
Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards a Higher-Dimensional String Theory for the
Modeling of Computerized Systems

David Janin
LaBRI, Bordeaux INP,
University of Bordeaux

SOFSEM 2014
40th International Conference on

Current Trends in Theory and Practice of Computer Science
January 25-30,

Nový Smokovec, High Tatras,
Slovakia

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Plan of the talk

I. Modeling music: from opera to bebop.
II. From birooted words to higher dimensional strings.
III. A bit of dinning philosophy.
IV. Towards a language theory of higher dimensional

strings.
a. Definable languages.
b. Walking automata.
c. Non deterministic automata.

V. Quasi-recognizable languages.
VI. Conclusion: back to music.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

1. Music modeling

From opera, to arabesques down to bebop.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Opera is the only medium in which everyone can be talking at the
same time and still manage to understand each other. . .

Amadeus, XVIIIth century,
(from M. Forman in eponym movie)

Centuries later, this has become common practice in
communication networks.

Question
Are there other musical techniques or metaphors that can be used
in computer systems modeling ?

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

A musical example

Extracted from Debussy’s arabesques : andantino con moto

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

interleaved motivs in soprano voice,

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

an underlying frame in the medium,

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

arpegios to hear the harmony,

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

and a bass line. . .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

What modeling langage for music ?
A language for musical analysis (learning)

partition =⇒ structure =⇒ intention

A language for musical writing (or musical programing)

partition⇐= structure⇐= intention

An expressive language

With sequential and parallel composition operators
with partial overlaps, and hierarchical description mechanisms. . .

A usable language

with basic good programming properties such as compositionality,
reusability, etc. . .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

My little blue suede shoes (Ch. Parker)

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

!# ("!!&&&%9 !!!"$!!!!

!# ("!!&&&%12 & !) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

(a) (a)

(b)(a)

Analysis
Three exposures of the same motiv (a) followed by a conclusive
variation (b)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Modeling motiv (a)

! " !# $! ! ! !% &&& ' " ! !! !! ! ! !! ! ! ! " ! ! !! " !# $

! " !#! ! ! ! (4 % &&& ! ! " !
"! ! ! !) !& !! * !

(#!"!&&&%8 !!!"$! !!!!
(#!"!&&&%11 !&!) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

modeled by

4

1 1 1 1

3

1 11

4

1 1 1 1

1

(a)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Modeling motiv (b)

! " !# $! ! ! !% &&& ' " ! !! !! ! ! !! ! ! ! " ! ! !! " !# $

! " !#! ! ! ! (4 % &&& ! ! " !
"! ! ! !) !& !! * !

(#!"!&&&%8 !!!"$! !!!!
(#!"!&&&%11 !&!) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

modeled by

4

1 1 1 1

7

3 22

4

1 1 1 1

1

(b)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Resulting modeling

1

4

1 1 1 1

7

3 22

4

1 1 1 1

15 8

(b)

4

1 1 1 1

3

1 11

4

1 1 1 1

11 5

(a)

4

1 1 1 1

3

1 11

4

1 1 1 1

11 5

(a)

4

1 1 1 1

3

1 11

4

1 1 1 1

11 1

(a)

Drawbacks:
insertion of silences with various length,
logical structure (3x(a) + (b)) rather lost.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Alternative approach

Explicit first beat anticipation (anacrusis) [Jan13b]:

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

!# ("!!&&&%9 !!!"$!!!!

!# ("!!&&&%12 & !) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

and fill with silence till the logical end (second bars):

corpanacrouse

4

1 1 1 1

3

1 11

4

1 1 1 1

1

8

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

do the same for the second motiv:

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

!# ("!!&&&%9 !!!"$!!!!

!# ("!!&&&%12 & !) !*!" !!!!

Music engraving by LilyPond 2.13.46—www.lilypond.org

which gives:

corpanacrouse

4

1 1 1 1

7

3 22

4

1 1 1 1

1

8

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The resulting sequential composition:

corpanac.

43 4 8

1

corpanac.

43 4 8

1

corpanac.

43 4 8

1

8

corpanac

47 4

1

1

(a)
(a)

(a)
(b)

with local overlaps.
Here comes back the logical structure: 3x(a) + (b) !

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Synchronization vs realization windows
Idea [Jan12b]
Distinguish for every musical pattern:

s1 s4d1 s2 d3s3d2

Synchronization Window

Realization Window

entry exit

Old idea
Already implicitly present in musical modeling with LOCO [DH88],
but somehow basic in automation or software systems.

Remark
In theory of music: such a distinction generalizes bars and
metrics. . .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Pattern product : 1. synchronisation

1 42 3

entry sync. point

1 42 3

exit

X

Y

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Pattern product : 2. fusion

entry

1 2
1

4
43

exit

Downstream fusion

Upstream fusion

X

Y

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Induced algebra : the continuous case

1 42 3Y
1 42 3X u1 u2 u3

v1 v2 v3

Synchronization structures : DA = R× R× R, with product

(x1, x2, x3)︸ ︷︷ ︸
X

. (y1, y2, y3)︸ ︷︷ ︸
Y

= (max(x1, y1 − x2), x2 + y2,max(y3, x3 − y2))︸ ︷︷ ︸
X .Y

with fusion of underlying audio or musical patterns defined by
mixing and crossfading. In practice, we obtain an music pattern
algebra [BJM12], later turned into a prototype software [JBD13].

