Language

Conclusion

Towards a Higher-Dimensional String Theory for the Modeling of Computerized Systems

David Janin LaBRI, Bordeaux INP, University of Bordeaux

SOFSEM 2014 40th International Conference on Current Trends in Theory and Practice of Computer Science January 25-30, Nový Smokovec, High Tatras, Slovakia

Plan of the talk

- I. Modeling music: from opera to bebop.
- II. From birooted words to higher dimensional strings.
- III. A bit of dinning philosophy.
- IV. Towards a language theory of higher dimensional strings.
 - a. Definable languages.
 - b. Walking automata.
 - c. Non deterministic automata.
- V. Quasi-recognizable languages.
- VI. Conclusion: back to music.

Dining philosophy

Language

Quasi-recognizability

Conclusion

1. Music modeling

From opera, to arabesques down to bebop.

Languages

Opera is the only medium in which everyone can be talking at the same time and still manage to understand each other...

Amadeus, XVIIIth century,

(from M. Forman in eponym movie)

Centuries later, this has become common practice in communication networks.

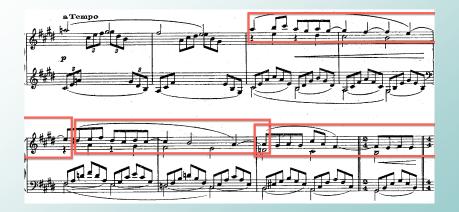
Question

Are there other musical *techniques* or *metaphors* that can be used in computer systems modeling ?

Conclusion

A musical example

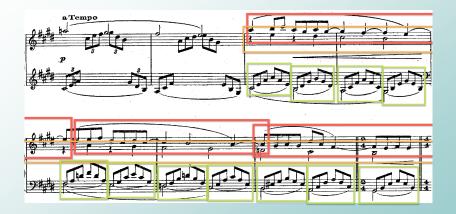
Extracted from Debussy's arabesques : andantino con moto



interleaved motivs in soprano voice,



an underlying frame in the medium,



arpegios to hear the harmony,

and a bass line...

What modeling langage for music ?

A language for musical analysis (learning)

 $partition \Longrightarrow$ <u>structure</u> \implies intention

A language for musical writing (or musical programing)

partition <= structure <= intention

An expressive language

With sequential and parallel composition operators with partial overlaps, and hierarchical description mechanisms...

A usable language

with basic good programming properties such as compositionality, reusability, etc...

Languages

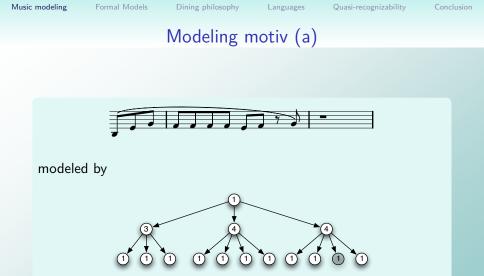
Quasi-recognizability

Conclusion

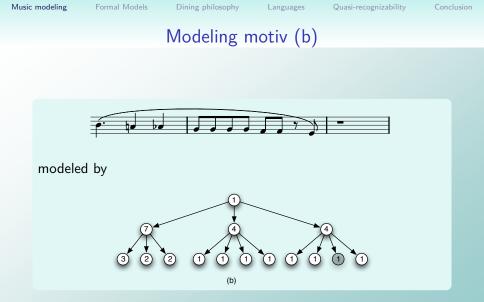
My little blue suede shoes (Ch. Parker)

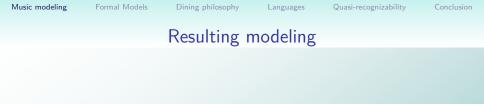
Analysis

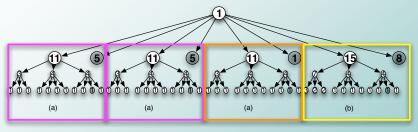
Three exposures of the same motiv (a) followed by a conclusive variation (b) $% \left(b\right) =\left(b\right) \left(b$



(a)







Drawbacks:

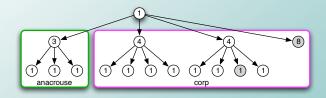
- insertion of silences with various length,
- logical structure (3x(a) + (b)) rather lost.

Conclusion

Alternative approach

Explicit first beat anticipation (anacrusis) [Jan13b]:

and fill with silence till the logical end (second bars):



Music modeling	Formal Models	Dining philosophy	Languages	Quasi-recognizability	Conclusion

do the same for the second motiv:

which gives:

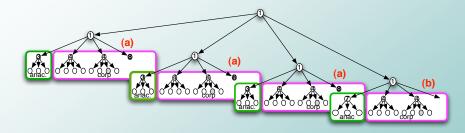


Languages

Quasi-recognizability

Conclusion

The resulting *sequential composition*:



with local overlaps.

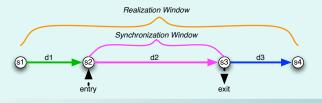
Here comes back the logical structure: 3x(a) + (b) !

Quasi-recognizability

Conclusion

Synchronization vs realization windows

Idea [Jan12b] Distinguish for every musical pattern:



Old idea

Already implicitly present in musical modeling with LOCO [DH88], but somehow basic in automation or software systems.

Remark

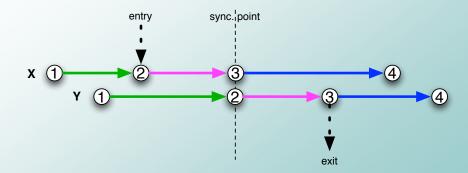
In theory of music: such a distinction generalizes bars and metrics. . .

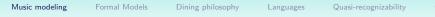
Languages

Quasi-recognizability

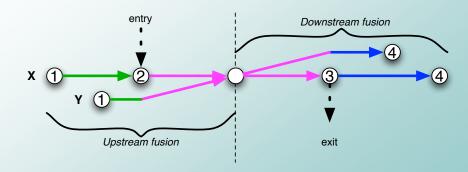
Conclusion

Pattern product : 1. synchronisation

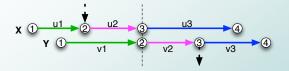




Pattern product : 2. fusion



Induced algebra : the continuous case



Synchronization structures : $D_A = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$, with product

$$\underbrace{(x_1, x_2, x_3)}_{X} \cdot \underbrace{(y_1, y_2, y_3)}_{Y} = \underbrace{(\max(x_1, y_1 - x_2), x_2 + y_2, \max(y_3, x_3 - y_2))}_{X.Y}$$

with fusion of underlying audio or musical patterns defined by mixing and crossfading. In practice, we obtain an music pattern algebra [BJM12], later turned into a prototype software [JBD13].

Theorem

We obtain a monoid, i.e. a set equipped with an associative product and a neutral element.

Dining philosophy

Language

Quasi-recognizability

Conclusion

2. Formal Models

Models for (abstract description of) music

Musical objects

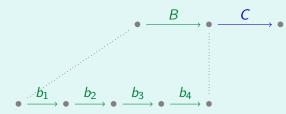
fairly commons in musical refinement

Even better : object to language refinement

Refine abstract objects by languages of possible realizations : $B \rightsquigarrow L_B$ and $C \rightsquigarrow L_C$ with compatibility constrains to filter unwanted combinations.

