
A logical approach
to grammar description

Lionel Clément, Jérôme Kirman, and Sylvain Salvati
Université de Bordeaux LaBRI

France

abstract
Keywords:
grammar
description,
logic,
Finite State
Automata,
logical
transduction,
lambda calculus,
Abstract
Categorial
Grammars

In the tradition of Model Theoretic Syntax, we propose a logical ap-
proach to the description of grammars. We combine in one formal-
ism several tools that are used throughout computer science for their
power of abstraction: logic and lambda calculus. We propose then a
high-level formalism for describing mildly context sensitive grammars
and their semantic interpretation. As we rely on the correspondence
between logic and finite state automata, our method combines con-
ciseness with effectivity. We illustrate our approach with a simple
linguistic model of several interleaved linguistic phenomena involv-
ing extraction. The level of abstraction provided by logic and lambda
calculus allows us not only to use this linguistic model for several
languages, namely English, German, and Dutch, but also for semantic
interpretation.

1 introduction

We propose a high-level approach to represent second-order abstract
categorial grammars (2-ACGs) of de Groote (2001). This approach is
close in spirit to the two step approach proposed by Kolb et al. (2003),
and also to Model Theoretic Syntax (Rogers 1996). It is also closely
related to the recent work of Boral and Schmitz (2013) which advo-
cates and subsequently studies the complexity of context-free gram-
mars with constraints on derivations expressed in propositional dy-
namic logic (Kracht 1995).

Journal of Language Modelling Vol 3, No 1 (2015), pp. 87–143

Lionel Clément et al.

The choice of 2-ACGs as a target class of grammars is motivated
by several reasons. First, linear 2-ACGs capture exactly mildly con-
text sensitive languages as shown by de Groote and Pogodalla (2004)
and Salvati (2007). In particular they enjoy polynomial parsing algo-
rithms (Salvati 2005 and Salvati 2009), the parsing problem is actually
in functional LOGCFL (Kanazawa 2011). Secondly, they allow one to
express both syntax and semantics with a very small number of prim-
itives. Thirdly, when dealing with semantics, non-linear 2-ACGs (that
is 2-ACGs with copying) have a decidable parsing problem as shown
by Salvati (2010) (see Kobele and Salvati 2013 for a more general
proof) allowing one to generate text from semantic representation. Fi-
nally, following an idea that can be traced back to Curry (1961), they
offer a neat separation between syntax, that is how constituents form
together a coherent sentence, and word order. Indeed, Abstract cate-
gorial grammars (ACGs) split naturally the definition of a language in
two parts:
1. the abstract language that is meant to represent deep structures,
2. the object language that is meant to represent surface structures.

The mediation between abstract and object languages is made
with a lexicon. Lexicons, in the context of 2-ACGs, are higher-order
homomorphisms mapping each tree of the abstract language to the
element of the object language it denotes. Their abstract language is
made of ranked trees, which are widely used to model the syntactic
structures of languages. They indeed naturally represent the hierar-
chical structure of natural language syntagmas. Another feature of the
ACG approach is that the object language need not consist of strings,
but can also be a language of λ-terms representing truth-conditional
meanings of sentences. More importantly, different grammars may
share the same abstract language, which then serves as a description
of relations between the elements of their object languages. In partic-
ular, this yields a simple and elegant way of modelling the relation be-
tween syntax and semantics, following the work of Montague (1974).
Or even, when languages are sufficiently similar, this gives a natural
way of constructing synchronous grammars.

Thus, our approach is closely following the ACG’s two-level de-
scription so as to model the syntax of a natural language. A first
assumption we take is that syntactic structures need not represent

[88]

A logical approach to grammar description

directly the word order. This assumption leads us to study syntactic
structures as abstract structures that satisfy certain properties. These
abstract structures are defined by means of a regular tree grammar so
as to model the recursive nature of syntax, and are further constrained
with logic. We use unordered trees with labelled edges to represent
abstract structures. This technical choice emphasizes the fact that
syntax and word order are assumed not to be directly connected. The
labels of the tree are used to represent the grammatical functions of
each node with respect to its parent. Moreover, this structure allows
us to define a logical language in which we can describe high-level
linguistic properties. This logical language is at the centre of the defi-
nition of syntactic validity and also of the mechanism of linearization
which associates sentences or meaning representations with abstract
structures. As in the ACG setting, we use λ-calculus as a means to
achieve complex transformations. When compared to ACGs, the orig-
inality of our approach lies in the fact that linearization is guided by
logic in a strong way.

Our goal is to design concise and linguistically informed 2-ACGs.
For this, as we mentioned, we heavily rely on logic. The reason why
we can do so in a computationally effective manner is that suffi-
ciently weak logics can be represented with finite state automata.
Seminal results from formal language theory by Doner (1965) and
Rabin (1969) have had a wealth of applications in computer science
and are still at the root of active research. They also have given rise to
the idea of modelling syntax with logic, championed under the name
of Model Theoretic Syntax in a series of papers: Rogers (1996), Cor-
nell and Rogers (1998), Rogers (1998), Rogers (2003b), Pullum and
Scholz (2001), Pullum and Scholz (2005), Pullum (2007)… One of
the successes of Model Theoretic Syntax is the model (Rogers 1998)
of the most consensual part of the theory of Government and Bind-
ing of Chomsky (1981). It thus showed that this theory could only
model context-free languages and was inadequate to model natural
languages which contain phenomena beyond context-freeness (see
Shieber 1985).

Indeed, the way Model Theoretic Syntax is usually formulated ties
word orders to syntactic structures: syntactic structures take the form
of trees satisfying the axioms of a linguistic theory and the sentences
they represent are simply the sequences of leaves of those trees read

[89]

Lionel Clément et al.

from left to right. This approach has as consequence that only context-
free languages can be represented that way. Rogers (2003a) bypasses
this limitation by using multidimensional trees. Another approach is
the two step approach of Kolb et al. (2003) which is based on macro
tree transducers and logic. Our approach is similar but, as Morawietz
(2003), who proposes to model multiple context-free grammars by
means of logical transduction, it relies on logic in a stronger manner
and it uses λ-calculus instead of the macro mechanism of macro tree
transducers. Indeed, we adapt the notion of logical transductions pro-
posed by Courcelle (1994) (see also Courcelle and Engelfriet 2012)
so as to avoid the use of a finite state transduction. This brings an
interesting descriptive flavour to the linearization mechanism, which
simplifies linguistic descriptions. Thus from the perspective of Model
Theoretic Syntax, we propose an approach that allows one to go be-
yond context-freeness, by relying as much as possible on logic and rep-
resenting complex linearization operation with λ-calculus. We hope
that the separation between abstract language and linearization allows
one to obtain some interesting linguistic generalization that might be
missed by approaches such as Rogers (2003a), which tie the descrip-
tion of the syntactic constraints and linearization.

The formalism we propose provides high-level descriptions of lan-
guages. Indeed, it uses logic as a leverage to model linguistic concepts
in the most direct manner. Moreover, as we carefully chose to use
trees as syntactic structures and a logic that is weak enough to be rep-
resentable by finite state automata, the use of this level of abstraction
does not come at the cost of the computational decidability of the for-
malism. Another advantage of this approach that is related to it in
a high-level way is conciseness. Finally, merging the ACG approach,
Model Theoretic Syntax, and logical transductions allows one to de-
scribe in a flexible and relatively simple manner complex realizations
that depend subtly on the context. Somehow, we could say that, in
our formalization, linearization of abstract structures rely on both a
logical look-around provided by logical transductions and on complex
data flow provided by λ-calculus.

Related work
The paper is related to the work that tries to give concise descriptions
of grammars. It is thus close in spirit to the line of work undertaken

[90]

A logical approach to grammar description

under the name of Metagrammars. This work was initiated by Candito
(1999) and subsequently developed by Thomasset and De La Clerg-
erie (2005) and Crabbé et al. (2013). The main difference between
our approach and the Metagrammar approach is that we try to have
a formal definition of the languages our linguistic descriptions define,
while Metagrammars are defined in a more algorithmic way and tied
to rule descriptions. Instead we specify how syntactic structures should
look like. Our representation of syntactic structures has a lot in com-
mon with f-structures in Lexical Functional Grammars (LFG; Bresnan
2001, Dalrymple 2001), except that we use logic, rather than unifica-
tion, to describe them. This makes our approach very close in spirit
to dependency grammars such as Bröker (1998), Debusmann et al.
(2004), and Foth et al. (2005), property grammars (Blache 2001) and
their model theoretic formalization (Duchier et al. 2009, 2012, 2014).
Most of the fundamental ideas we use in our formalization are similar
to those works, in particular Bröker (1998) also proposes to separate
syntactic description from linearization. The main difference between
LFG, dependency grammars, and our approach is that we try to build
a formalization whose expressive power is limited to the classes of
languages that are mildly context sensitive and which are believed to
be a good fit to the class of natural languages (see Joshi 1985 and
Weir 1988).