Theorem
We obtain a monoid, i.e. a set equipped with an associative
product and a neutral element.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

2. Formal Models

Models for (abstract description of) music

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Starting from the known world : a word based model

Musical objects

• • •B C

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Starting from the known world : a word based model

Musical objects refinement

• • •B C

• • • • •
b1 b2 b3 b4

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Starting from the known world : a word based model

Musical objects refinement

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Starting from the known world : a word based model

Musical objects refinement with overlaps

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

•b5 •b6

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Starting from the known world : a word based model

Musical objects refinement with overlaps

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

•b5 •b6

• c0

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Starting from the known world : a word based model

Musical objects refinement with overlaps

• • •B C

• • • • •
b1 b2 b3 b4 • • •c1 c2 c3

•b5 •b6

• c0

fairly commons in musical refinement

Even better : object to language refinement
Refine abstract objects by languages of possible realizations :
B ; LB and C ; LC with compatibility constrains to filter
unwanted combinations.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Labeled Munn’s trees (or birooted F -trees)

Birooted F -tree
Let A and F two finite alphabets. F -labeled vertices and A-labeled
edges

(B) hin

f

a out

g
a

f

b

with input root (in) and output root (out).

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Labeled Munn’s trees (or birooted F -trees)

Birooted F -tree
Let A and F two finite alphabets. F -labeled vertices and A-labeled
edges

(B) hin

f

a out

g
a

f

b

with input root (in) and output root (out).

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Birooted F -trees product
A rich algebraic structure:

Product
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F).

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Birooted F -trees product
A rich algebraic structure:

Product = sync
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out

SYNC
h

in

f
a

g
a

f
b f

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F).

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Birooted F -trees product
A rich algebraic structure:

Product = sync + fusion
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out

FUSION
h

in

f
a

g
a

f
b f

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F).

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Birooted F -trees product
A rich algebraic structure:

Product = sync + fusion
(B) hin

f
a out

g
a

f
b

(C)

f
in

g
a hb

f
c

gb

f
b

out
(B · C)

h
in

f
a

g
a

f
b f

g
a hb

f
c

gb

f
b

out

Theorem
Extended with 0 for the undefined case and 1 if needed, the
resulting algebra is a monoid B(F).

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F) is an inverse monoid [Law98].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F) is an inverse monoid [Law98].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

hin out

f
a

g
a

f
b

(B · B−1︸ ︷︷ ︸
BR

)

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F) is an inverse monoid [Law98].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

hin out

f
a

g
a

f
b

(B · B−1︸ ︷︷ ︸
BR

) h
f

a out

in g
a

f
b

(B−1 · B︸ ︷︷ ︸
BL

)

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F) is an inverse monoid [Law98].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

An inverse semigroup
Definition (Inverses and left and right projections)

(B)

hin

f
a out

g
a

f
b

(B−1)

hout

f
a in

g
a

f
b

hin out

f
a

g
a

f
b

(B · B−1︸ ︷︷ ︸
BR

) h
f

a out

in g
a

f
b

(B−1 · B︸ ︷︷ ︸
BL

)

Lemma
B−1 is the unique element such that

B · B−1 · B = B and B−1 · B · B−1 = B−1

i.e. B(F) is an inverse monoid [Law98].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The natural order

Sub birooted tree
hin

f
a out

g
a

f
b

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The natural order

Sub birooted tree
hin

f
a out

g
a

f
b

hin

f
a out

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The natural order

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The natural order

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤hin

f
a out

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The natural order

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤hin

f
a out

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The natural order and the idempotents

Sub birooted tree to get higher
hin

f
a out

g
a

f
b

hin

f
a out≤hin

f
a out

Remark
We have B ≤ C if and only if B = BR · C (eq. B = C · BL).

Lemma
The idempotents are the subunits, i.e. B · B = B iff B ≤ 1.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Extending F -terms algebras

F -terms
With ρ(f) = 2, ρ(g) = 1 and ρ(h) = 0:

f (g(h), f (f (h, h))) f
g

f
h

h

ha
b a

b

a

Observation
Classical (mono-rooted) F -trees can be encoded as idempotent
birooted F -trees.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Extending F -terms algebras

F -terms
With ρ(f) = 2, ρ(g) = 1 and ρ(h) = 0:

f (g(h), f (f (h, h))) f
g

f
h

h

ha
b a

b

a
in

out

Observation
Classical (mono-rooted) F -trees can be encoded as idempotent
birooted F -trees.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Higher dimensional strings ?
Remark (The product as a pushout)

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f g

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f g

D

f ′ g ′

i

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f ginB·C outB·C

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Higher dimensional strings ?
Remark (The product as a pushout)

1 1 1

B C

inB outB inC outC

B · C

f ginB·C outB·C

Remark
• Represents all inverse semigroups (see [Ste90, Lee87]).
• Restricting to one-to-one morphisms (resp. plus 0) one gets
E-unitary (resp. 0-E-unitary) inverse semigroups [Lee87].
• Construction also sketched in the proceedings [Jan14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

3. Dining philosophy

More modeling experiments

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The dining philosophers

ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

c3

c2c1

c4
c0

Goal
An incremental modeling of the dining philosopher problem and
solution by means of birooted tree algebra.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Forks’ local and global state modeling

Ingredients
Edge label: c0, c1, . . . , cn−1, one per philosopher.
Vertex label: •, v ∈ V for some set V of local state values of forks.