イロト イロト イヨト イヨト

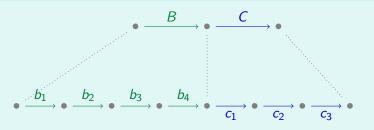
Musical objects refinement



fairly commons in musical refinement

Even better : object to language refinement

Musical objects refinement

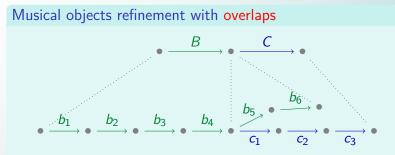


fairly commons in musical refinement

Even better : object to language refinement

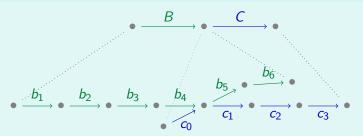
Refine abstract objects by languages of possible realizations : $B \rightsquigarrow L_B$ and $C \rightsquigarrow L_C$ with compatibility constrains to filter unwanted combinations.

< □ > < □ > < □ > < □ > < □ > < □ >



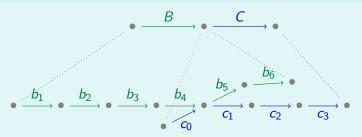
fairly commons in musical refinement

Even better : object to language refinement



fairly commons in musical refinement

Even better : object to language refinement



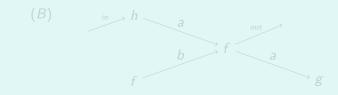
fairly commons in musical refinement

Even better : object to language refinement

Labeled Munn's trees (or birooted F-trees)

Birooted *F*-tree

Let A and F two finite alphabets. F-labeled vertices and A-labeled edges

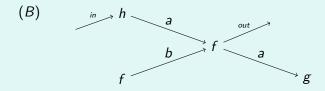


with input root (in) and output root (out).

Labeled Munn's trees (or birooted F-trees)

Birooted F-tree

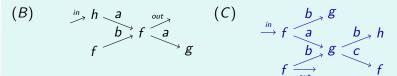
Let A and F two finite alphabets. F-labeled vertices and A-labeled edges



with input root (in) and output root (out).

Birooted *F*-trees product

A rich algebraic structure:



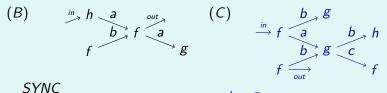
Theorem

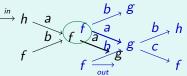
Conclusion

Birooted *F*-trees product

A rich algebraic structure:

$\mathsf{Product} = \mathsf{sync}$



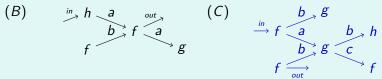


Theorem

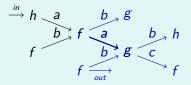
Birooted *F*-trees product

A rich algebraic structure:

 $\mathsf{Product} = \mathsf{sync} + \mathsf{fusion}$



FUSION

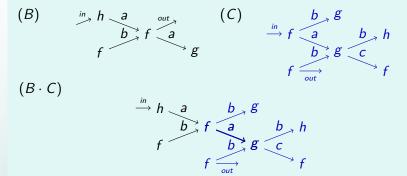


Theorem

Birooted *F*-trees product

A rich algebraic structure:

 $\mathsf{Product} = \mathsf{sync} + \mathsf{fusion}$



Theorem

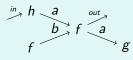
Languages

Quasi-recognizability

Conclusion

An inverse semigroup

Definition (Inverses and left and right projections)



Lemma

 B^{-1} is the unique element such that

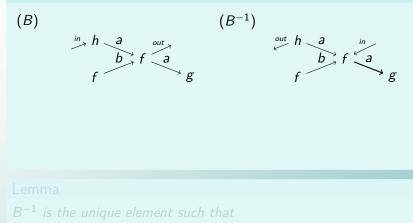
 $B \cdot B^{-1} \cdot B = B$ and $B^{-1} \cdot B \cdot B^{-1} = B^{-1}$

i.e. $\mathcal{B}(F)$ is an inverse monoid [Law98].

Languages

An inverse semigroup

Definition (Inverses and left and right projections)

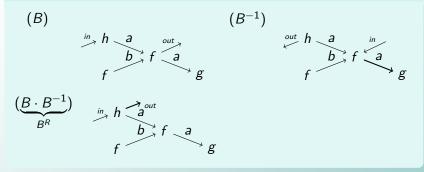


$$B\cdot B^{-1}\cdot B=B$$
 and $B^{-1}\cdot B\cdot B^{-1}=B^{-1}$

i.e. $\mathcal{B}(F)$ is an inverse monoid [Law98].

An inverse semigroup

Definition (Inverses and left and right projections)



Lemma

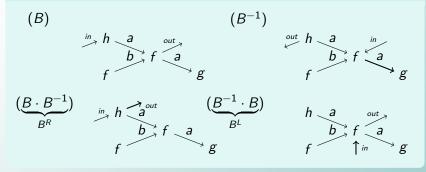
 B^{-1} is the unique element such that

 $B\cdot B^{-1}\cdot B=B$ and $B^{-1}\cdot B\cdot B^{-1}=B^{-1}$

i.e. $\mathcal{B}(F)$ is an inverse monoid [Law98].

An inverse semigroup

Definition (Inverses and left and right projections)



Lemma

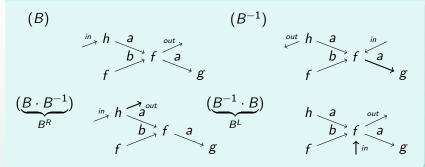
 B^{-1} is the unique element such that

$$B\cdot B^{-1}\cdot B=B$$
 and $B^{-1}\cdot B\cdot B^{-1}=B^{-1}$

i.e. $\mathcal{B}(F)$ is an inverse monoid [Law98].

An inverse semigroup

Definition (Inverses and left and right projections)



Lemma

 B^{-1} is the unique element such that

$$B \cdot B^{-1} \cdot B = B$$
 and $B^{-1} \cdot B \cdot B^{-1} = B^{-1}$

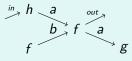
i.e. $\mathcal{B}(F)$ is an inverse monoid [Law98].

Quasi-recognizability

Conclusion

The natural order

Sub birooted tree

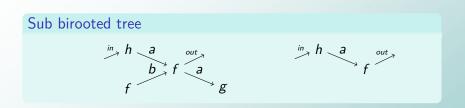


Remark

We have $B \leq C$ if and only if $B = B^R \cdot C$ (eq. $B = C \cdot B^L$).

Lemma

The natural order

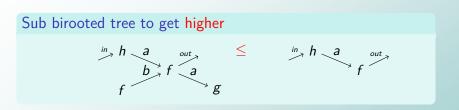


Remark

We have $B \leq C$ if and only if $B = B^R \cdot C$ (eq. $B = C \cdot B^L$).

Lemma

The natural order

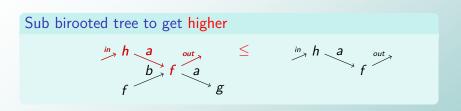


Remark

We have $B \leq C$ if and only if $B = B^R \cdot C$ (eq. $B = C \cdot B^L$).

Lemma

The natural order

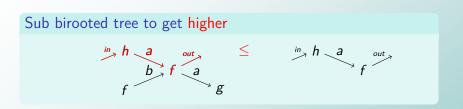


Remark

We have $B \leq C$ if and only if $B = B^R \cdot C$ (eq. $B = C \cdot B^L$).

Lemma

The natural order

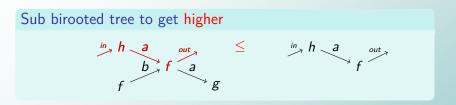


Remark

We have $B \leq C$ if and only if $B = B^R \cdot C$ (eq. $B = C \cdot B^L$).

Lemma

The natural order and the idempotents



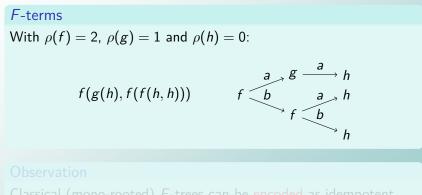
Remark

We have $B \leq C$ if and only if $B = B^R \cdot C$ (eq. $B = C \cdot B^L$).

