ϕ−1(ϕ(L)).

Lemma (Effectiveness)
For every B ∈ B(F ), the image ϕ(B) of B is computable in linear
time in B.

Theorem (See [Jan13c, Jan13a])

QREC = Bool(MSO↑)



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Quasi-recognizable languages

Definition
A language L ⊆ B(F ) is quasi-recognizable (QREC) when there
exists a finite QI-monoid S and an adequate premorphism
ϕ : B(F )→ S such that L = ϕ−1(ϕ(L)).

Lemma (Effectiveness)
For every B ∈ B(F ), the image ϕ(B) of B is computable in linear
time in B.

Theorem (See [Jan13c, Jan13a])

QREC = Bool(MSO↑)



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

BOOL(MSO↑) vs MSO ?

Theorem
BOOL(MSO↑) is strictly included into MSO

Proof.
Let L = {a2na−2n : n ∈ N}. Then L is definable in MSO while L
cannot be recognized by a monotonic function in a finite set.

Remark
This implies that QREC is not closed under product nor star. Need
to restrict to “positive” birooted trees [DJ14].



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

BOOL(MSO↑) vs MSO ?

Theorem
BOOL(MSO↑) is strictly included into MSO

Proof.
Let L = {a2na−2n : n ∈ N}. Then L is definable in MSO while L
cannot be recognized by a monotonic function in a finite set.

Remark
This implies that QREC is not closed under product nor star. Need
to restrict to “positive” birooted trees [DJ14].



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

BOOL(MSO↑) vs MSO ?

Theorem
BOOL(MSO↑) is strictly included into MSO

Proof.
Let L = {a2na−2n : n ∈ N}. Then L is definable in MSO while L
cannot be recognized by a monotonic function in a finite set.

Remark
This implies that QREC is not closed under product nor star. Need
to restrict to “positive” birooted trees [DJ14].



Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The partial algebra approach (last results)

From partial algebra theory (see e.g., [Bur86]).

Definition (∗-congruence)
An equivalence ' of birooted F -tree is a closed ∗-congruence
when:

if B ' C then BL ' CL and BR ' CL,
if B ' C and B′ ' C ′ then ∃ B ∗ B′ = ∃C ∗ C ′,

for every B,B′,C ,C ′ ∈ B(F ).

Theorem (Syntactic congruence)
For every X ⊆ B(F ) there exists a greatest closed ∗-congruence
'X such that, for every B,C ∈ B(F ), if B 'X C then
B ∈ X ⇔ C ∈ X.
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The partial algebra approach (last results)

Theorem
A language X ⊆ B(F ) is MSO if and only if 'X is of finite index.

Theorem
A language X ⊆ B(F ) is QREC if and only if 'X is of finite index
and the size of chain B1 ≤ B1 ≤ · · · ≤ Bn+1 with Bi 6'X Bi+1 is
uniformly bounded.

Remark
There is a strong incentive to consider strongly adequate
premorphism, that is, adequate premorphism such that, moreover:

if ϕ(B) ≤ ϕ(C) then there exists B′ such that
ϕ(B′) = ϕ(B) and B′ ≤ C .
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6. Conclusion

Back to music, plus a bit of philosophy
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SimpleTuilesLooper (by F. Berthaut)

Only if time permits. . .
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The virtuous circle of research in CS
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Thanks for your attention !
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