•

vk
ck

(Sk)

•

v0
c0

vk
ck vn−1

cn−1

(S)

States = Idempotent birooted trees
Local states Sk , global state S with

S ≤ Sk for every 0 ≤ k < n, and S =
∏

k Sk

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Forks’ local and global state modeling

Ingredients
Edge label: c0, c1, . . . , cn−1, one per philosopher.
Vertex label: •, v ∈ V for some set V of local state values of forks.

•

vk
ck

(Sk)

•

v0
c0

vk
ck vn−1

cn−1

(S)

States = Idempotent birooted trees
Local states Sk , global state S with

S ≤ Sk for every 0 ≤ k < n, and S =
∏

k Sk

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Philosophers’ local states and transitions
Philosopher’s states
The state Pk of philosopher ϕk is of the form Pk = Sk · Sk+1, i.e.
built from the state of the two neighbor forks.

•

vk+1

vk

ck+1

ck

(Pk)

• •
(Pk) (P ′k)

vk+1 v ′k

vk v ′k+1

ck+1

ck

ck

ck+1

a

(Tk)

Philosopher’s transition
A transition Tk of the philosopher ϕk is built by relating two local
state Pk and P ′k by some a-edge by Tk = Pk · a · P ′k with

TR
k ≤ Pk , T L

k ≤ P ′k and Tk = TR
k · a = a · T L

k = TR
k · a · T L

k

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Philosophers’ local states and transitions
Philosopher’s states
The state Pk of philosopher ϕk is of the form Pk = Sk · Sk+1, i.e.
built from the state of the two neighbor forks.

•

vk+1

vk

ck+1

ck

(Pk)

• •
(Pk) (P ′k)

vk+1 v ′k

vk v ′k+1

ck+1

ck

ck

ck+1

a

(Tk)

Philosopher’s transition
A transition Tk of the philosopher ϕk is built by relating two local
state Pk and P ′k by some a-edge by Tk = Pk · a · P ′k with

TR
k ≤ Pk , T L

k ≤ P ′k and Tk = TR
k · a = a · T L

k = TR
k · a · T L

k

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Philosophers’ global states and transitions

Global transition
Of the form T = S · a · S ′ with TR ≤ S and T L ≤ S ′.

•

v0
c0

vk

ck
vn−1
cn−1

(S)

• •

v0
c0

vk

ck
vn−1
cn−1 a

v ′0
c0

v ′k
ck
v ′n−1
cn−1

(S) (S ′)

(T)

With local to global relationship

T =
(∏

0≤k<n TR
k

)
· a = a ·

(∏
0≤k<n T L

k

)
=

(∏
0≤k<n TR

k

)
· a ·

(∏
0≤k<n T L

k

)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Philosophers’ global states and transitions

Global transition
Of the form T = S · a · S ′ with TR ≤ S and T L ≤ S ′.

•

v0
c0

vk

ck
vn−1
cn−1

(S)

• •

v0
c0

vk

ck
vn−1
cn−1 a

v ′0
c0

v ′k
ck
v ′n−1
cn−1

(S) (S ′)

(T)

With local to global relationship

T =
(∏

0≤k<n TR
k

)
· a = a ·

(∏
0≤k<n T L

k

)
=

(∏
0≤k<n TR

k

)
· a ·

(∏
0≤k<n T L

k

)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Chandy and Misra’s solution modeling

a well chosen set V of fork local state values,
the language Lk of local transitions of the form
Tk = Pk · a · P ′k that satisfies the algorithm, for every
philosopher ϕk with 0 ≤ k < n,
resulting global transitions defined by:

L =
∏
k

(Lk)R · a = a ·
∏
k

(Lk)L =
∏
k

(Lk)R · a ·
∏
k

(Lk)L

starting from initial state S0, infinite global behaviors are
given by

C = S0 · Lω

check the algorithm is correct by analyzing the language C !!!

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

4. Languages

We need a simple but expressive notion of manageable languages
of birooted F -trees and, beyond, higher dimensional strings ?
What are the available language theoretic tools and concepts ?

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Languages of birooted F -trees

Languages X and Y ⊆ B(F)− 0 of defined birooted F -trees.

Operations on languages:
sum : X + Y = X ∪ Y ,
product : X · Y = {B · C : B ∈ X ,C ∈ Y ,B · C 6= 0},
star : X ∗ =

⋃
n∈N Xn with X 0 = {1} and Xn+1 = X · Xn,

and, thanks to the inverse monoid structure of B(F):
inverse : X−1 = {B−1 : B ∈ X},
idempotent projection : XE = {B : B ∈ X ,B · B = B},
left and right projection : XL = {B−1 · B : B ∈ X} and
XR = {B · B−1 : B ∈ X},
up and down closures : X ↑ = {B ∈ B(F) : ∃C ∈ X ,C ≤ B}
and X ↓ = {B ∈ B(F)− 0 : ∃C ∈ X ,B ≤ C}.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The known case of word languages

Definability classes of languages of words
A language L ⊆ A∗ is

REC when L = ϕ−1(ϕ(L)) for some morphism ϕ : A∗ → S
with finite monoid S,
REG when L is definable by a regular expression, i.e. definable
from finite languages combined with sum, product and star,
MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc. . .)
Over words, REC = REG = MSO︸ ︷︷ ︸

finite automata

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The known case of word languages