Lemma

Conclusion

Extending F-terms algebras



Classical (mono-rooted) *F*-trees can be encoded as idempotent birooted *F*-trees.

Extending F-terms algebras

F-terms With $\rho(f) = 2$, $\rho(g) = 1$ and $\rho(h) = 0$: f(g(h), f(f(h, h))) f(g(h), f(f(h, h))) f(g(h), f(f(h, h))) f(g(h), f(f(h, h)))

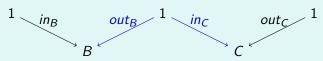
Observation

Classical (mono-rooted) *F*-trees can be encoded as idempotent birooted *F*-trees.

Remark (The product as a pushout)

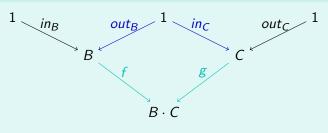
- Represents all inverse semigroups (see [Ste90, Lee87]).
- Restricting to one-to-one morphisms (resp. plus 0) one gets
- E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
- Construction also sketched in the proceedings [Jan14].

Remark (The product as a pushout)



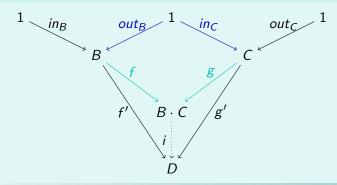
- Represents all inverse semigroups (see [Ste90, Lee87]).
- Restricting to one-to-one morphisms (resp. plus 0) one gets
- E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
- Construction also sketched in the proceedings [Jan14].

Remark (The product as a pushout)



- Represents all inverse semigroups (see [Ste90, Lee87]).
- Restricting to one-to-one morphisms (resp. plus 0) one gets
- E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
- Construction also sketched in the proceedings [Jan14].

Remark (The product as a pushout)



Remark

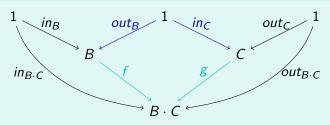
• Represents all inverse semigroups (see [Ste90, Lee87]).

• Restricting to one-to-one morphisms (resp. plus 0) one gets

E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87]

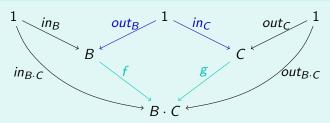
Construction also sketched in the proceedings [Jan14].

Remark (The product as a pushout)



- Represents all inverse semigroups (see [Ste90, Lee87]).
- Restricting to one-to-one morphisms (resp. plus 0) one gets
- E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
- Construction also sketched in the proceedings [Jan14].

Remark (The product as a pushout)



- Represents all inverse semigroups (see [Ste90, Lee87]).
- Restricting to one-to-one morphisms (resp. plus 0) one gets
- E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
- Construction also sketched in the proceedings [Jan14].

Music modeling

Languages

Quasi-recognizability

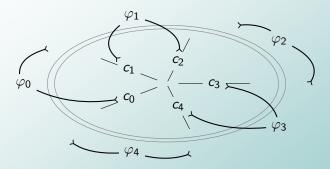
Conclusion

3. Dining philosophy

More modeling experiments

Conclusion

The dining philosophers



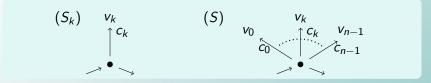
Goal

An incremental modeling of the dining philosopher problem and solution by means of birooted tree algebra.

Forks' local and global state modeling

Ingredients

Edge label: $c_0, c_1, \ldots, c_{n-1}$, one per philosopher. Vertex label: •, $v \in V$ for some set V of local state values of forks.

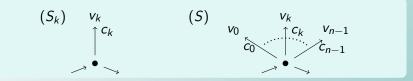


States = Idempotent birooted trees Local states S_k , global state S with $S \le S_k$ for every $0 \le k < n$, and $S = \prod_k S_k$

Forks' local and global state modeling

Ingredients

Edge label: $c_0, c_1, \ldots, c_{n-1}$, one per philosopher. Vertex label: •, $v \in V$ for some set V of local state values of forks.



States = Idempotent birooted trees Local states S_k , global state S with

 $S \leq S_k$ for every $0 \leq k < n$, and $S = \prod_k S_k$

Philosophers' local states and transitions

Philosopher's states

The state P_k of philosopher φ_k is of the form $P_k = S_k \cdot S_{k+1}$, i.e. built from the state of the two neighbor forks.

Philosopher's transition

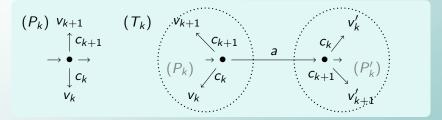
A transition T_k of the philosopher φ_k is built by relating two local state P_k and P'_k by some *a*-edge by $T_k = P_k \cdot a \cdot P'_k$ with

 $T_k^R \le P_k, \ T_k^L \le P'_k \text{ and } T_k = T_k^R \cdot a = a \cdot T_k^L = T_k^R \cdot a \cdot T_k^L$

Philosophers' local states and transitions

Philosopher's states

The state P_k of philosopher φ_k is of the form $P_k = S_k \cdot S_{k+1}$, i.e. built from the state of the two neighbor forks.



Philosopher's transition

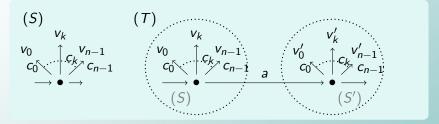
A transition T_k of the philosopher φ_k is built by relating two local state P_k and P'_k by some *a*-edge by $T_k = P_k \cdot a \cdot P'_k$ with

$$T_k^R \le P_k$$
, $T_k^L \le P_k'$ and $T_k = T_k^R \cdot a = a \cdot T_k^L = T_k^R \cdot a \cdot T_k^L$

Philosophers' global states and transitions

Global transition

Of the form $T = S \cdot a \cdot S'$ with $T^R \leq S$ and $T^L \leq S'$.



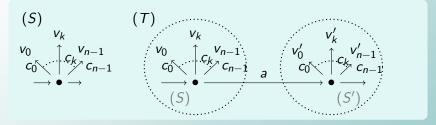
With local to global relationship

$$T = \left(\prod_{0 \le k < n} T_k^R \right) \cdot a = a \cdot \left(\prod_{0 \le k < n} T_k^L \right)$$
$$= \left(\prod_{0 \le k < n} T_k^R \right) \cdot a \cdot \left(\prod_{0 \le k < n} T_k^L \right)$$

Philosophers' global states and transitions

Global transition

Of the form $T = S \cdot a \cdot S'$ with $T^R \leq S$ and $T^L \leq S'$.



With local to global relationship

$$T = \left(\prod_{0 \le k < n} T_k^R \right) \cdot \mathbf{a} = \mathbf{a} \cdot \left(\prod_{0 \le k < n} T_k^L \right)$$

= $\left(\prod_{0 \le k < n} T_k^R \right) \cdot \mathbf{a} \cdot \left(\prod_{0 \le k < n} T_k^L \right)$

Chandy and Misra's solution modeling

- a well chosen set V of fork local state values,
- the language L_k of local transitions of the form $T_k = P_k \cdot a \cdot P'_k$ that satisfies the algorithm, for every philosopher φ_k with $0 \le k < n$,
- resulting global transitions defined by:

$$L = \prod_{k} (L_k)^R \cdot a = a \cdot \prod_{k} (L_k)^L = \prod_{k} (L_k)^R \cdot a \cdot \prod_{k} (L_k)^L$$

• starting from initial state S_0 , infinite global behaviors are given by

$$C = S_0 \cdot L^{\omega}$$

check the algorithm is correct by analyzing the language C !!!