Contribution
We propose a logical language for describing tree structures that is
similar to propositional dynamic logic of Kracht (1995). We show how
to use this logic to describe abstract structures and their linearization
while only defining 2-ACGs. We also show that our formalism can
represent in a simple manner various linguistic phenomena in several
languages together with the semantics of phrases.

Organization of the paper
The paper is divided into two parts: first, Section 2 presents the for-
malism, while Section 3 presents a grammatical model that is based
on that formalism. Section 2 is an incremental presentation of the
formalism. We start by explaining how we model abstract structures
in Section 2.1. This section explains how our formalization is articu-
lated with lexicons. It gives a definition of the logical language we use

[91]

Lionel Clément et al.

throughout the paper. We then turn to defining the grammatical for-
malism that combines regular tree grammars and logical constraints
that we use to model the valid abstract structures. This section closes
with the formal definition of the set of valid abstract structures and an
explanation of why this set is a regular set of trees. Then we define the
mechanism that linearizes abstract structures and give its formal se-
mantics. The formal semantics of the linearizationmechanism is rather
complex; moreover, due to space limitations, we need to assume that
the reader is familiar with simply-typed λ-calculus (see Hindley and
Seldin 2008 and Barendregt 1984 for details).

Section 3 illustrates how the formalism can be used to model lan-
guages. It presents a formalization of a fragment of language involving
several overlapping extraction phenomena. We start by defining the
set of abstract structures, then linearization rules are given that pro-
duce from those abstract structures phonological realizations for En-
glish, German, and Dutch, and Montagovian semantic representations.
In order to clarify the behaviour of the formalism, the section finishes
with a detailed example of an intricate sentence involving many of the
phenomena we treat.

The article concludes by summarizing the contributions of the
paper and discussing the approach and future work.

2 formalism

We will now give an exhaustive definition of the formalism and dis-
cuss its underlying linguistic motivations. For the sake of clarity, we
exemplify the definitions by means of a toy grammar.

We are first going to explain how we wish to model the trees that
represent deep structures of languages.
2.1 Abstract structure
Instead of being treated as ranked labelled trees, the abstract struc-
tures will be depicted as labelled trees with labelled edges. From a
formal point of view this causes no real difficulty as the two presenta-
tions of trees can be seen as isomorphic. Nevertheless, from the point
of view of grammar design, it is helpful to handle the argument struc-
ture of a given syntactic construction by means of names that reflect
syntactic functions rather than the relative position of arguments. This

[92]

A logical approach to grammar description

simple choice also makes it more transparent that in ACGs the left-to-
right ordering of arguments in the abstract structure does not reflect
the word order of their realization in the surface structure. As we will
see, for technical convenience, the trees will have two kinds of leaves:
lexical entries and the empty leaf ⊥.

Lexical entries
The set of lexical entries, or vocabulary, is a set of words along with
their properties, as in Table 1. These properties are a set of constants
which will represent either a part-of-speech (POS) that governs how
lexical entries may be used locally, or some additional syntactic infor-
mation (like subcategorization, selection restrictions, etc.) that is used
to restrict the contexts in which lexical entries may be used. Examples
of such properties could be: proper noun, noun, determiner, verb (POS)
or intransitive, transitive. Nevertheless, as long as the lexical entries are
unambiguously determined by the words they specify, we shall use
those very words in place of the lexical entries as a short-hand in the
trees we use as examples. Formally, we fix a finite set of words W and
a finite set of properties P. A vocabulary is then a set of pairs (w,Q)
where w ∈W and Q ⊆ P.

John proper noun
Mary proper noun
man noun

a determiner
walks verb, intransitive
loves verb, transitive

Table 1:
Vocabulary example

In all of our examples, apart from the leaves, the nodes of the
trees will not be labelled; it is nevertheless important to notice that, if
linguistic descriptions require it, the methodology we propose extends
with no difficulty to trees with labelled internal nodes. The relation
between a node and its child shall be labelled; the labels we use in
this example are: head, subj, obj, det. We assume that for every inter-
nal node v of a tree and every label lbl, v has a child u and the edge
between v and u has the label lbl. Nevertheless, when u is a leaf la-
belled ⊥, we shall not draw it in the picture representations of trees.
These technical assumptions are made so as to have a clean treatment
of optional constructions of nodes in regular tree grammars and in

[93]

Lionel Clément et al.

logical constraints. These optional constructions are interesting when
one seeks concision. Figure 1 shows both a complete tree and the way
we draw it.

Figure 1:
Tree logical structure and

tree drawing examples

..•.

walks

.

head
.

John

.

sub
j

.

⊥

.

obj

.

⊥

.
det ..•.

walks

.

hea
d

.

John

. subj

To make it clear that the trees we use are just a variant of the
notation of the ranked trees, we explain how to represent the trees we
use as ranked trees. For this, it suffices to fix an arbitrary total order on
the set of labels and to define term constructors that consist in subsets
S of labels whose arity is the cardinal of S. Then the kth argument of
the constructor S represents the child with the kth label in S according
to the fixed order of labels. For example, fixing a total order where
the label head precedes the label subj, the term representation of the
tree in Figure 1 is {head, subj} walks John.

Formally, given a finite set of edge labels Σ, we define a tree do-
main dom(t) as being a non-empty finite subset of Σ∗, that is prefix-
closed and so that if for a in Σ, ua is in dom(t), then for each b in Σ,
ub is in dom(t). Given a tree domain dom(t), we write dom(t) for the
set of longest strings in dom(t). The elements of dom(t) are the posi-
tions that correspond to leaves in the tree domain. Given a finite set of
labels Λ, a tree t is a pair (dom(t), lbl : dom(t)→ Λ∪ {⊥}).1 The set Λ
of labels shall be the vocabulary, while Σ shall be the set of syntactic
functions.

Logical definition of abstract languages
We have now settled the class of objects that will serve as elements of
our abstract language. We then lay out how the set of valid abstract
structures is defined, that is how we specify which abstract structures
are the syntactically correct ones.

This process will be carried on by logic, in the sense that the set of
valid abstract structures will be the set of all trees that satisfy some log-
ical constraints. Provided that the logic expressing those constraints is

1Of course, we assume that ⊥ is not an element of Λ.

[94]

A logical approach to grammar description

kept simple enough, the resulting abstract language will be both suit-
ably structured and concisely described, while being recognizable by
a finite state automaton.

In order to satisfy this last condition, we shall restrict our atten-
tion to the class of logical languages that only define regular tree lan-
guages. There are several reasons for this. First of all, it is easy to
represent the run of a tree automaton as the abstract language of a
2-ACG, and, therefore, logical constraints that only define regular lan-
guages can be compiled as abstract languages of 2-ACGs. Second, those
logics have decidable satisfiability problems and thus it is in principle
possible to automatically check the coherence of a set of constraints
or check whether valid abstract structures satisfy a given property.
Moreover, neither of those properties are preserved in general when
considering more powerful logics. Finally, it seems that linguistic con-
straints do not need extra logical power. The most expressive and con-
cise logic that is known in this class is Monadic Second-Order Logic
(MSOL), but various kinds of first-order or modal logics may suit very
well the needs of linguistics.

The logical language
We define a first-order logical language that we believe is a good can-
didate for describing the linguistically relevant properties of abstract
structures. The set of well-formed formulae in this logic is defined
in the usual way for first-order logic, with the conventional connec-
tives (¬,∧,∨,⇒,⇔,∃,∀) and first-order variables (x , y, z, . . .) that will
be interpreted as positions in the tree. Then, atomic formulae will be
based on the following predicates and relations.

First, we assume that we have been given a vocabulary such as
the one in Table 1 that uses the finite set of properties P. Each el-
ement p of P (listed on the right in the tables representing vocab-
ularies) will correspond to a unary predicate p(x) in our logic. By
definition, such a predicate p will be true if and only if x is the po-
sition of a leaf in the tree that is labelled by a lexical entry contain-
ing p in its list of properties. From a linguistic point of view, those
predicates allow us to talk about the lexical properties of words and
ensure that the sentence structure is in accordance with those prop-
erties (which can be used to deal with agreement, verb valency, con-
trol, etc.).