Definability classes of languages of words
A language L ⊆ A∗ is

REC when L = ϕ−1(ϕ(L)) for some morphism ϕ : A∗ → S
with finite monoid S,
REG when L is definable by a regular expression, i.e. definable
from finite languages combined with sum, product and star,
MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc. . .)
Over words, REC = REG = MSO︸ ︷︷ ︸

finite automata

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The known case of word languages

Definability classes of languages of words
A language L ⊆ A∗ is

REC when L = ϕ−1(ϕ(L)) for some morphism ϕ : A∗ → S
with finite monoid S,
REG when L is definable by a regular expression, i.e. definable
from finite languages combined with sum, product and star,
MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc. . .)
Over words, REC = REG = MSO︸ ︷︷ ︸

finite automata

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The known case of word languages

Definability classes of languages of words
A language L ⊆ A∗ is

REC when L = ϕ−1(ϕ(L)) for some morphism ϕ : A∗ → S
with finite monoid S,
REG when L is definable by a regular expression, i.e. definable
from finite languages combined with sum, product and star,
MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc. . .)
Over words, REC = REG = MSO︸ ︷︷ ︸

finite automata

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The known case of word languages

Definability classes of languages of words
A language L ⊆ A∗ is

REC when L = ϕ−1(ϕ(L)) for some morphism ϕ : A∗ → S
with finite monoid S,
REG when L is definable by a regular expression, i.e. definable
from finite languages combined with sum, product and star,
MSO when L is definable in Monadic Second Order Logic.

Theorem (Kleene, Rabin, Scott, Buchi, etc. . .)
Over words, REC = REG = MSO︸ ︷︷ ︸

finite automata

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The new case of birooted F -tree languages
Classes of languages of F-trees
A language X ⊆ B(F) is

REC when X = ϕ−1(ϕ(X)) for some morphism ϕ : A∗ → S
with finite monoid S,
k-REG when it is definable by a regular expression extended
by idempotent projection with nesting depth at most k,
MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)
The class MSO is closed under boolean, product, star, inverse,
projections, upward and downward closure. . .

Theorem (Expressiveness)
Over birooted F -trees,

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The new case of birooted F -tree languages
Classes of languages of F-trees
A language X ⊆ B(F) is

REC when X = ϕ−1(ϕ(X)) for some morphism ϕ : A∗ → S
with finite monoid S,
k-REG when it is definable by a regular expression extended
by idempotent projection with nesting depth at most k,
MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)
The class MSO is closed under boolean, product, star, inverse,
projections, upward and downward closure. . .

Theorem (Expressiveness)
Over birooted F -trees,

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The new case of birooted F -tree languages
Classes of languages of F-trees
A language X ⊆ B(F) is

REC when X = ϕ−1(ϕ(X)) for some morphism ϕ : A∗ → S
with finite monoid S,
k-REG when it is definable by a regular expression extended
by idempotent projection with nesting depth at most k,
MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)
The class MSO is closed under boolean, product, star, inverse,
projections, upward and downward closure. . .

Theorem (Expressiveness)
Over birooted F -trees,

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The new case of birooted F -tree languages
Classes of languages of F-trees
A language X ⊆ B(F) is

REC when X = ϕ−1(ϕ(X)) for some morphism ϕ : A∗ → S
with finite monoid S,
k-REG when it is definable by a regular expression extended
by idempotent projection with nesting depth at most k,
MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)
The class MSO is closed under boolean, product, star, inverse,
projections, upward and downward closure. . .

Theorem (Expressiveness)
Over birooted F -trees,

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The new case of birooted F -tree languages
Classes of languages of F-trees
A language X ⊆ B(F) is

REC when X = ϕ−1(ϕ(X)) for some morphism ϕ : A∗ → S
with finite monoid S,
k-REG when it is definable by a regular expression extended
by idempotent projection with nesting depth at most k,
MSO when it is MSO and upward closed in the natural order.

Theorem (Robustness)
The class MSO is closed under boolean, product, star, inverse,
projections, upward and downward closure. . .

Theorem (Expressiveness)
Over birooted F -trees,

REC ⊂ REG ⊂ 1-REG ⊆ · · · ⊆ k-REG ⊆ · · · ⊆ MSO

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

Definition (Walking automata – see e.g. [Boj08])

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

that read partial traversals of birooted trees.

Example of a walking run

f
in

g
a hb

f
c

gb

f
b

out

•
f •b

g

•
b̄

•
a g

•
b̄g

Remark
Walking runs are preserved downward in the natural order.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an accepting walking run,
from the input root in initial state q0 to the output root in an
accepting state q ∈ T , possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])
REC↓ ⊂ REG↓ ⊂ 1-REG↓ ⊆ · · · ⊆ k-REG↓ ⊆ · · · ⊆ MSO↓

REC↓ by strongly deterministic walking automata,
REG↓ by non deterministic walking automata,
k-REG↓ by k-(invisible)-pebble walking automata,
MSO↓ by ω-(invisible)-pebble walking automata.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an accepting walking run,
from the input root in initial state q0 to the output root in an
accepting state q ∈ T , possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])
REC↓ ⊂ REG↓ ⊂ 1-REG↓ ⊆ · · · ⊆ k-REG↓ ⊆ · · · ⊆ MSO↓

REC↓ by strongly deterministic walking automata,
REG↓ by non deterministic walking automata,
k-REG↓ by k-(invisible)-pebble walking automata,
MSO↓ by ω-(invisible)-pebble walking automata.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an accepting walking run,
from the input root in initial state q0 to the output root in an
accepting state q ∈ T , possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])
REC↓ ⊂ REG↓ ⊂ 1-REG↓ ⊆ · · · ⊆ k-REG↓ ⊆ · · · ⊆ MSO↓