Music modeling

Languages

Quasi-recognizability

Conclusion

4. Languages

We need a simple but expressive notion of manageable languages of birooted **F**-trees and, beyond, higher dimensional strings ? What are the available language theoretic tools and concepts ?

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\},\$
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

- inverse : $X^{-1} = \{B^{-1} : B \in X\},\$
- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\},\$
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

- inverse : $X^{-1} = \{B^{-1} : B \in X\},\$
- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\}$,

• star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

• inverse :
$$X^{-1} = \{B^{-1} : B \in X\},\$$

- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\}$,
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

- inverse : $X^{-1} = \{B^{-1} : B \in X\},\$
- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\}$,
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

- inverse : $X^{-1} = \{B^{-1} : B \in X\},\$
- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\}$,
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

• inverse :
$$X^{-1} = \{B^{-1} : B \in X\},\$$

- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\}$,
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

- inverse : $X^{-1} = \{B^{-1} : B \in X\},\$
- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\},\$
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

Languages X and $Y \subseteq \mathcal{B}(F) - 0$ of *defined* birooted F-trees.

Operations on languages:

- sum : $X + Y = X \cup Y$,
- product : $X \cdot Y = \{B \cdot C : B \in X, C \in Y, B \cdot C \neq 0\}$,
- star : $X^* = \bigcup_{n \in \mathbb{N}} X^n$ with $X^0 = \{1\}$ and $X^{n+1} = X \cdot X^n$,

- inverse : $X^{-1} = \{B^{-1} : B \in X\},\$
- idempotent projection : $X^E = \{B : B \in X, B \cdot B = B\},\$
- left and right projection : $X^L = \{B^{-1} \cdot B : B \in X\}$ and $X^R = \{B \cdot B^{-1} : B \in X\}$,
- up and down closures : $X^{\uparrow} = \{B \in \mathcal{B}(F) : \exists C \in X, C \leq B\}$ and $X^{\downarrow} = \{B \in \mathcal{B}(F) - 0 : \exists C \in X, B \leq C\}.$

The known case of word languages

Definability classes of languages of words

A language $L \subseteq A^*$ is

- REC when L = φ⁻¹(φ(L)) for some morphism φ : A* → S with finite monoid S,
- **REG** when *L* is definable by a regular expression, i.e. definable from finite languages combined with sum, product and star,
- MSO when *L* is definable in Monadic Second Order Logic.

Definability classes of languages of words

- A language $L \subseteq A^*$ is
 - REC when L = φ⁻¹(φ(L)) for some morphism φ : A* → S with finite monoid S,
 - **REG** when *L* is definable by a regular expression, i.e. definable from finite languages combined with sum, product and star,
 - MSO when *L* is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc...) Over words, <u>REC = REG = MSO</u> finite automata

Definability classes of languages of words

- A language $L \subseteq A^*$ is
 - REC when L = φ⁻¹(φ(L)) for some morphism φ : A^{*} → S with finite monoid S,
 - **REG** when *L* is definable by a regular expression, i.e. definable from finite languages combined with sum, product and star,
 - MSO when L is definable in Monadic Second Order Logic.

Definability classes of languages of words

- A language $L \subseteq A^*$ is
 - REC when L = φ⁻¹(φ(L)) for some morphism φ : A^{*} → S with finite monoid S,
 - **REG** when *L* is definable by a regular expression, i.e. definable from finite languages combined with sum, product and star,
 - MSO when L is definable in Monadic Second Order Logic.

Definability classes of languages of words

- A language $L \subseteq A^*$ is
 - REC when L = φ⁻¹(φ(L)) for some morphism φ : A^{*} → S with finite monoid S,
 - **REG** when *L* is definable by a regular expression, i.e. definable from finite languages combined with sum, product and star,
 - MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc...)
Over words,
$$\underline{REC = REG = MSO}$$

finite automata

Classes of languages of F-trees

A language $X \subseteq \mathcal{B}(F)$ is

- REC when X = φ⁻¹(φ(X)) for some morphism φ : A^{*} → S with finite monoid S,
- *k*-*REG* when it is definable by a regular expression extended by idempotent projection with nesting depth at most *k*,
- MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)

The class MSO is closed under boolean, product, star, inverse, projections, upward and downward closure...

Theorem (Expressiveness)

 $\begin{array}{l} \textit{Over birooted F-trees,} \\ \textit{REC} \subset \textit{REG} \subset 1\text{-}\textit{REG} \subseteq \cdots \subseteq k\text{-}\textit{REG} \subseteq \cdots \subseteq \textit{MSO} \end{array}$

Classes of languages of F-trees

A language $X \subseteq \mathcal{B}(F)$ is

- REC when X = φ⁻¹(φ(X)) for some morphism φ : A* → S with finite monoid S,
- *k*-*REG* when it is definable by a regular expression extended by idempotent projection with nesting depth at most *k*,
- *MSO* when it is MSO and upward closed in the natural order.

Theorem (Robustness)

The class MSO is closed under boolean, product, star, inverse, projections, upward and downward closure...

Theorem (Expressiveness)

 $\begin{array}{l} \textit{Over birooted F-trees,} \\ \textit{REC} \subset \textit{REG} \subset 1\text{-}\textit{REG} \subseteq \cdots \subseteq \textit{k-REG} \subseteq \cdots \subseteq \textit{MSO} \end{array}$

Classes of languages of F-trees

A language $X \subseteq \mathcal{B}(F)$ is

- REC when X = φ⁻¹(φ(X)) for some morphism φ : A* → S with finite monoid S,
- *k*-*REG* when it is definable by a regular expression extended by idempotent projection with nesting depth at most *k*,
- MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)

The class MSO is closed under boolean, product, star, inverse, projections, upward and downward closure...

Theorem (Expressiveness)

 $\begin{array}{l} \textit{Over birooted F-trees,} \\ \textit{REC} \subset \textit{REG} \subset 1\text{-}\textit{REG} \subseteq \cdots \subseteq k\text{-}\textit{REG} \subseteq \cdots \subseteq \textit{MSO} \end{array}$

Classes of languages of F-trees

A language $X \subseteq \mathcal{B}(F)$ is

- REC when X = φ⁻¹(φ(X)) for some morphism φ : A* → S with finite monoid S,
- *k*-*REG* when it is definable by a regular expression extended by idempotent projection with nesting depth at most *k*,
- MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)

The class MSO is closed under boolean, product, star, inverse, projections, upward and downward closure...

Theorem (Expressiveness)

 $\begin{array}{l} \textit{Over birooted F-trees,} \\ \textit{REC} \subset \textit{REG} \subset 1\text{-}\textit{REG} \subseteq \cdots \subseteq k\text{-}\textit{REG} \subseteq \cdots \subseteq \textit{MSO} \end{array}$

Classes of languages of F-trees

A language $X \subseteq \mathcal{B}(F)$ is

- REC when X = φ⁻¹(φ(X)) for some morphism φ : A* → S with finite monoid S,
- *k*-*REG* when it is definable by a regular expression extended by idempotent projection with nesting depth at most *k*,
- MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)

The class MSO is closed under boolean, product, star, inverse, projections, upward and downward closure...