[95]

Lionel Clément et al.

Then, we add another predicate noted none(x) which is true if
and only if x is a leaf labelled with ⊥. This will be particularly use-
ful in the case of optional arguments. This predicate will enable us
to condition the presence or the absence of an argument with re-
spect to the context. We shall also write some(x) as a short-hand for
¬none(x).

Since we have decided to leave the internal nodes of the tree
unlabelled, no additional single-argument predicate is required. Had
we chosen to add linguistic information to internal nodes, we could
have introduced a set of corresponding predicates to take this infor-
mation into account when defining the set of valid abstract struc-
tures.

Finally, we add a countable set of binary relations that express
properties about paths between nodes. This set is defined as the set
of all regular expressions over the alphabet of argument labels. If we
assume that the set of argument labels is Σ, then regular expressions
are defined inductively with the following grammar:

reg ::= ϵ | Σ | (reg+ reg) | reg reg | (reg)∗

The language denoted by a regular expression is defined as usual (ϵ
denoting the empty word). We shall also take the liberty of dropping
useless parentheses. Let e be such a regular expression, we write L(e)
for the language defined by e. Then e(x , y) is a well-formed formula
that is true if and only if x is an ancestor of y and the (possibly empty)
sequence of edge labels li on the path between x and y induces a
word w = l1 . . . ln such that w ∈ L(e). This set of relations could also
be obtained indirectly, by using the more usual finite set of successor
relations and either adding a transitive closure operator to first-order
logic or using the full power of Monadic Second-Order Logic. In either
case, this set of relations is intended to enable the description of long-
distance phenomena in sentences (as, for example, wh-movement). In
order to shorten some formulae, we also add the following relation
notation: e1 ↑ e2(x , y) which is true if and only if the lowest common
ancestor z of x and y is such that e1(z, x) and e2(z, y). We also use the
shorthand any to denote any element of Σ. Notice that the relation
e1 ↑ e2(x , y) can indeed be expressed as:
∃z.e1(z, x)∧ e2(z, y)∧∀z′.

�any∗(z′, x)∧ any∗(z′, y)
�⇒ any∗(z′, z)

[96]

A logical approach to grammar description

Formally, given a tree t = (dom(t), lbl), a formula φ, and a val-
uation ν that maps the free variables of φ to elements of dom(t) we
define the validity relation t,ν |= φ by induction on φ:2

• t,ν |= true is always correct,
• t,ν |= p(x) iff ν(x) is in dom(t) and lbl(ν(x)) = (w,Q) with p ∈Q,
• t,ν |= none(x) iff ν(x) is in dom(t) and lbl(ν(x)) =⊥,
• t,ν |= e(x , y) iff ν(x) = w1, ν(y) = w1w2, and w2 ∈ L(e) for some

w1 and w2 in dom(t),
• t,ν |= φ ∨ψ iff t,ν |= φ or t,ν |=ψ,
• t,ν, |= ¬φ iff it is not the case that t,ν |= φ,
• t,ν |= ∃x .φ iff there is u in dom(t) so that t,ν[x ← u] |= φ, where
ν[x ← u] is the valuation that maps every variable y different
from x to ν(y) and maps x to u.

Regular over-approximation of abstract structures
Though we believe that the class of logical formulae described above
constitutes a powerful tool to describe the abstract structures of human
languages, we also think that the recursive shape of these structures
can be expressed by simpler and more concise means. Hence, we sug-
gest to use regular tree grammars to provide an over-approximation of
the intended abstract language, and then refine this sketch by adding
logical constraints on the grammar’s productions to filter out the un-
desired structures. Thus, we gain the ability to model the predicate-
argument structure in a more readable way. In general, the regular
grammar aims at modelling the recursive structure of natural lan-
guages while the constraints are meant to express relations between
constituents and to ensure that these relations satisfy the grammatical
constraints of the language.

This over-approximation is defined by means of a regular tree
grammar. Figure 2 gives such a grammar as an example. Note that
some non-terminals may occur between parentheses in the right-hand
sides of some rules. The intended meaning is that they are optional:
given a non-terminal X , we may think of (X) as a non-terminal that can

2We only treat the connectives ∃, ∨, and ¬ which are sufficient to express all
the other logical connectives.

[97]

Lionel Clément et al.

be rewritten to either X or ⊥. Other non-terminals are simply prop-
erties of lexical entries (one could also use sets of properties), these
non-terminals may be rewritten to any lexical entry which contains
this property in its list of properties.

This over-approximation simply puts in place the definitions of
linguistic syntagmas so as to model the hierarchical structure of lan-
guage constructs. From the perspective of grammatical design, such
an over-approximation should be based on high-level linguistic con-
siderations and only take care of simple local constraints, accounting
for the universals of language, or for the common features of a given
family of languages. In particular, it should only use the broadest and
simplest lexical properties, such as parts-of-speech.

Figure 2:
Over-approximating

regular tree grammar
example

..p1 : S −→ .•.

verb

.

hea
d

.

A

.
subj

.

(A)

.
obj

..p2 : A−→ .•.

noun

.

hea
d

.

determiner

.

det

p3 : A−→ proper noun

Constraining the regular productions
We now describe how the logical language will be used to refine the
regular tree grammar productions that over-approximate the language
of abstract structures.

The general idea is that one or several logical formulae can be
attached to each production rule of the regular grammar. For this,
some nodes on the right-hand sides of rules are tagged with pair-
wise distinct variables (see Figure 3), and the rules are paired with
a set of formulae whose free variables range over the variables that
tag their right-hand sides. Now when a rule is used in the course
of a derivation, the nodes it creates are constrained by the logi-
cal formula paired with the rule. Thus, once a derivation is com-
pleted, the resulting tree is considered valid only when it satisfies
all the constraints that have been introduced in the course of the
derivation.

Let us consider Figure 3 as an example: the first production p1 of
our toy grammar is now tagged with two variables respectively named

[98]

A logical approach to grammar description

..p1 : S −→ .•.

verb : v

.

hea
d

.

A

.

subj

.

(A) : o

.

obj

some(o)⇒ transitive(v)
none(o)⇒ intransitive(v)

Figure 3:
Labelled production rule
with logical guards

v and o and which respectively designate the head and obj arguments
of the root node. These labels are indicated after colons at the position
that they correspond to. Below the rewrite rule is a list of logical con-
straints that deal with verb valency, and the logical formula φ(v, o)
that the final abstract tree must satisfy is implicitly taken to be the
conjunction of those two constraints.

We now give a formal definition of what it means for a tree to be
valid. A derivation is seen as generating a triple (t,ν,φ) where t is a
tree, φ a logical formula, and ν a valuation of the free variables of φ
in dom(t). The rules of the grammar act on these triples as follows:
if (t,ν,φ) is such that at the position u, t has a leaf labelled with
the non-terminal A and if there is a rule that rewrites A into s with
the constraints φ1(x1, . . . , xn), . . . ,φp(x1, . . . , xn), then (t,ν,φ) rewrites
into

(t ′,ν′,φ ∧φ1(x
′
1, . . . , x ′n)∧ · · · ∧φp(x

′
1, . . . , x ′n))

where:
• t ′ is obtained from t by replacing the occurrence of A at the posi-
tion u by s,

• x ′1, . . . , x ′n are fresh variables,
• ν′ is the valuation that maps every variable x distinct from the

x ′i ’s to ν(x) and that maps each variable x ′i , to uui when ui is the
position of the node that is tagged with x i in s.

Now, a tree t that does not contain any occurrence of a non-terminal is
valid when, with ; being the empty valuation and S being the starting
symbol of the regular grammar, (S,;, true) rewrites (in any number of
steps) to (t,ν,φ), so that t,ν |= φ. We shall call language or set of valid

[99]

Lionel Clément et al.

trees the set of trees that are generated by the regular grammar and
satisfy the logical constraints.

Compilation of logical constraints
We are going to show here that the set of valid trees, i.e. the trees
generated by the regular grammar that satisfy the logical constraints,
is also a regular set. Actually, since we restricted ourselves to a logical
language weaker than MSOL, the constraints can be seen as a sort of
regular “look-around” for the regular grammar which explains why
the valid trees form a regular language. We outline here a construc-
tion that defines effectively the language of valid trees as a regular
language. This construction is going to be at a rather high-level and
is mainly meant to convince the reader that the set of valid trees is
indeed regular.