REC↓ by strongly deterministic walking automata,
REG↓ by non deterministic walking automata,
k-REG↓ by k-(invisible)-pebble walking automata,
MSO↓ by ω-(invisible)-pebble walking automata.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an accepting walking run,
from the input root in initial state q0 to the output root in an
accepting state q ∈ T , possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])
REC↓ ⊂ REG↓ ⊂ 1-REG↓ ⊆ · · · ⊆ k-REG↓ ⊆ · · · ⊆ MSO↓

REC↓ by strongly deterministic walking automata,
REG↓ by non deterministic walking automata,
k-REG↓ by k-(invisible)-pebble walking automata,
MSO↓ by ω-(invisible)-pebble walking automata.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Walking automata and downward closed languages

A = 〈Q, q0,T , δ : (A + Ā + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an accepting walking run,
from the input root in initial state q0 to the output root in an
accepting state q ∈ T , possibly with invisible pebble mechanisms.

Theorem (The walking hierarchy [DJ13, Jan13d])
REC↓ ⊂ REG↓ ⊂ 1-REG↓ ⊆ · · · ⊆ k-REG↓ ⊆ · · · ⊆ MSO↓

REC↓ by strongly deterministic walking automata,
REG↓ by non deterministic walking automata,
k-REG↓ by k-(invisible)-pebble walking automata,
MSO↓ by ω-(invisible)-pebble walking automata.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
Definition (Non deterministic automata – see e.g. [Tho97])

A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

with run that are markings ρ : dom(B)→ Q such that:
Vertex coherence: for all v ∈ dom(B) labeled by f ∈ F ,

(ρ(v), ρ(v)) ∈ δ(f)

Edge coherence: for all edge v a→ w in B,
(ρ(v), ρ(w)) ∈ δ(a)

A run in picture

f
in

g
a hb

f
c

gb

f
b

out

q1

q2

q3
q4

q5

q6

Coherence ex.:
(q2, q2) ∈ δ(g)

(q4, q3) ∈ δ(b)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
Definition (Non deterministic automata – see e.g. [Tho97])

A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

with run that are markings ρ : dom(B)→ Q such that:
Vertex coherence: for all v ∈ dom(B) labeled by f ∈ F ,

(ρ(v), ρ(v)) ∈ δ(f)

Edge coherence: for all edge v a→ w in B,
(ρ(v), ρ(w)) ∈ δ(a)

A run in picture

f
in

g
a hb

f
c

gb

f
b

out

q1

q2

q3
q4

q5

q6

Coherence ex.:
(q2, q2) ∈ δ(g)

(q4, q3) ∈ δ(b)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
Definition (Non deterministic automata – see e.g. [Tho97])

A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

with run that are markings ρ : dom(B)→ Q such that:
Vertex coherence: for all v ∈ dom(B) labeled by f ∈ F ,

(ρ(v), ρ(v)) ∈ δ(f)

Edge coherence: for all edge v a→ w in B,
(ρ(v), ρ(w)) ∈ δ(a)

A run in picture

f
in

g
a hb

f
c

gb

f
b

out

q1

q2

q3
q4

q5

q6

Coherence ex.:
(q2, q2) ∈ δ(g)

(q4, q3) ∈ δ(b)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
Definition (Non deterministic automata – see e.g. [Tho97])

A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

with run that are markings ρ : dom(B)→ Q such that:
Vertex coherence: for all v ∈ dom(B) labeled by f ∈ F ,

(ρ(v), ρ(v)) ∈ δ(f)

Edge coherence: for all edge v a→ w in B,
(ρ(v), ρ(w)) ∈ δ(a)

A run in picture

f
in

g
a hb

f
c

gb

f
b

out

q1

q2

q3
q4

q5

q6

Coherence ex.:
(q2, q2) ∈ δ(g)

(q4, q3) ∈ δ(b)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an marking run ρ that
satisfies the acceptance condition (ρ(inB), ρ(outB)) ∈W .

Remark
If X ⊆ B(F)− 0 is recognized by a (finite) automaton then X is
upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a])
A language X ⊆ B(F)− 0 is recognized by a non deterministic
finite state automaton A if and only if X ∈ MSO↑.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an marking run ρ that
satisfies the acceptance condition (ρ(inB), ρ(outB)) ∈W .

Remark
If X ⊆ B(F)− 0 is recognized by a (finite) automaton then X is
upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a])
A language X ⊆ B(F)− 0 is recognized by a non deterministic
finite state automaton A if and only if X ∈ MSO↑.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Non det. automata and downward closed languages
A = 〈Q,W , δ : (A + F)→ P(Q × Q)〉

Definition (Recognized language: L(A))
The set of B ∈ B(F) for which there is an marking run ρ that
satisfies the acceptance condition (ρ(inB), ρ(outB)) ∈W .

Remark
If X ⊆ B(F)− 0 is recognized by a (finite) automaton then X is
upward closed w.r.t. the natural order.

Theorem (Expressiveness [Jan13c, Jan13a])
A language X ⊆ B(F)− 0 is recognized by a non deterministic
finite state automaton A if and only if X ∈ MSO↑.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Extension to higher dimensional strings

Question
What is the behavior of walking automata on more complex
structures ?
Idem for non deterministic automata ?
Relationship with graph acceptors (∃MSO) ?