Theorem (Expressiveness)

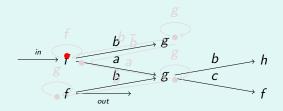
 $\begin{array}{l} \textit{Over birooted } \textit{F-trees,} \\ \textit{REC} \subset \textit{REG} \subset 1\text{-}\textit{REG} \subseteq \cdots \subseteq \textit{k-REG} \subseteq \cdots \subseteq \textit{MSO} \end{array}$

Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

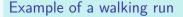
Example of a walking run

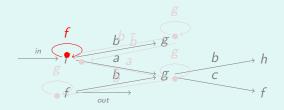


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

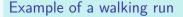


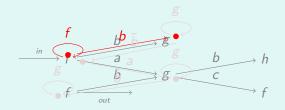


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

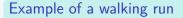


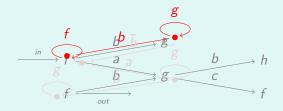


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

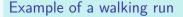


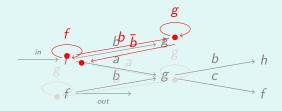


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

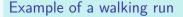


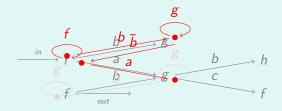


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

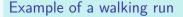


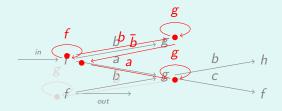


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

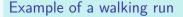


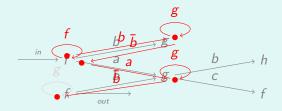


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

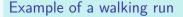


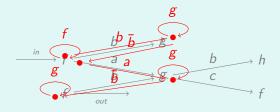


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.

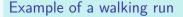


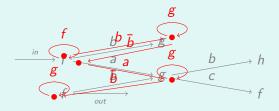


Definition (Walking automata – see e.g. [Boj08])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{q}_0, \mathcal{T}, \delta: (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

that read partial traversals of birooted trees.





Remark

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F}) \rightarrow \mathcal{P}(\mathcal{Q} \times \mathcal{Q}) \rangle$$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an accepting walking run, from the input root in initial state q_0 to the output root in an accepting state $q \in T$, possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d]) $REC^{\downarrow} \subset REG^{\downarrow} \subset 1-REG^{\downarrow} \subseteq \cdots \subseteq k-REG^{\downarrow} \subseteq \cdots \subseteq MSO^{\downarrow}$

- *REC*[↓] by strongly deterministic walking automata,
- REG[↓] by non deterministic walking automata,
- k-REG[↓] by k-(invisible)-pebble walking automata,
- MSO^{\downarrow} by ω -(invisible)-pebble walking automata.

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F}) \rightarrow \mathcal{P}(\mathcal{Q} \times \mathcal{Q}) \rangle$$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an accepting walking run, from the input root in initial state q_0 to the output root in an accepting state $q \in T$, possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])

- REC^{\downarrow} by strongly deterministic walking automata,
- REG[↓] by non deterministic walking automata,
- k-REG[↓] by k-(invisible)-pebble walking automata,
- MSO^{\downarrow} by ω -(invisible)-pebble walking automata.

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F}) \rightarrow \mathcal{P}(\mathcal{Q} \times \mathcal{Q}) \rangle$$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an accepting walking run, from the input root in initial state q_0 to the output root in an accepting state $q \in T$, possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])

- REC[↓] by strongly deterministic walking automata,
- REG[↓] by non deterministic walking automata,
- k-REG[↓] by k-(invisible)-pebble walking automata,
- MSO^{\downarrow} by ω -(invisible)-pebble walking automata.

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F}) \rightarrow \mathcal{P}(\mathcal{Q} \times \mathcal{Q}) \rangle$$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an accepting walking run, from the input root in initial state q_0 to the output root in an accepting state $q \in T$, possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])

- REC^{\downarrow} by strongly deterministic walking automata,
- REG[↓] by non deterministic walking automata,
- k-REG↓ by k-(invisible)-pebble walking automata,
- MSO[↓] by ω-(invisible)-pebble walking automata.

$$\mathcal{A} = \langle \mathcal{Q}, q_0, \mathcal{T}, \delta : (\mathcal{A} + \bar{\mathcal{A}} + \mathcal{F}) \rightarrow \mathcal{P}(\mathcal{Q} \times \mathcal{Q}) \rangle$$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an accepting walking run, from the input root in initial state q_0 to the output root in an accepting state $q \in T$, possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])

- REC^{\downarrow} by strongly deterministic walking automata,
- REG[↓] by non deterministic walking automata,
- *k*-REG[↓] by *k*-(invisible)-pebble walking automata,
- MSO^{\downarrow} by ω -(invisible)-pebble walking automata.

Definition (Non deterministic automata - see e.g. [Tho97])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{W}, \delta : (\mathcal{A} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

with run that are markings $\rho : dom(B) \rightarrow Q$ such that:

• Vertex coherence: for all $v \in dom(B)$ labeled by $f \in F$, $(\rho(v), \rho(v)) \in \delta(f)$

• Edge coherence: for all edge $v \xrightarrow{a} w$ in B, $(\rho(v), \rho(w)) \in \delta(a)$

A run in picture

Coherence ex.: $(q_2, q_2) \in \delta(g)$ $(q_4, q_3) \in \delta(b)$

《曰》《曰》 《글》 《글》

Definition (Non deterministic automata - see e.g. [Tho97])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{W}, \delta : (\mathcal{A} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

with run that are markings $\rho : dom(B) \rightarrow Q$ such that:

- Vertex coherence: for all $v \in dom(B)$ labeled by $f \in F$, $(\rho(v), \rho(v)) \in \delta(f)$
- Edge coherence: for all edge $v \xrightarrow{a} w$ in B, $(\rho(v), \rho(w)) \in \delta(a)$

A run in picture

Coherence ex.: $(q_2, q_2) \in \delta(g)$ $(q_4, q_3) \in \delta(b)$

《曰》《曰》 《글》 《글》

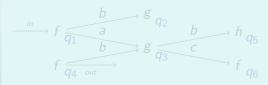
Definition (Non deterministic automata - see e.g. [Tho97])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{W}, \delta : (\mathcal{A} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

with run that are markings $\rho : dom(B) \rightarrow Q$ such that:

- Vertex coherence: for all $v \in dom(B)$ labeled by $f \in F$, $(\rho(v), \rho(v)) \in \delta(f)$
- Edge coherence: for all edge $v \stackrel{a}{\rightarrow} w$ in B, $(\rho(v), \rho(w)) \in \delta(a)$

A run in picture



Coherence ex.: $(q_2, q_2) \in \delta(g)$ $(q_4, q_3) \in \delta(b)$

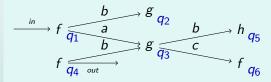
Definition (Non deterministic automata - see e.g. [Tho97])

$$\mathcal{A} = \langle \mathcal{Q}, \mathcal{W}, \delta : (\mathcal{A} + \mathcal{F})
ightarrow \mathcal{P}(\mathcal{Q} imes \mathcal{Q})
angle$$

with run that are markings $\rho : dom(B) \rightarrow Q$ such that:

- Vertex coherence: for all $v \in dom(B)$ labeled by $f \in F$, $(\rho(v), \rho(v)) \in \delta(f)$
- Edge coherence: for all edge $v \stackrel{a}{\rightarrow} w$ in B, $(\rho(v), \rho(w)) \in \delta(a)$

A run in picture



Coherence ex.: $(q_2, q_2) \in \delta(g)$ $(q_4, q_3) \in \delta(b)$

▲口と▲母と▲目と▲目と

Non det. automata and downward closed languages $\mathcal{A} = \langle Q, W, \delta : (A + F) \rightarrow \mathcal{P}(Q \times Q) \rangle$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an marking run ρ that satisfies the acceptance condition $(\rho(in_B), \rho(out_B)) \in W$.

Remark

If $X \subseteq \mathcal{B}(F) - 0$ is recognized by a (finite) automaton then X is upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a]) A language $X \subseteq \mathcal{B}(F) - 0$ is recognized by a non deterministic finite state automaton \mathcal{A} if and only if $X \in MSO^{\uparrow}$.