In order to simplify the construction, we first transform the set
of constraints associated with rules that bear on several nodes in the
right-hand side of a rule into a unique constraint that bears on the root
node of the right-hand side. For this, if φ1(x1, . . . , xn), . . . ,φp(x1, . . . , xn)
is the set of constraints that are associated with a production r, then
there is a unique path labelled with the word ei that leads from the
root of the tree in the right-hand side of r to the node labelled x i,
and then, for the nodes labelled x1, . . . , xn, to satisfy the constraints
φ1(x1, . . . , xn), . . . ,φp(x1, . . . , xn) is equivalent to the root satisfying the
unique constraint:

ψr(x) = ∃x1, . . . , xn.e1(x , x1)∧ · · · ∧ en(x , xn)∧
p∧

i=1

φi(x1 . . . , xn)

Thus, for the construction we are going to present, we assume
that each rule has a unique constraint that bears on the root of
its right-hand side. Given such a grammar G, we first remark that
the set F of constraints used in rules is finite. We then construct
a grammar G′ so that each node of G′ is labelled with the set of
constraints included in F that it needs to satisfy. Hence, in the
trees generated by G′, sets of formulae are labels of internal nodes.
We extend our logical language with predicates that reify those la-
bels. Thus, given a set of formulae S included in F we define a
unary predicate [S](x) that holds true on nodes x that are labelled
with S. The predicates used to define the constraint language keep

[100]

A logical approach to grammar description

their former meaning. We can now define a formula valid as fol-
lows:

valid ::=
∧

S ⊆ F

�
∀x .[S](x)⇒ ∧

φ(x) ∈ S

φ(x)

�
As valid is a constraint that is definable in the logical language we have
introduced which in turn can be represented in Monadic Second-Order
Logic, the set of trees that satisfy this constraint is regular. Thus, the
set V of trees generated by G′ that satisfy valid, being the intersection
of two regular sets, is also regular. Now, the set of valid trees of G is
precisely the set of trees in V where the labels of internal nodes have
been erased. As regular languages are closed under relabelling, this
explains why the set of valid trees is regular.

Let us now briefly sketch how G′ is constructed. Its non-terminals
are pairs (A, S) so that A is a non-terminal of G and S is included in
F . Each rule r of G of the form A → t with constraint φ(x) on its
root is mapped to a rule (A, S) → t ′ of G′ so that if t is reduced to a
non-terminal B, then t ′ is (B, S ∪ {φ(x)}); if t is not reduced to a non-
terminal, then t ′ is the tree t where the occurrences of non-terminals
B of G are replaced by the non-terminals (B,;) of G′ and the root of t ′
is labelled with the set of formulae S ∪ {φ(x)}. This transformation is
illustrated in Figure 4.

..r : A−→ .• : x.

B1

.

lbl
1

.

. . .

.

...

.

Bn

.

lbln

φ(x)

−→

..r ′ : (A, S) −→ .S ∪ {φ(x)}.

(B1,;)

.

lbl
1

.

. . .

.

...

.

(Bn,;)

.

lbln

Figure 4:
Transformation of a rule
in G into rules of G′

2.2 The linearization process
We are now going to explain how we intend to linearize the accepted
sentences, by describing mappings from the set of valid abstract struc-
tures to various languages of surface realizations, which may either

[101]

Lionel Clément et al.

represent the actual sequence of words, or the semantic interpreta-
tion of the sentence, or any other structure of interest. Since we have
elected to work within the framework of second order ACGs, lineariza-
tions can be seen as high-level specifications of lexicons (in the sense of
abstract categorial grammars), that is to say morphisms from the trees
that belong to the abstract language to simply typed λ-terms of a spe-
cific object language. The signature upon which we build the simply
typed λ-terms of the object language may vary, but we give here some
straightforward examples of target languages for our toy grammar. We
assume that the reader is familiar with simply typed λ-calculus (see
Hindley and Seldin (2008) and Barendregt (1984) for more details),
and contrary to what is usual in ACG, we also use product types, that is
the ability to use typed pairs and the related projections in the calcu-
lus. It is well-known that this does not increase the expressive power
of ACGs, but these constructs are often convenient and intuitive.

Surface structures
When mapping abstract structures to surface structures of a language
(English, German, and Dutch in this paper), we assume that we can
freely handle sequences of words within simply typed λ-calculus (a
canonical encoding of those sequences is given by de Groote (2001)).

When dealing with mapping abstract structures to meaning rep-
resentations, we build an appropriate signature for Montague-style
semantics with atomic types that denote propositions (p) and entities
(e) and a set of constants that include the usual logical connectives
(Lp→p,

Vp→p→p, E(e→p)→p,etc.). We add additional constants for verb
predicates (walkse→p, lovese→e→p) and actual entities (Johne, Marye). No-
tice that to avoid confusion between the logical formula we use for
syntax from the logical formula representing truth-conditions in Mon-
tague semantics, we use a different font for the connectives of the two
logical languages. There are many other choices of signatures and
constants for semantic representation, depending on which theory of
semantic representation one adheres to. Nevertheless, any set of for-
mulae that can be adequately represented by terms of a 2-ACG’s object
language may be used for semantic representation in this formalism.

[102]

A logical approach to grammar description

The linearization process
The mapping between abstract structures and surface structures is de-
fined by associating linearization rules with the production rules of the
regular grammar. This mapping is mediated by the analyses of abstract
structures by the regular grammar. Realizations are indeed associated
to parse trees of abstract structures in the regular grammar. Never-
theless, as we wish to guide the way realizations are computed with
logical constraints over abstract structures, we need to relate nodes
of parse trees to nodes in abstract structures. This relation is as fol-
lows: each node in the parse tree corresponds to the use of a rule.
Such a rule rewrites a non-terminal to a tree that occurs in the ab-
stract structure. As a convention, we associate the root of that tree with
the node in the parse tree. Notice that due to possible ε-rules in the
regular grammar, i.e. rules of the form A → B, where B is another
non-terminal, there may be several nodes in the parse trees that are
related to the same node in the abstract structure; there may also be
nodes in the abstract structure that are not related to any node in the
parse tree by our convention. This is simply because they are inner
nodes of some right-hand side of a rule. Observe also that when a
node in the abstract structure is related to several nodes in the parse
tree, all those nodes form a chain in the parse tree (all of them cor-
respond to an ε-rule) and they are thus totally ordered. Since, once
we have fixed a parse tree, it is convenient to associate realizations
with nodes in the abstract structure, we take the convention that the
realization of a node x ′ in the abstract structure is the realization of
the node x at the highest position in the parse structure that is re-
lated to x ′.

The realization of nodes in the parse tree may depend on several
parameters: (i) the realization of the other non-terminals that occur in
the right-hand side of the production, (ii) the context in which the rule
is used (for example the realization of German or Dutch subordinate
clauses differ from that of the main clause), (iii) the realization of
nodes that appear elsewhere in the abstract structure, typically, this
shall be the case in the presence of wh-movement.

In order to take all those constraints into account, given a rule A→
t of the regular grammar, we tag the non-terminal A with a variable
x0 and assume that the non-terminals that occur in t are labelled with

[103]

Lionel Clément et al.

the variables x1, …, xn. Then the linearization rules are expressed as
a list of the form:

real(x0) ::= φ(x0, x1, . . . , xn, y1, . . . , ym)→
M[real(x1), . . . , real(xn), real(y1), . . . , real(ym)]

where M is a simply typed λ-term that is meant to combine the re-
alizations of the nodes denoted by x0, …, xn, y1, …, ym. The vari-
ables y1, . . . , ym are not tagging any node in the right-hand side of
the rule. The variables y1, . . . , ym represent nodes of a complete ab-
stract structure (i.e. nodes from the context in which the rule is used),
which makes the formula φ(x0, x1, . . . , xn, y1, . . . , ym) true in the ab-
stract structure (here x0 is interpreted as the node in the abstract tree
that is related to the use of the rule, i.e., by our convention, the root of
the subtree generated by the rule). In linearization rules, we shall call
internal variables those variables (the x i ’s) that are tagging the produc-
tion rules, while we shall call the other (the yi ’s) external variables. The
intendedmeaning of such a rule is that given nodes y1, . . . , ym in the ab-
stract structure so that φ(x0, x1, . . . , xn, y1, . . . , ym) holds true, if the re-
alizations of x1, . . . , xn, y1, . . . , ym respectively are real(x1), . . . , real(xn),
real(y1), . . . , real(ym) then the realization real(x0) of x0 is the (simply
typed) λ-term

M[real(x1), . . . , real(xn), real(y1), . . . , real(ym)] .