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

5. Quasi-recognizability

Quasi-inverse monoids and the (algebraic) boolean closure of FSA.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Downward closed languages of an inverse monoid
Definition
Let S be an inverse monoid with natural order ≤. Let P↓(S) be
the set of its downward closed non empty subsets of S with the
point-wise extension of the product.

Lemma
Then P↓(S) ordered by inclusion is a ordered monoid with:

unit: X ·U(S) = X = U(X) · X with U(S) = {z ∈ S : z ≤ 1},
stable order: for every Z if X ⊆ Y then Z · X ⊆ Z · Y and
X · Z ⊆ Y · Z,
idempotent subunits: if X ⊆ U(S) then X · X = X,
left and right local units: for every X ∈ P↓(S),

XR = {xR ≤ 1 : x ∈ X} =
⋂
{Z ⊆ U(S) : X · Z = X},

XL = {xL ≤ 1 : x ∈ X} =
⋂
{Z ⊆ U(S) : Z · X = X}.

But, it is not necessarily inverse !

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Quasi-inverse monoids

Generalizing the previous properties to ordered monoids:

Definition
A ordered monoid 〈S, ·, 1,≤〉 is adequately ordered when:

Stable order: if x ≤ y then z · x ≤ z · y and x · z ≤ y · z ,
Idempotent subunits: if x ≤ 1 then x · x = x ,
Left and right projections: for every x ∈ S, both projections

xL = min{z ≤ 1 : x · z = x}︸ ︷︷ ︸
behaves "like" x−1x

and xR = min{z ≤ 1 : z · x = x}︸ ︷︷ ︸
behaves "like" xx−1

exist.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Examples of quasi-inverse monoids

Examples
Trivially ordered monoids with xL = xR = 1.
Inverse monoids with xL = x−1x and xR = xx−1.
Finite partially ordered monoid with idempotent subunits,

Remark
Such a definition is strongly related [Jan12a] with the studies of
semigroups with local units developed by the “York
School” [Fou77] with, in particular, U-semiadequate and
Ehresmann semigroups [Law91].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Examples of quasi-inverse monoids

Examples
Trivially ordered monoids with xL = xR = 1.
Inverse monoids with xL = x−1x and xR = xx−1.
Finite partially ordered monoid with idempotent subunits,

Remark
Such a definition is strongly related [Jan12a] with the studies of
semigroups with local units developed by the “York
School” [Fou77] with, in particular, U-semiadequate and
Ehresmann semigroups [Law91].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Examples of quasi-inverse monoids

Examples
Trivially ordered monoids with xL = xR = 1.
Inverse monoids with xL = x−1x and xR = xx−1.
Finite partially ordered monoid with idempotent subunits,

Remark
Such a definition is strongly related [Jan12a] with the studies of
semigroups with local units developed by the “York
School” [Fou77] with, in particular, U-semiadequate and
Ehresmann semigroups [Law91].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Examples of quasi-inverse monoids

Examples
Trivially ordered monoids with xL = xR = 1.
Inverse monoids with xL = x−1x and xR = xx−1.
Finite partially ordered monoid with idempotent subunits,

Remark
Such a definition is strongly related [Jan12a] with the studies of
semigroups with local units developed by the “York
School” [Fou77] with, in particular, U-semiadequate and
Ehresmann semigroups [Law91].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Runs of non deterministic automata revisited

Let A = 〈Q, δ,W 〉 be a non det. automaton and let

ϕ : B(F)→ P(Q × Q)

be the mapping defined by ϕ(0) = ∅, ϕ(1) = IQ and, for every non
trivial F -tree B, the set ϕ(B) defined as the set of pairs
(ρ(inB), ρ(outB)) for runs ρ of A over B.

Lemma
The mapping ϕ recognizes L(A) in the sense that

L(A) = ϕ−1(ϕ(L(A)))

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Runs of non deterministic automata revisited

Let A = 〈Q, δ,W 〉 be a non det. automaton and let

ϕ : B(F)→ P(Q × Q)

be the mapping defined by ϕ(0) = ∅, ϕ(1) = IQ and, for every non
trivial F -tree B, the set ϕ(B) defined as the set of pairs
(ρ(inB), ρ(outB)) for runs ρ of A over B.

Lemma
The mapping ϕ recognizes L(A) in the sense that

L(A) = ϕ−1(ϕ(L(A)))

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Runs of non deterministic automata revisited

Let A = 〈Q, δ,W 〉 be a non det. automaton and let

ϕ : B(F)→ P(Q × Q)

be the mapping defined by ϕ(0) = ∅, ϕ(1) = IQ and, for every non
trivial F -tree B, the set ϕ(B) defined as the set of pairs
(ρ(inB), ρ(outB)) for runs ρ of A over B.

Lemma
The mapping ϕ recognizes L(A) in the sense that

L(A) = ϕ−1(ϕ(L(A)))

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Effectivity
Lemma
Let B ∈ B(F)− 0. Then ϕ(B) is definable in MSO and
computable in linear time.

Proof.
The mapping ϕ preserves:

left and right projections,
disjoint products (written B ∗ C),

in
• •B

out
• •C

and every birooted F -tree is definable as a linear size combination
of elementary trees with disjoint products and left and right
projections.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Effectivity
Lemma
Let B ∈ B(F)− 0. Then ϕ(B) is definable in MSO and
computable in linear time.