Non det. automata and downward closed languages $\mathcal{A} = \langle Q, W, \delta : (A + F) \rightarrow \mathcal{P}(Q \times Q) \rangle$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an marking run ρ that satisfies the acceptance condition $(\rho(in_B), \rho(out_B)) \in W$.

Remark

If $X \subseteq \mathcal{B}(F) - 0$ is recognized by a (finite) automaton then X is upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a]) A language $X \subseteq \mathcal{B}(F) - 0$ is recognized by a non determining finite state automaton A if and only if $X \in MSO^{\uparrow}$

Non det. automata and downward closed languages $\mathcal{A} = \langle Q, W, \delta : (A + F) \rightarrow \mathcal{P}(Q \times Q) \rangle$

Definition (Recognized language: L(A))

The set of $B \in \mathcal{B}(F)$ for which there is an marking run ρ that satisfies the acceptance condition $(\rho(in_B), \rho(out_B)) \in W$.

Remark

If $X \subseteq \mathcal{B}(F) - 0$ is recognized by a (finite) automaton then X is upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a]) A language $X \subseteq \mathcal{B}(F) - 0$ is recognized by a non deterministic finite state automaton \mathcal{A} if and only if $X \in MSO^{\uparrow}$.

Music modeling

Languages

Quasi-recognizability

Conclusion

Extension to higher dimensional strings

Question

- What is the behavior of walking automata on more complex structures ?
- Idem for non deterministic automata ?
- Relationship with graph acceptors $(\exists MSO)$?

Music modeling

Dining philosophy

Language

Quasi-recognizability

Conclusion

5. Quasi-recognizability

Quasi-inverse monoids and the (algebraic) boolean closure of FSA.

Downward closed languages of an inverse monoid

Definition

Let S be an inverse monoid with natural order \leq . Let $\mathcal{P}^{\downarrow}(S)$ be the set of its downward closed non empty subsets of S with the point-wise extension of the product.

Lemma

Then $\mathcal{P}^{\downarrow}(S)$ ordered by inclusion is a ordered monoid with:

- unit: $X \cdot U(S) = X = U(X) \cdot X$ with $U(S) = \{z \in S : z \le 1\}$,
- stable order: for every Z if $X \subseteq Y$ then $Z \cdot X \subseteq Z \cdot Y$ and $X \cdot Z \subseteq Y \cdot Z$,
- idempotent subunits: if $X \subseteq U(S)$ then $X \cdot X = X$,
- left and right local units: for every $X \in \mathcal{P}^{\downarrow}(S)$,

•
$$X^R = \{x^R \le 1 : x \in X\} = \bigcap \{Z \subseteq U(S) : X \cdot Z = X\},$$

• $X^L = \{x^L \le 1 : x \in X\} = \bigcap \{Z \subseteq U(S) : Z \cdot X = X\}.$

But, it is not necessarily inverse !

Quasi-inverse monoids

Generalizing the previous properties to ordered monoids:

Definition

A ordered monoid $\langle S, \cdot, 1, \leq \rangle$ is adequately ordered when:

- Stable order: if $x \leq y$ then $z \cdot x \leq z \cdot y$ and $x \cdot z \leq y \cdot z$,
- Idempotent subunits: if $x \leq 1$ then $x \cdot x = x$,
- Left and right projections: for every $x \in S$, both projections $x^{L} = \min\{z \le 1 : x \cdot z = x\}$ and $x^{R} = \min\{z \le 1 : z \cdot x = x\}$ behaves "like" $x^{-1}x$ behaves "like" xx^{-1} exist.

Examples of quasi-inverse monoids

Examples

- Trivially ordered monoids with $x^L = x^R = 1$.
- Inverse monoids with $x^{L} = x^{-1}x$ and $x^{R} = xx^{-1}$.
- Finite partially ordered monoid with idempotent subunits,

Remark

Such a definition is strongly related [Jan12a] with the studies of semigroups with local units developed by the "York School" [Fou77] with, in particular, *U*-semiadequate and Ehresmann semigroups [Law91].

Examples of quasi-inverse monoids

Examples

- Trivially ordered monoids with $x^L = x^R = 1$.
- Inverse monoids with $x^{L} = x^{-1}x$ and $x^{R} = xx^{-1}$.
- Finite partially ordered monoid with idempotent subunits,

Remark

Such a definition is strongly related [Jan12a] with the studies of semigroups with local units developed by the "York School" [Fou77] with, in particular, *U*-semiadequate and Ehresmann semigroups [Law91].

Examples of quasi-inverse monoids

Examples

- Trivially ordered monoids with $x^L = x^R = 1$.
- Inverse monoids with $x^{L} = x^{-1}x$ and $x^{R} = xx^{-1}$.
- Finite partially ordered monoid with idempotent subunits,

Remark

Such a definition is strongly related [Jan12a] with the studies of semigroups with local units developed by the "York School" [Fou77] with, in particular, *U*-semiadequate and Ehresmann semigroups [Law91].

Examples of quasi-inverse monoids

Examples

- Trivially ordered monoids with $x^L = x^R = 1$.
- Inverse monoids with $x^{L} = x^{-1}x$ and $x^{R} = xx^{-1}$.
- Finite partially ordered monoid with idempotent subunits,

Remark

Such a definition is strongly related [Jan12a] with the studies of semigroups with local units developed by the "York School" [Fou77] with, in particular, *U*-semiadequate and Ehresmann semigroups [Law91].

Runs of non deterministic automata revisited

Let $\mathcal{A} = \langle Q, \delta, W
angle$ be a non det. automaton and let

 $\varphi:\mathcal{B}(F)\to\mathcal{P}(Q\times Q)$

be the mapping defined by $\varphi(0) = \emptyset$, $\varphi(1) = I_Q$ and, for every non trivial *F*-tree *B*, the set $\varphi(B)$ defined as the set of pairs $(\rho(in_B), \rho(out_B))$ for runs ρ of \mathcal{A} over *B*.

Lemma The mapping φ recognizes $L(\mathcal{A})$ in the sense that

 $L(\mathcal{A}) = \varphi^{-1}(\varphi(L(\mathcal{A})))$

Runs of non deterministic automata revisited

Let $\mathcal{A} = \langle \mathcal{Q}, \delta, \mathcal{W}
angle$ be a non det. automaton and let

$$\varphi: \mathcal{B}(F) \to \mathcal{P}(Q \times Q)$$

be the mapping defined by $\varphi(0) = \emptyset$, $\varphi(1) = I_Q$ and, for every non trivial *F*-tree *B*, the set $\varphi(B)$ defined as the set of pairs $(\rho(in_B), \rho(out_B))$ for runs ρ of \mathcal{A} over *B*.

Lemma

The mapping φ recognizes $L(\mathcal{A})$ in the sense that

 $L(\mathcal{A}) = \varphi^{-1}(\varphi(L(\mathcal{A})))$

Runs of non deterministic automata revisited

Let $\mathcal{A} = \langle \mathcal{Q}, \delta, \mathcal{W}
angle$ be a non det. automaton and let

$$\varphi: \mathcal{B}(F) \to \mathcal{P}(Q \times Q)$$

be the mapping defined by $\varphi(0) = \emptyset$, $\varphi(1) = I_Q$ and, for every non trivial *F*-tree *B*, the set $\varphi(B)$ defined as the set of pairs $(\rho(in_B), \rho(out_B))$ for runs ρ of \mathcal{A} over *B*.