The realization of lexical entries needs to be explicitly given. For the
particular case of phonological realizations, we assume that each lexi-
cal entry is realized as the very word given by the entry. Then a realiza-
tion of a parse tree is a realization of its root. By extension, a realization
of an abstract structure is a realization of one of its parse trees.

Importantly, two different linearization rules need not use λ-
terms that have the same type. Indeed, depending on the context, a
rule may give rise to realizations that have distinct types. An example
of this is provided by the realizations of Dutch clauses depending on
whether they are relative clauses or main clauses: in the case of main
clauses, the realization is simply a string, while in the case of relative
clauses, the realization is a pair of strings so as to compute the cross
serial placement of arguments and verbs (see Section 3.1).

The use of external variables is motivated by the linguistic notion
of movement in syntax. Indeed, we shall see in Section 3 how to move

[104]

A logical approach to grammar description

a relative pronoun from its canonical place in the abstract structure to
its landing site in front of the linearization of a relative clause.

A priori, linearization rules associate non-deterministically a set
of realizations with a given parse tree of an abstract structure. In-
deed, there are two sources of non-determinism: (i) there may be sev-
eral linearization rules that may apply in a given node of the parse
tree, (ii) there may be several tuples y1, . . . , ym that make the formula
φ(x0, x1, . . . , xn, y1, . . . , ym) true. The use of non-determinism may be
of interest for linguistic models where some surface variation has no
incidence on the syntactic relations between the constituents like for
example the order of circumstantial clauses in French.

..S : c −→ .•.

verb : v

.

hea
d

.

A : s

.

subj

.

(A) : o

.

obj

c :=
transitive(v) −→ s v o

intransitive(v) −→ s v

Figure 5:
Example of a guided
linearization

Figure 5 gives an example of a linearization rule. This rule, as
most of the rules we shall meet later, does not use external variables.
To make the writing of rules shorter, we shall write realizations in the
teletype font, that is, v,s,o instead of real(v), real(s), real(o).

It is worthwhile to notice that the presence of external variables
can be problematic for realizations. Indeed, using this mechanism, it
is not hard to realize two nodes x and y so that the realization of x
depends on that of y and vice versa. In such a case we assume that
the realization is ill-formed and do not consider it. In the linguistic
examples we have considered so far, this situation has never arisen as
the external variables y1, . . . , ym on which the realization of a node x
depends are always strictly dominated by that node x . Nevertheless,
from a theoretical point of view, we show in the discussion at the end
of the section that the situations giving rise to circular definitions can
be filtered out with usual finite state automata techniques.

We now give a formal definition of what it means for an abstract
structure t to be realized by a term M . For the sake of simplicity and
without loss of generality (as we have seen in Section 2.1, page 100),

[105]

Lionel Clément et al.

we assume that the grammars we use have constraints that bear only
on the root of the right-hand sides of rules. Thus, given a constrained
grammar with linearization rules, such a grammar generates 5-tuples
(E, V, t,ν,φ) where:

• t is a tree,
• φ is a logical formula,
• ν is a valuation of some of the free variables of φ in dom(t),
• V is a function from the positions of t which are labelled with
non-terminals to variables that are free in φ,

• E is a deterministic grammar (i.e. each of its non-terminals can be
rewritten with at most one rule) whose non-terminals are the free
variables in φ; the rules of the grammar rewrite non-terminals to
λ-terms (that may contain occurrences of non-terminals). More-
over, the variables occurring in the right-hand sides of rules but
not in the left-hand sides are either variables that are mapped to
a position of a non-terminal in t by V , or which are not in the
domain of ν (i.e. external variables).

As we have defined valid abstract structures, t is the abstract structure
being produced, φ is a logical formula that the completely derived tree
needs to verify. The valuation ν is a bit different from the definition of
valid abstract structures in that it does not map every variable that is
free in φ to a node in t. This is due to the external variables that need
to be found once the derivation is completed.

The other elements of the tuple, namely E and V , are there to
construct a parse tree and maintain the relation between the nodes of
the parse tree and the nodes of t, respecting the convention we spelled
out earlier. The unique derivation of E actually represents the parse
tree being constructed, while its rewriting rules contain the necessary
information to construct the realization. The function V maps the non-
terminals occurring in t to variables that shall later be used in the
construction of E once they are rewritten. The relation between the
nodes in the parse tree and the nodes in the abstract tree is maintained
by ν via the use of variables: a variable x that is a non-terminal in E
represents the use of a rule (i.e. a node in the parse tree) which is
related to the node ν(x) of t. The role of V is to permit the extension
of the relation in the course of the derivation.

[106]

A logical approach to grammar description

Let us now see how this works. A rule of the grammar such as the
one given in Figure 6 can act on such a tuple. Let us consider a tree t
that has an occurrence of the non-terminal A at position u. Then a rule
of the form A→ s can rewrite a tuple (E, V, t,ν,φ) into

(E′, V ′, t ′,ν′,φ ∧ψ(x ′0)∧ψk(x
′
0, . . . , x ′n, y ′1, . . . , y ′m))

where:
• t ′ is obtained from t by replacing the occurrence of A at position

u by s,
• x ′0 = V (u),
• x ′1, …, x ′n, y ′1, …, y ′m are fresh variables,
• ν′ is the valuation that maps every variable x distinct from the

x ′i ’s (i ̸= 0) and the y ′j ’s to ν(x) and that maps each variable x ′i ,
with 1 ≤ i ≤ n, to uli when li is the position of the node that is
tagged with x i in s,

• 1 ≤ k ≤ p, is the index of the possible realization chosen for the
rule; it corresponds to the choice of a formulaψk(x0 . . . xn, y1 . . . ym)
and the corresponding realization Mk,

• V ′ is equal to V for positions different from ul1, …, uln and
V ′(uli) = x ′i for 1≤ i ≤ n,

• E′ is E to which we add the rule x ′0→ M ′k and where M ′k is obtained
from Mk by respectively substituting x ′1, …, x ′n, y ′1, …, y ′m for x1,
…, xn, y1, …, ym.

..A−→ .• : x0

.

A1 : x1

.
l 1

.

. . .

.

...

.

An : xn

.
ln

ψ(x0 . . . xn)

x0 :=

ψ1(x0 . . . xn, y1 . . . ym) −→ M1...
ψp(x0 . . . xn, y1 . . . ym) −→ Mp

(Where the free variables in M1 . . .Mp are x1 . . .xn y1 . . .ym.)

Figure 6:
Constrained production
with its associated
linearization rule

[107]

Lionel Clément et al.

A rule A→ w that rewrites a non-terminal into a lexical entry w, as-
suming that this lexical entry is associated with the realization w, can
rewrite (E, V, t,ν,φ) into (E′, V, t ′,ν,φ) where:

• t ′ is obtained by replacing the occurrence of the non-terminal A
at the position u by w,

• E′ is the grammar obtained from E by adding the rule x → w if
V (u) = x .
A complete derivation is a derivation such that (;, (ϵ, x), S,;, true)

rewrites in several steps into (E, V, t,ν,φ), where t does not contain
any occurrence of a non-terminal. The rules of E define a unique term,
but this term may be not well-typed, or it may contain some free vari-
ables due to the external variables of some rule used in the course of
the derivation. In the first case, we consider the derivation as invalid,
in the second case, we need to give a meaning to the free variables of
the term defined by E.

For this, we need a valuation ν′ that extends ν bymapping the free
variables of φ for which ν is undefined to ν(dom(E)), where dom(E) is
the set of variables that are non-terminals of E. Thus ν′ extends ν by
mapping the external variables to nodes of t which are related to some
node in the parse tree implicitly represented by E. Moreover, ν′ need
to be such that t,ν′ |= φ. Notice that, in particular, this forces t to be
a valid tree of the underlying regular grammar of abstract structures,
as φ contains as one of its conjuncts the formula that t should satisfy
in order to be valid. Now that ν′ is given, we may assign a semantics
to the free variables in the term defined by E. For this, we follow our
convention, by associating with an external variable y the realization
of the node ν(y). Technically, it suffices to remark that, as E is a deter-
ministic grammar, its rules induce a partial order on the non-terminals
of E. Using this partial order, we replace each occurrence of a param-
eter y by the maximal non-terminal x in E so that ν′(x) = ν′(y). If
we do this for each parameter y, we obtain a deterministic grammar
E′; if this grammar defines a finite well-typed term, this term must be
unique and we call it realization of (E, V, t,ν,φ). Nevertheless, E′ may
not define any finite term due to circular definitions, and it may also
define badly typed terms.