Proof.
The mapping ϕ preserves:

left and right projections,
disjoint products (written B ∗ C),

in
• •B

out
• •C

and every birooted F -tree is definable as a linear size combination
of elementary trees with disjoint products and left and right
projections.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F)→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F).

Example
The canonical mapping ϕ : B(F)→ P(Q × Q) induced by an
automaton A.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F)→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F).

Example
The canonical mapping ϕ : B(F)→ P(Q × Q) induced by an
automaton A.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F)→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F).

Example
The canonical mapping ϕ : B(F)→ P(Q × Q) induced by an
automaton A.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F)→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F).

Example
The canonical mapping ϕ : B(F)→ P(Q × Q) induced by an
automaton A.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F)→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F).

Example
The canonical mapping ϕ : B(F)→ P(Q × Q) induced by an
automaton A.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Towards quasi-recognizability

Definition (Adequate premorphism)
A mapping ϕ : B(F)→ S with S quasi-inverse such that:

unit: ϕ(1) = 1,
monotonic: if B ≤ C then ϕ(B) ≤ ϕ(C),
disjoint product: if ∃ B ∗ C then ϕ(B ∗ C) = ϕ(B) · ϕ(C),
projections: ϕ(BL) = (ϕ(B))L and ϕ(BR) = (ϕ(B))R .

for every B and C ∈ B(F).

Example
The canonical mapping ϕ : B(F)→ P(Q × Q) induced by an
automaton A.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Quasi-recognizable languages

Definition
A language L ⊆ B(F) is quasi-recognizable (QREC) when there
exists a finite QI-monoid S and an adequate premorphism
ϕ : B(F)→ S such that L = ϕ−1(ϕ(L)).

Lemma (Effectiveness)
For every B ∈ B(F), the image ϕ(B) of B is computable in linear
time in B.

Theorem (See [Jan13c, Jan13a])

QREC = Bool(MSO↑)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Quasi-recognizable languages

Definition
A language L ⊆ B(F) is quasi-recognizable (QREC) when there
exists a finite QI-monoid S and an adequate premorphism
ϕ : B(F)→ S such that L = ϕ−1(ϕ(L)).

Lemma (Effectiveness)
For every B ∈ B(F), the image ϕ(B) of B is computable in linear
time in B.

Theorem (See [Jan13c, Jan13a])

QREC = Bool(MSO↑)

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

BOOL(MSO↑) vs MSO ?

Theorem
BOOL(MSO↑) is strictly included into MSO

Proof.
Let L = {a2na−2n : n ∈ N}. Then L is definable in MSO while L
cannot be recognized by a monotonic function in a finite set.

Remark
This implies that QREC is not closed under product nor star. Need
to restrict to “positive” birooted trees [DJ14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

BOOL(MSO↑) vs MSO ?

Theorem
BOOL(MSO↑) is strictly included into MSO

Proof.
Let L = {a2na−2n : n ∈ N}. Then L is definable in MSO while L
cannot be recognized by a monotonic function in a finite set.

Remark
This implies that QREC is not closed under product nor star. Need
to restrict to “positive” birooted trees [DJ14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

BOOL(MSO↑) vs MSO ?

Theorem
BOOL(MSO↑) is strictly included into MSO

Proof.
Let L = {a2na−2n : n ∈ N}. Then L is definable in MSO while L
cannot be recognized by a monotonic function in a finite set.

Remark
This implies that QREC is not closed under product nor star. Need
to restrict to “positive” birooted trees [DJ14].

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The partial algebra approach (last results)

From partial algebra theory (see e.g., [Bur86]).

Definition (∗-congruence)
An equivalence ' of birooted F -tree is a closed ∗-congruence
when:

if B ' C then BL ' CL and BR ' CL,
if B ' C and B′ ' C ′ then ∃ B ∗ B′ = ∃C ∗ C ′,

for every B,B′,C ,C ′ ∈ B(F).

Theorem (Syntactic congruence)
For every X ⊆ B(F) there exists a greatest closed ∗-congruence
'X such that, for every B,C ∈ B(F), if B 'X C then
B ∈ X ⇔ C ∈ X.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The partial algebra approach (last results)

From partial algebra theory (see e.g., [Bur86]).

Definition (∗-congruence)
An equivalence ' of birooted F -tree is a closed ∗-congruence
when:

if B ' C then BL ' CL and BR ' CL,
if B ' C and B′ ' C ′ then ∃ B ∗ B′ = ∃C ∗ C ′,

for every B,B′,C ,C ′ ∈ B(F).

Theorem (Syntactic congruence)
For every X ⊆ B(F) there exists a greatest closed ∗-congruence
'X such that, for every B,C ∈ B(F), if B 'X C then
B ∈ X ⇔ C ∈ X.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The partial algebra approach (last results)

Theorem
A language X ⊆ B(F) is MSO if and only if 'X is of finite index.

Theorem
A language X ⊆ B(F) is QREC if and only if 'X is of finite index
and the size of chain B1 ≤ B1 ≤ · · · ≤ Bn+1 with Bi 6'X Bi+1 is
uniformly bounded.

Remark
There is a strong incentive to consider strongly adequate
premorphism, that is, adequate premorphism such that, moreover:

if ϕ(B) ≤ ϕ(C) then there exists B′ such that
ϕ(B′) = ϕ(B) and B′ ≤ C .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The partial algebra approach (last results)

Theorem
A language X ⊆ B(F) is MSO if and only if 'X is of finite index.