Lemma

The mapping φ recognizes L(A) in the sense that

 $L(\mathcal{A}) = \varphi^{-1}(\varphi(L(\mathcal{A})))$

Music modeling

Effectivity

Lemma

Let $B \in \mathcal{B}(F) - 0$. Then $\varphi(B)$ is definable in MSO and computable in linear time.

Proof.

The mapping φ preserves:

- left and right projections,
- disjoint products (written B * C),

and every birooted *F*-tree is definable as a linear size combination of elementary trees with disjoint products and left and right projections.

Effectivity

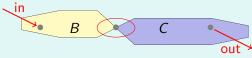
Lemma

Let $B \in \mathcal{B}(F) - 0$. Then $\varphi(B)$ is definable in MSO and computable in linear time.

Proof.

The mapping φ preserves:

- left and right projections,
- disjoint products (written B * C),



and every birooted *F*-tree is definable as a linear size combination of elementary trees with disjoint products and left and right projections.

Definition (Adequate premorphism)

- A mapping $\varphi: \mathcal{B}(F) \to S$ with S quasi-inverse such that:
 - unit: $\varphi(1) = 1$,
 - monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$,
 - disjoint product: if $\exists B * C$ then $\varphi(B * C) = \varphi(B) \cdot \varphi(C)$,
 - projections: $\varphi(B^L) = (\varphi(B))^L$ and $\varphi(B^R) = (\varphi(B))^R$. or every B and $C \in \mathcal{B}(F)$.

Example

The canonical mapping $\varphi : \mathcal{B}(F) \to \mathcal{P}(Q \times Q)$ induced by an automaton \mathcal{A} .

Definition (Adequate premorphism)

- A mapping $\varphi: \mathcal{B}(F) \to S$ with S quasi-inverse such that:
 - unit: arphi(1)=1,

• monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$,

- disjoint product: if $\exists B * C$ then $\varphi(B * C) = \varphi(B) \cdot \varphi(C)$,
- projections: $\varphi(B^L) = (\varphi(B))^L$ and $\varphi(B^R) = (\varphi(B))^R$.

for every *B* and $C \in \mathcal{B}(F)$.

Example

The canonical mapping $arphi:\mathcal{B}(F) o\mathcal{P}(Q imes Q)$ induced by an automaton $\mathcal{A}.$

Definition (Adequate premorphism)

- A mapping $\varphi: \mathcal{B}(F) \to S$ with S quasi-inverse such that:
 - unit: $\varphi(1)=1$,
 - monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$,
 - disjoint product: if $\exists B * C$ then $\varphi(B * C) = \varphi(B) \cdot \varphi(C)$,
 - projections: $\varphi(B^L) = (\varphi(B))^L$ and $\varphi(B^R) = (\varphi(B))^R$.

for every *B* and $C \in \mathcal{B}(F)$.

Example

The canonical mapping $\varphi : \mathcal{B}(F) \to \mathcal{P}(Q \times Q)$ induced by an automaton \mathcal{A} .

Definition (Adequate premorphism)

- A mapping $\varphi: \mathcal{B}(F) \to S$ with S quasi-inverse such that:
 - unit: $\varphi(1) = 1$,
 - monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$,
 - disjoint product: if $\exists B * C$ then $\varphi(B * C) = \varphi(B) \cdot \varphi(C)$,
- projections: $\varphi(B^L) = (\varphi(B))^L$ and $\varphi(B^R) = (\varphi(B))^R$. for every *B* and $C \in \mathcal{B}(F)$.

Example

The canonical mapping $\varphi : \mathcal{B}(F) \to \mathcal{P}(Q \times Q)$ induced by an automaton \mathcal{A} .

Definition (Adequate premorphism)

- A mapping $\varphi: \mathcal{B}(F) \to S$ with S quasi-inverse such that:
 - unit: $\varphi(1) = 1$,
 - monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$,
 - disjoint product: if $\exists B * C$ then $\varphi(B * C) = \varphi(B) \cdot \varphi(C)$,
- projections: $\varphi(B^L) = (\varphi(B))^L$ and $\varphi(B^R) = (\varphi(B))^R$. for every B and $C \in \mathcal{B}(F)$.

Example

The canonical mapping $arphi:\mathcal{B}(F) o\mathcal{P}(Q imes Q)$ induced by an automaton $\mathcal{A}.$

Definition (Adequate premorphism)

- A mapping $\varphi: \mathcal{B}(F) \to S$ with S quasi-inverse such that:
 - unit: arphi(1)=1,
 - monotonic: if $B \leq C$ then $\varphi(B) \leq \varphi(C)$,
 - disjoint product: if $\exists B * C$ then $\varphi(B * C) = \varphi(B) \cdot \varphi(C)$,
- projections: $\varphi(B^L) = (\varphi(B))^L$ and $\varphi(B^R) = (\varphi(B))^R$. for every B and $C \in \mathcal{B}(F)$.

Example

The canonical mapping $\varphi : \mathcal{B}(F) \to \mathcal{P}(Q \times Q)$ induced by an automaton \mathcal{A} .

Quasi-recognizable languages

Definition

A language $L \subseteq \mathcal{B}(F)$ is quasi-recognizable (QREC) when there exists a finite QI-monoid S and an adequate premorphism $\varphi : \mathcal{B}(F) \to S$ such that $L = \varphi^{-1}(\varphi(L))$.

Lemma (Effectiveness)

For every $B \in \mathcal{B}(F)$, the image $\varphi(B)$ of B is computable in linear time in B.

Theorem (See [Jan13c, Jan13a])

 $QREC = Bool(MSO^{\uparrow})$

Quasi-recognizable languages

Definition

A language $L \subseteq \mathcal{B}(F)$ is quasi-recognizable (QREC) when there exists a finite QI-monoid S and an adequate premorphism $\varphi : \mathcal{B}(F) \to S$ such that $L = \varphi^{-1}(\varphi(L))$.

Lemma (Effectiveness)

For every $B \in \mathcal{B}(F)$, the image $\varphi(B)$ of B is computable in linear time in B.

Theorem (See [Jan13c, Jan13a])

 $QREC = Bool(MSO^{\uparrow})$

Language

Quasi-recognizability

Conclusion

$BOOL(MSO^{\uparrow})$ vs MSO ?

Theorem BOOL(MSO[↑]) is strictly included into MSO

Proof. Let $L = \{a^{2n}a^{-2n} : n \in \mathbb{N}\}$. Then *L* is definable in MSO while *L* cannot be recognized by a monotonic function in a finite set.

Remark

This implies that QREC is not closed under product nor star. Need to restrict to "positive" birooted trees [DJ14].

$BOOL(MSO^{\uparrow})$ vs MSO ?

Theorem

 $\mathsf{BOOL}(\mathsf{MSO}^{\uparrow})$ is strictly included into MSO

Proof.

Let $L = \{a^{2n}a^{-2n} : n \in \mathbb{N}\}$. Then *L* is definable in MSO while *L* cannot be recognized by a monotonic function in a finite set.

Remark

This implies that QREC is not closed under product nor star. Need to restrict to "positive" birooted trees [DJ14].

$BOOL(MSO^{\uparrow})$ vs MSO ?

Theorem

 $\mathsf{BOOL}(\mathsf{MSO}^{\uparrow})$ is strictly included into MSO

Proof.

Let $L = \{a^{2n}a^{-2n} : n \in \mathbb{N}\}$. Then *L* is definable in MSO while *L* cannot be recognized by a monotonic function in a finite set.

Remark

This implies that QREC is not closed under product nor star. Need to restrict to "positive" birooted trees [DJ14].

From partial algebra theory (see e.g., [Bur86]).