Thus, in a nutshell, given the result (E, V, t,ν,φ) of a complete
derivation, its set of realizations M is given by every extension ν′ so that

[108]

A logical approach to grammar description

t,ν′ |= φ, so that the grammar E′ that ν′ induces defines the well-typed
term M ′, whose normal form is M . Notice that, with this definition, a
non-valid tree has an empty set of realizations.

More abstractly, we may see the linearization process as a Mo-
nadic Second-Order transduction (MSO-transduction) in the sense of
Courcelle (1994) that turns the parse tree of a valid tree into a Di-
rected Acyclic Graph (DAG) whose nodes are labelled with λ-terms.
Then we take the unfolding of this DAG into a tree which can then
be seen as a λ-term. The final step consists in β-normalizing this term
provided it is well-typed. Courcelle and Engelfriet (1995) (see also
Courcelle and Engelfriet 2012 for a more recent presentation of that
result) showed that the class of languages definable with Hyperedge
Replacement Grammars (HRG) is closed under MSO-transductions. As
regular languages can easily be represented as HRGs, this shows that
the language of DAGs output by the linearization process is definable
by a Hyperedge Replacement Grammar (HRGs). Moreover, as shown
by Engelfriet and Heyker (1992), the tree languages that are unfold-
ings of DAG languages definable with HRGs are output languages of
attribute grammars, which in turn can be seen as almost linear 2-ACGs
as showed by Kanazawa (2011, 2009). Thus, taking another homomor-
phism yields in general a non-linear 2-ACG. Nevertheless, when mod-
elling the phonological realizations, we expect that the language we
obtain is a linear 2-ACG. It is worthwhile to notice that the acyclicity
of a graph is a definable property in MSO, and also that the well-typing
of a tree labelled by λ-terms is MSO definable as well. Moreover, the
translation of the linearization rules into a 2-ACG is such that the ab-
stract syntactic structure can be read from the derivation trees of the
2-ACG we obtain with a simple relabelling. Indeed, when we showed
how to construct a regular grammar recognizing the set of valid ab-
stract structures, the abstract language of the 2-ACG was obtained by
enriching the derivation trees of the regular grammar with informa-
tion about the states of the automata corresponding to the logical for-
mula or to the typing constraints. Therefore, the regular grammar with
constraints and linearization rules can be effectively compiled into a
2-ACG. It is worthwhile to notice that the compiled grammar may be
much larger than the original description.

[109]

Lionel Clément et al.

Handling optional arguments
We have proposed earlier to use (A) in regular tree productions to
denote that an argument A is optional. Such an optional argument is
then taken as a non-terminal that can rewrite into either A or ⊥. When
defining a linearization, the realization of (A) is taken to be that of
the symbol that it rewrites to. We will set some default value as the
realization of ⊥, so that the realization of an empty argument is well
defined.

For instance, in the example described by Figure 5, a sensible
value for ⊥ is the empty string ϵ. With this default value, we may
simply have one linearization rule c := true −→ s v o. Thus, when
the verb is intransitive, the constraints we have put on the valid trees
imply that the obj argument in the tree must be ⊥. Taking the empty
string as a default value, we get s v o = s v, which is the expected
realization of an intransitive verb clause.

We can choose to provide each optional argument with its own
default values, depending on what we consider a sensible realization
of an empty optional argument. We could also conceivably associate
a value with ⊥ that depends on its context in a stronger way, by using
logical formulae. However, we have not found it useful in the mod-
els we have worked on; therefore, the linearization of optional argu-
ments will only be ϵ for phonological linearizations, and a semanti-
cally empty argument when linearizing towards a sentence meaning
representation.

Additional macro syntax
The main goal of our approach is concision. To avoid redundancy in
linearization rules, we introduce a syntactic mechanism that factors
out some redundant constructions. Indeed, the number of lineariza-
tion rules depend on the number of syntactic situations that may have
an influence on the form the linearization takes. This number can be
rather high, and just listing the situations may give the impression
that one misses obvious generalizations, or structural dependencies
between various cases.

The mechanism we propose to cope with this problem tries to give
more structure to linearization rules. Mainly this mechanism is a form
of simply typed λ-calculus designed to manipulate the linearization

[110]

A logical approach to grammar description

rules. This calculus is parametrized with a finite set of variables X
of the syntactic logical language. We write FO[X] as a shorthand for
the set of logical formulae whose set of free variables is included in
X . The set of types of the language is divided into two disjoint sets:
otypes and ωtypes. The set otypes is the set of simple types of the object
language (i.e. the target language of the linearization) and ωtypes are
types of the form A1→ · · · → An→ω, whereω is an atomic type that is
distinct from the atomic types used in otypes and A1, …, An are otypes.
As we have seen, one of the features of the linearization mechanism is
that, depending on the context, the type of the realization may vary.
Thus, in general, linearization rules are objects of the form [φ1 −→
M1, . . . ,φn −→ Mn], where M1, . . . ,Mn are terms that may have different
types. The atomic type ω is meant to type these objects.

The set of terms of the language, TA,X , is thus indexed with two
parameters: A is either an otypes or an ωtypes and X is the set of vari-
ables that are allowed to be free in the logical formula. The sets TA,X

are inductively defined as follows:
• for A in otypes, xA is in TA,X ,
• if M and N are respectively in TA→B,X and in TA,X , then MN is in
TB,X ,

• if M is in TB,X and A is in otypes then λxA.M is in TA→B,X ,
• if M1, . . . , Mn are all in TA,X with A in otypes and φ1, . . . ,φn are all
in FO[X], then [φ1 −→ M1, · · ·φn −→ Mn] is in TA,X ,

• if M1, . . . , Mn are respectively in TA1,X , . . . ,TAn,X with the A1, . . . , An

either being equal to ω or being in otypes, then and φ1, . . . ,φn are
all in FO[X], then [φ1 −→ M1, · · · ,φn −→ Mn] is in Tω,X .

We adopt a call-by-value operational semantics for this language: as
for IO languages (see Kobele and Salvati 2013), the notion of value
coincides with that of the normal form. For this we need the notion
of pure terms, that is λ-terms which contain no construct of the form
[φ1 −→ M1, · · · ,φn −→ Mn]. We shall denote pure terms in β-normal
form with V , possibly with indices. A term is said to be in the normal
form either when it is a pure term in the β-normal form, or when it
is a term of the form [φ1 −→ M1, . . . ,φn −→ Mn], where M1, . . . , Mn

are pure terms in the β-normal form. From now on we shall write W ,
possibly with indices, for terms that are values, that is terms in normal

[111]

Lionel Clément et al.

form. The computational rules of the calculus are as follows (M[V/x]
denotes the capture-avoiding substitution of V for the free occurrences
of x in M):

• (λx .M)V → M[V/x],
• (λx .M)[φ1 −→ V1, . . . ,φn −→ Vn]→

[φ1 −→ M[V1/x], . . . ,φn −→ M[Vn/x]],
• [φ1 −→ M1, . . . ,φn −→ Mn]W → [φ1 −→ M1W, . . . ,φn −→ MnW],
• λx .[φ1 −→ V1, . . . ,φn −→ Vn]→ [φ1 −→ λx .V1, . . . ,φn −→ λx .Vn],
• V [φ1 −→ V1, . . . ,φn −→ Vn]→ [φ1 −→ V V1, . . . ,φn −→ V Vn] when

V is not a λ-abstraction,
• [φ1 −→ M1, . . . ,φk −→ [ψ1 −→ V1, . . . ,ψn −→ Vn],

. . . ,φm −→ Mm]→
[φ1 −→ M1, . . . ,φk ∧ψ1 −→ V1, . . . ,φk ∧ψn −→ Vn, . . . ,φm −→ Mm].

The strong normalization of the simply typed λ-calculus induces the
fact that computations in that calculus are terminating. The subject re-
duction property (the fact that the types of terms are invariant under re-
duction) is also inherited from the simply typed λ-calculus. We adopt
in general a right-most reduction strategy which consists in rewriting
the redex that is at the furthest right position in the term. This imple-
ments a call-by-value semantics for this language.