Theorem
A language X ⊆ B(F) is QREC if and only if 'X is of finite index
and the size of chain B1 ≤ B1 ≤ · · · ≤ Bn+1 with Bi 6'X Bi+1 is
uniformly bounded.

Remark
There is a strong incentive to consider strongly adequate
premorphism, that is, adequate premorphism such that, moreover:

if ϕ(B) ≤ ϕ(C) then there exists B′ such that
ϕ(B′) = ϕ(B) and B′ ≤ C .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The partial algebra approach (last results)

Theorem
A language X ⊆ B(F) is MSO if and only if 'X is of finite index.

Theorem
A language X ⊆ B(F) is QREC if and only if 'X is of finite index
and the size of chain B1 ≤ B1 ≤ · · · ≤ Bn+1 with Bi 6'X Bi+1 is
uniformly bounded.

Remark
There is a strong incentive to consider strongly adequate
premorphism, that is, adequate premorphism such that, moreover:

if ϕ(B) ≤ ϕ(C) then there exists B′ such that
ϕ(B′) = ϕ(B) and B′ ≤ C .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

6. Conclusion

Back to music, plus a bit of philosophy

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

SimpleTuilesLooper (by F. Berthaut)

Only if time permits. . .

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

The virtuous circle of research in CS

Com
pu

tat
ion

al
Mus

ic

Formal Methods

Musical modeling

Composition

Music

Modeling

Mathematics

Realisation

Informatics

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

[BJM12] F. Berthaut, D. Janin, and B. Martin.
Advanced synchronization of audio or symbolic musical
patterns: an algebraic approach.
International Journal of Semantic Computing,
6(4):409–427, 2012.

[Boj08] M. Bojańczyk.
Tree-walking automata.
In 2nd Int. Conf. on Language and Automata Theory and
Applications (LATA), volume 5196 of LNCS. Springer,
2008.

[Bur86] P. Burmeister.
A Model Theoretic Oriented Approach to Partial
Algebras.
Akademie-Verlag, 1986.

[DH88] P. Desain and H. Honing.
LOCO: a composition microworld in Logo.
Computer Music Journal, 12(3):30–42, 1988.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

[DJ13] A. Dicky and D. Janin.
Two-way automata and regular languages of overlapping
tiles.
Research report RR-1463-12, LaBRI, Université de
Bordeaux, 2013.

[DJ14] E. Dubourg and D. Janin.
Algebraic tools for the overlapping tile product.
In Language and Automata Theory and Applications
(LATA), Madrid, Spain, 2014. Springer.

[Fou77] J. Fountain.
Right PP monoids with central idempotents.
Semigroup Forum, 13:229–237, 1977.

[Jan12a] D. Janin.
Quasi-inverse monoids (and premorphisms).
Research report RR-1459-12 (revised 11/2013), LaBRI,
Université de Bordeaux, 2012.

[Jan12b] D. Janin.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Vers une modélisation combinatoire des structures
rythmiques simples de la musique.
Revue Francophone d’Informatique Musicale (RFIM), 2,
2012.

[Jan13a] D. Janin.
Algebras, automata and logic for languages of labeled
birooted trees.
In Int. Col. on Aut., Lang. and Programming (ICALP),
volume 7966 of LNCS, pages 318–329, Riga, Latvia,
2013. Springer.

[Jan13b] D. Janin.
On languages of one-dimensional overlapping tiles.
In Int. Conf. on Current Thrends in Theo. and Prac. of
Comp. Science (SOFSEM), volume 7741 of LNCS, pages
244–256, Spindlerûv Mlýn, Czech Republic, 2013.
Springer.

[Jan13c] D. Janin.
Overlaping tile automata.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

In 8th International Computer Science Symposium in
Russia (CSR), volume 7913 of LNCS, pages 431–443,
Ekaterinburg, Russia, 2013. Springer.

[Jan13d] D. Janin.
Walking automata in the free inverse monoid.
Research report RR-1464-12, LaBRI, Université de
Bordeaux, 2013.
(revised May 2013).

[Jan14] D. Janin.
Towards a higher dimensional string theory for the
modeling of computerized systems, volume 8327 of
LNCS, pages 7–20.
Springer, Novy Smokovec, Slovaquia, 2014.

[JBD13] D. Janin, F. Berthaut, and M. DeSainteCatherine.
Multi-scale design of interactive music systems : the
libTuiles experiment.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

In 10th Conference on Sound and Music Computing
(SMC), Stockholm, Sweden, 2013.

[Law91] M. V. Lawson.
Semigroups and ordered categories. I. the reduced case.
Journal of Algebra, 141(2):422 – 462, 1991.

[Law98] M. V. Lawson.
Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[Lee87] J. Leech.
Contructing inverse monoids from small categories.
Semigroup Forum, 36:89–116, 1987.

[Ste90] J.B. Stephen.
Presentations of inverse monoids.
Journal of Pure and Applied Algebra, 63:81–112, 1990.

[Tho97] W. Thomas.
Chap. 7. Languages, automata, and logic.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

In Handbook of Formal Languages, Vol. III, pages
389–455. Springer-Verlag, Berlin Heidelberg, 1997.

Music modeling Formal Models Dining philosophy Languages Quasi-recognizability Conclusion

Thanks for your attention !

	Music modeling
	Formal Models
	Dining philosophy
	Languages
	Quasi-recognizability
	Conclusion