Definition (*-congruence)

An equivalence \simeq of birooted *F*-tree is a closed *-congruence when:

- if $B \simeq C$ then $B^L \simeq C^L$ and $B^R \simeq C^L$,
- if $B \simeq C$ and $B' \simeq C'$ then $\exists B * B' = \exists C * C'$,

for every $B, B', C, C' \in \mathcal{B}(F)$.

Theorem (Syntactic congruence)

For every $X \subseteq \mathcal{B}(F)$ there exists a greatest closed *-congruence \simeq_X such that, for every $B, C \in \mathcal{B}(F)$, if $B \simeq_X C$ then $B \in X \Leftrightarrow C \in X$.

From partial algebra theory (see e.g., [Bur86]).

Definition (*-congruence)

An equivalence \simeq of birooted *F*-tree is a closed *-congruence when:

- if $B \simeq C$ then $B^L \simeq C^L$ and $B^R \simeq C^L$,
- if $B \simeq C$ and $B' \simeq C'$ then $\exists B * B' = \exists C * C'$,

for every $B, B', C, C' \in \mathcal{B}(F)$.

Theorem (Syntactic congruence)

For every $X \subseteq \mathcal{B}(F)$ there exists a greatest closed *-congruence \simeq_X such that, for every $B, C \in \mathcal{B}(F)$, if $B \simeq_X C$ then $B \in X \Leftrightarrow C \in X$.

Theorem

A language $X \subseteq \mathcal{B}(F)$ is MSO if and only if \simeq_X is of finite index.

Theorem

A language $X \subseteq \mathcal{B}(F)$ is QREC if and only if \simeq_X is of finite index and the size of chain $B_1 \leq B_1 \leq \cdots \leq B_{n+1}$ with $B_i \not\simeq_X B_{i+1}$ is uniformly bounded.

Remark

There is a strong incentive to consider strongly adequate premorphism, that is, adequate premorphism such that, moreover:

• if $\varphi(B) \leq \varphi(C)$ then there exists B' such that $\varphi(B') = \varphi(B)$ and $B' \leq C$.

Theorem

A language $X \subseteq \mathcal{B}(F)$ is MSO if and only if \simeq_X is of finite index.

Theorem

A language $X \subseteq \mathcal{B}(F)$ is QREC if and only if \simeq_X is of finite index and the size of chain $B_1 \leq B_1 \leq \cdots \leq B_{n+1}$ with $B_i \not\simeq_X B_{i+1}$ is uniformly bounded.

Remark

There is a strong incentive to consider strongly adequate premorphism, that is, adequate premorphism such that, moreover:

• if $\varphi(B) \leq \varphi(C)$ then there exists B' such that $\varphi(B') = \varphi(B)$ and $B' \leq C$.

Theorem

A language $X \subseteq \mathcal{B}(F)$ is MSO if and only if \simeq_X is of finite index.

Theorem

A language $X \subseteq \mathcal{B}(F)$ is QREC if and only if \simeq_X is of finite index and the size of chain $B_1 \leq B_1 \leq \cdots \leq B_{n+1}$ with $B_i \not\simeq_X B_{i+1}$ is uniformly bounded.

Remark

There is a strong incentive to consider strongly adequate premorphism, that is, adequate premorphism such that, moreover:

• if $\varphi(B) \leq \varphi(C)$ then there exists B' such that $\varphi(B') = \varphi(B)$ and $B' \leq C$.

Music modeling

Dining philosophy

Languages

Quasi-recognizability

Conclusion

Back to music, plus a bit of philosophy

Music modeling

Language

Quasi-recognizability

bility Conclusion

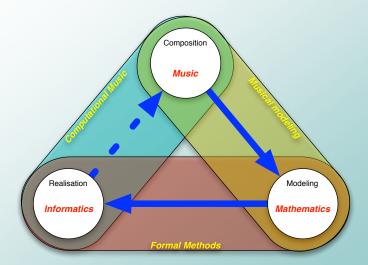
SimpleTuilesLooper (by F. Berthaut)

Only if time permits...

Quasi-recognizability

Conclusion

The virtuous circle of research in CS



< = > < d > < = > < = >

[BJM12] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio or symbolic musical patterns: an algebraic approach. *International Journal of Semantic Computing*, 6(4):409–427, 2012.

[Boj08] M. Bojańczyk.

Tree-walking automata.

In 2nd Int. Conf. on Language and Automata Theory and Applications (LATA), volume 5196 of LNCS. Springer, 2008.

[Bur86] P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras. Akademie-Verlag, 1986.

[DH88] P. Desain and H. Honing. LOCO: a composition microworld in Logo. Computer Music Journal, 12(3):30–42, 1988. Music modeling

Languages

[DJ13]

A. Dicky and D. Janin.

Two-way automata and regular languages of overlapping tiles.

Research report RR-1463-12, LaBRI, Université de Bordeaux, 2013.

- [DJ14] E. Dubourg and D. Janin.
 Algebraic tools for the overlapping tile product.
 In Language and Automata Theory and Applications (LATA), Madrid, Spain, 2014. Springer.
- [Fou77] J. Fountain.

Right PP monoids with central idempotents. *Semigroup Forum*, 13:229–237, 1977.

[Jan12a] D. Janin. Quasi-inverse monoids (and premorphisms). Research report RR-1459-12 (revised 11/2013), LaBRI, Université de Bordeaux, 2012.

[Jan12b] D. Janin.

Languages

Vers une modélisation combinatoire des structures rythmiques simples de la musique.

Revue Francophone d'Informatique Musicale (RFIM), 2, 2012.

[Jan13a] D. Janin.

Algebras, automata and logic for languages of labeled birooted trees.

In *Int. Col. on Aut., Lang. and Programming (ICALP)*, volume 7966 of *LNCS*, pages 318–329, Riga, Latvia, 2013. Springer.

[Jan13b] D. Janin.

On languages of one-dimensional overlapping tiles.

In *Int. Conf. on Current Thrends in Theo. and Prac. of Comp. Science (SOFSEM)*, volume 7741 of *LNCS*, pages 244–256, Spindlerûv Mlýn, Czech Republic, 2013. Springer.

[Jan13c] D. Janin. Overlaping tile automata.

usic modeling	Formal Models Dining philosophy	Languages	Quasi-recognizability	Conclusion
	In 8th International Com Russia (CSR), volume 79) 13 of <i>LNCS</i> ,		
[Jan13d]	Ekaterinburg, Russia, 20 D. Janin. Walking automata in the Research report RR-1464 Bordeaux, 2013.	e free inverse		
[]2014]	(revised May 2013). D. Janin.			
[Jan14]	Towards a higher dimensi modeling of computerize LNCS, pages 7–20. Springer, Novy Smokove	ed systems, vo	blume 8327 of	
[JBD13]	D. Janin, F. Berthaut, a Multi-scale design of inte libTuiles experiment.			

Μ

Music modeling	

Language

Conclusion

In 10th Conference on Sound and Music Computing (SMC), Stockholm, Sweden, 2013.

- [Law91] M. V. Lawson. Semigroups and ordered categories. I. the reduced case. Journal of Algebra, 141(2):422 – 462, 1991.
- [Law98] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World Scientific, 1998.
- [Lee87] J. Leech.

Contructing inverse monoids from small categories. Semigroup Forum, 36:89–116, 1987.

[Ste90] J.B. Stephen.

Presentations of inverse monoids.

Journal of Pure and Applied Algebra, 63:81–112, 1990.

[Tho97] W. Thomas. Chap. 7. Languages, automata, and logic. Music modeling

Language

Quasi-recognizability

Conclusion

In *Handbook of Formal Languages, Vol. III*, pages 389–455. Springer-Verlag, Berlin Heidelberg, 1997.

Music modeling

Dining philosophy

Languages

Quasi-recognizability

Conclusion

Thanks for your attention !