Finally, in the rest of the paper, we shall adopt some slight vari-
ation on the syntax of the language. In particular, we shall omit the
typing annotations most of the time. We shall also write structures
like [φ1 −→ M1, . . . ,φn −→ Mn] as column vectors in which we omit
the ’,’ comma separator. We may also omit the square brackets or only
put the left one to lighten the notation. We may write M where x1 =
M1 and . . . and xn = Mn in place of (λx1 . . . xn.M)M1 . . . Mn. Another
abbreviation consists in simply writing M for [true −→ M]. Finally
when we write [φ1 −→ M1, . . . ,φn −→ Mn, else −→ M]we mean [φ1 −→
M1, . . . ,φn −→ Mn,¬φ1 ∧ · · · ∧ ¬φn −→ M]. Examples of this notation
are used all along the next section.

[112]

A logical approach to grammar description

3 illustration

3.1 Synchronous grammar
We now illustrate the formalism we have introduced in the previous
section by constructing a more complex grammar. This grammar will
provide a superficial cover of several overlapping phenomena. It cov-
ers verbal clauses with subject, direct object, and complement clause
arguments, taking into account verb valency. It also includes subject
and object control verbs, and modification of noun phrases by rela-
tive clauses, with a wh-movement account of relative pronouns that
takes island constraints into account. It also models a simplistic case
of agreement that only restricts the use of the relative pronoun that
to neuter antecedent. Linearization rules are provided that produce
phonological realizations for English, German, and Dutch, in order to
demonstrate the possibility of parametrizing the word order of real-
izations (including cross-serial ordering). Another set of linearization
rules produces Montague-style λ-terms that represent the meaning of
the covered sentences. Even though we have chosen our example so
as to avoid a complete coverage of agreement, we hope that the treat-
ment of that is illustrative enough to give a flavor of its rather straight-
forward extension to a realistic model of agreement.

Our goal when designing this grammar is to confront the method-
ology described so far against the task of dealing with the modeling
of several interacting phenomena, along with both their syntactic and
semantic linearizations, and evaluate the results in terms of expres-
siveness as well as concision.

Vocabulary
First, we construct a vocabulary for our grammar. The part-of-speech
properties we use are:

proper_noun, noun, pronoun, determiner, verb.
The other lexical properties are:

pro_rel, transitive, ctr_subj, ctr_obj, infinitive, masculine,
feminine, neuter

and designate respectively: relative pronouns, transitive verbs, subject
control, and object control verbs, verbs in infinitive form, and gender
marking.

[113]

Lionel Clément et al.
Table 2:
Excerpt

vocabulary
English German Dutch Semantic type Properties
lets lässt laat e→ e→ p→ p verb; ctr_obj; transitive
help helpen helfen e→ e→ p→ p verb; ctr_obj; transitive; infinitive
want willen wilen e→ p→ p verb; ctr_subj; infinitive
read lesen lezen e→ e→ p verb; transitive; infinitive
that das dat (e→ p)→ p pronoun;pro_rel;neuter
a ein een (e→ p)→ p determiner;neuter

book Buch boek e→ p noun;neuter
John Hans Jan e proper_noun;masculine
Mary Marie Marie e proper_noun; feminine
Ann Anna Anna e proper_noun; feminine

The vocabulary is summed up in Table 2. The table also gives the
expected phonological realizations of the individual lexical entries for
English, German, and Dutch, along with the type of their semantic re-
alization. Semantic types are based on e and p, which denote entities
and propositions (truth values), respectively. Abstract structure leaves
that are lexical entries will be written as their associated English real-
izations; and so will their semantic realizations, with the same type-
setting conventions we used previously: e.g. song (abstract structure
leaf) vs. song (semantic realization).

Regular over-approximation
We now present the regular grammar that over-approximates the set of
valid abstract structures. It contains three non-terminal symbols C , A,
and M . The start symbol C corresponds to independent or subordinate
clauses, A to noun phrases that are an argument of some clause, and
M to modifiers.

The labels used on the edges of abstract structures belong to the
list (head, subj,obj,arg_cl,det,mod) and designate respectively the head
of the (nominal or verbal) phrase, the nominal subject, the nominal
direct object, an additional complement clause of the verbal predicate,
the determiner in a noun phrase, and a modifier.

The production rules of the grammar are given in Figure 7. The
production p1 constructs a clause with a verb as its head, along with its
(optional) arguments; p2 recursively adds a modifier to an argument;
p3 through p5 build an argument as a noun phrase, respectively in the

[114]

A logical approach to grammar description
..p1 : C −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

..p2 : A−→ .•.

A : a

.
hea

d
.

M : m

. mod

..p3 : A−→ .•.

noun : n

.
hea

d
.

determiner : d

.
det

p4 : A−→ proper_noun : pn p5 : A−→ pronoun : p p6 : M −→ C : r

Figure 7:
Regular over-
approximation
of valid
sentences

form of a determiner/noun pair, a proper noun, and a pronoun; and
finally p6 constructs a modifier as a verbal clause. Note that the only
type of modifiers covered in the grammar are verbal clauses (which
we shall restrict to be relative clauses), but other could be added by
adding more productions that rewrite M as an adjective or a genitive
construct.

Defining linguistic notions
We now use the logical language to construct predicates that model
linguistic notions and relations. We shall use these relations both for
constraining the regular grammar and to guide the linearization pro-
cess. The predicates and relations we add are summed up in Table 3.

The first predicate recognizes a control verb which is simply a
verb that has the subject control or object control lexical property:

control_verb(v) := verb(v) ∧ (ctr_subj(v) ∨ ctr_obj(v))
The second predicate defines a clause as a subtree whose head is

a verb:
clause(cl) := ∃v.verb(v) ∧ head(cl, v)

Then, a controlled clause is a clause that serves as an argument
of a control verb:

controlled(ctd) := clause(ctd) ∧
∃ctr.control_verb(ctr) ∧ head ↑ arg_cl(ctr, ctd)

We construct another predicate to identify verbs that expect an
argument clause. In the context of our grammar, this is equivalent to

[115]

Lionel Clément et al.
Table 3:
Logical

predicates
modelling
linguistic
notions

control_verb(v) := verb(v) ∧ (ctr_subj(v) ∨ ctr_obj(v))
clause(vp) := ∃v.verb(v) ∧ head(vp, v)

controlled(ctd) := clause(ctd) ∧ ∃ctr.control_verb(ctr) ∧ head ↑ arg_cl(ctr, ctd)
clause_verb(v) := control_verb(v)

independent(icl) := clause(icl) ∧ ∀cl.clause(cl)⇒¬any+(cl, icl)
subordinate(scl) := clause(scl) ∧ ∃p.(mod+ arg_cl)(p, scl)

relative(rcl) := subordinate(rcl) ∧
∃hd.(noun(hd) ∨ proper_noun(hd)) ∧ head∗ ↑mod(hd, rcl)

ext_path(cl, p) := (subj+ arg_cl∗ obj)(cl, p)

ext_obj(obj) := pro_rel(obj) ∧ ∃cl.obj(cl, obj)

ext_suj(suj) := pro_rel(suj) ∧ ∃cl.subj(cl, suj)

ext_cl(cl) := ∃p.ext_path(cl, p) ∧ pro_rel(p)
gd_agr(x , y) := (masculine(x) ∧ masculine(y))

∨ (feminine(x) ∧ feminine(y))
∨ (neuter(x) ∧ neuter(y))

antecedent(ant,pro) := (noun(ant) ∨ proper_noun(ant)) ∧ pro_rel(pro)

∧ ∃rcl.relative(rcl) ∧ head∗ ↑mod(ant, rcl)

∧ ext_path(rcl, pro)

the verb being a (subject or object) control verb:
clause_verb(v) := control_verb(v)

This predicate could be extended to include verbs that expect other
forms of complement clauses besides the infinitival clauses associated
with control verbs.

The following predicates enable us to distinguish between differ-
ent types of clauses.

First, an independent clause is a clause that is not dominated
(through any non-empty sequence of edges) by any other clause:

independent(icl) := clause(icl) ∧ ∀cl.clause(cl)⇒¬any+(cl, icl)

By contrast, a subordinate clause is a clause that serves as a com-
plement or modifier:

subordinate(scl) := clause(scl) ∧ ∃p.(mod+ arg_cl)(p, scl)

[116]

A logical approach to grammar description

Then, a relative clause is a subordinate clause that modifies a
noun phrase (a subtree whose head is a common or proper noun):

relative(rcl) := subordinate(rcl) ∧
∃hd.(noun(hd) ∨ proper_noun(hd)) ∧
head∗ ↑mod(hd, rcl)

We then add a predicate to identify objects that undergo a wh-
movement (which we call extracted). This covers all relative pronouns
that fill an object role in a clause. We also provide a similar predi-
cate for extracted subjects, following the usual analysis of generative
grammars (Chomsky 1981):

ext_obj(obj) := pro_rel(obj) ∧ ∃cl.obj(cl, obj)

ext_suj(suj) := pro_rel(suj) ∧ ∃cl.subj(cl, suj)

Next, we add a relation that links an insertion site and its corre-
sponding extraction site, taking into account island constraints as de-
fined by Ross (1967). We recall that, in the generative tradition, the
extraction site is the position at which a wh-word would be realized
given its syntactic role according to the canonical word order of a lan-
guage. By contrast, the insertion site corresponds to its actual position
in the sentence. In our grammar, complying with island constraints
means that only arg_cl edges are allowed for traversal before we reach
a distant extracted object:

ext_path(cl, p) := (subj+ arg_cl∗ obj)(cl, p)

Using this relation, we define another predicate, which denotes
that a complement clause contains an extraction of some form; this
corresponds to the clause containing a relative pronoun at the end of
a valid extraction path:

ext_cl(cl) := ∃p.ext_path(cl, p) ∧ pro_rel(p)

Note that the straightforward definition of ext_pathwe have given does
not, purposefully, guarantee that the first position given is an inser-
tion site, nor that the second one is an extraction site. It simply ensures
that island constraints are not violated for long-distance extractions in
the context of our grammar. However, since we are only going to use

[117]

Lionel Clément et al.

it in contexts where both its arguments must satisfy the other prereq-
uisites for wh-movement, this simple definition will be sufficient for
our needs.

We add another relation that verifies gender agreement between
two nodes. This relation is simply true if and only if both of the in-
volved nodes have the same gender property:

gd_agr(x , y) := masculine(x) ∧ masculine(y)
∨ feminine(x) ∧ feminine(y)
∨ neuter(x) ∧ neuter(y)

This relation could be extended so as to account for more agreement
phenomena such as number, case, etc.

Finally, we define one last relation that links a relative pronoun to
its antecedent. This relation is built upon ext_path and links the head
of a noun phrase to the relative pronoun of the relative clause that
modifies it:
antecedent(ant, pro) := (noun(ant) ∨ proper_noun(ant)) ∧ pro_rel(pro)

∧ ∃rcl.relative(rcl) ∧ head∗ ↑mod(ant, rcl) ∧ ext_path(rcl, pro)

This relation will allow us to verify that relative pronouns agree with
their antecedents.

Logical constraints
In order to refine the over-approximation given in Figure 7, we now
add logical constraints to production rules. We recall that only the
abstract structures which satisfy these formulae are considered valid
according to the grammar, thus filtering out many ill-formed struc-
tures.

We first consider p1, for which four additional constraints are
given in Figure 8.

Constraints (1) and (2) deal with verb valency, ensuring that the
produced clause has an object if and only if the head is a transitive
verb, and a complement clause if and only if the head is a verb that
expects one. Constraint (3) equates the lack of an explicit subject ar-
gument with the fact that a clause is controlled. From a syntactic point
of view, our model uses clauses without an explicit subject. We shall
see later how logic allows us to associate its subject with a controlled
clause. Finally, constraint (4) ensures that verbs in controlled clauses

[118]

A logical approach to grammar description
..C −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

transitive(v)⇔ some(o) (1)
clause_verb(v)⇔ some(c) (2)
controlled(t)⇔ none(s) (3)
controlled(t)⇔ infinitive(v) (4)

Figure 8:
Logical constraints
for p1

are in an infinitive form and, since the grammar does not handle other
kinds of infinitive clauses, we assume that all infinitive verbs are con-
trolled.

We now consider the relation between relative clauses and rel-
ative pronouns. We want to ensure that the valid abstract structures
show a one-to-one relation between relative pronouns and the relative
clauses they belong to. These pronouns should also be found at posi-
tions in their relative clause that are consistent with island constraints.
This is guaranteed by a pair of symmetrical constraints on productions
p5 and p6:

p5 : A−→ pronoun : p p6 : M −→ C : r

pro_rel(p)⇒∃!r.relative(r) ∧ ext_path(r, p) ∃!p.pro_rel(p) ∧ ext_path(r, p)

pro_rel(p)⇒
∃ant.antecedent(ant, p) ∧ gd_agr(ant, p)

The production p5 rewrites an argument A as a pronoun. The first
constraint associated with it ensures that, if it is a relative pronoun,
there is a unique relative clause to which this pronoun corresponds.
Conversely, p6 produces a relative clause and ensures that there is a
unique relative pronoun that corresponds to it. Both constraints use
the ext_path relation to make sure that the path between the top of the
relative clause and its corresponding pronoun is valid and does not
violate island constraints.

[119]

Lionel Clément et al.

Then, the second constraint on p5 ensures that a relative pronoun
has an antecedent, and that both of them are in agreement. With this,
we rule out constructs like “Mary that …” in English, “Marie das …” in
German or “Marie dat…” in Dutch. This illustrates how agreement can
be added to the grammar. However, as languages may have different
sets of gender and agreement rules, when dealing with synchronous
grammars, it is better to model agreement by refining a core common
grammar for each target language. We here avoid this complication
for the sake of keeping the illustration of the formalism rather simple.
This is why we only give a simplistic treatment of the neuter gender
that behaves similarly in English, Dutch, and German for the particular
set of sentences we model.

Finally, one last syntactic restriction that we want to add is to
forbid the addition of a modifier to a relative pronoun (which would
be ungrammatical). The corresponding constraint is added to p2 as
shown in Figure 9.

Figure 9:
Logical constraint of p2

..A−→ .•.

A : a

.

hea
d

.

M : m

. mod

¬pro_rel(a)

The added logical constraint simply ensures that a modified ar-
gument a cannot be a relative pronoun.

Phonological linearizations
Finally, we turn to the process of describing four linearizations (to-
wards English, German and Dutch on one hand, and semantics on the
other hand) of the grammar. We will begin with the phonological lin-
earizations, starting with the most straightforward linearization rules,
until we have covered all the productions in the grammar. A com-
plete representation of the grammar, including production rules, logi-
cal constraints, and all the linearization rules, is available in Figures 17
and 18.

First, we consider the phonological linearization rules for produc-
tions p2 through p5, which are given in Figure 10.

The linearization rules are the same for all target languages (i.e.
English, German, and Dutch): p4 and p5, being unary terminal rules,

[120]

A logical approach to grammar description

..A : l −→ .•.

A : a

.

hea
d

.

M : m

. mod

..A : l −→ .•.

determiner : d

.
det

.

noun : n

. head

l := a m l := d n

A : l −→ proper_noun : pn A : l −→ pronoun : p

l := pn l := p

Figure 10:
Phonological linearization
rules for productions p2

through p5

are simply realized with the string value associated with the lexical
entry of the leaf they rewrote into. The linearization of productions
p2 and p3 is obtained by concatenating the string values of the lexical
entries in the expected order, which means that the determiner is fol-
lowed by the noun for p3 and the whole noun phrase is followed by
the relative clause for p2.

We then turn to the linearization of p6:
M : l −→ C : r

l := ext_path(r,p) ∧ pro_rel(p) −→ p r

This production enables us to rewrite a modifier as a relative clause
r. Once again, the linearization remains the same cross-linguistical-
ly. However, it uses an external variable p, which corresponds to the
relative pronoun of this relative clause. Let us recall that this gram-
mar treats relative pronouns as wh-elements which appear in the ab-
stract structure at the position corresponding to their syntactic func-
tion, which means they have to be phonologically realized at a distant
position in the tree in order to precede the rest of the relative clause.
The linearization rule thus calls for the realization of the (unique) rel-
ative pronoun p which satisfies ext_path(r,p), and places it before the
rest of the relative clause in the realization.

Note that the logical constraint given earlier for this production
guarantees that such a pronoun does exist (and that it is unique) in
all valid abstract structure trees. Hence, this linearization rule always
produces a realization.

Finally, we consider the more sophisticated linearization rule as-
sociated with p1, depicted in Figure 11.

[121]

Lionel Clément et al.
Figure 11:

Phonological linearization
rules for p1

..C : e, g, d −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

e := su v ob c

g :=

� independent(t) −→ su v ob c

subordinate(t) −→ su ob c v

d :=

independent(t) ∧ ¬control_verb(v) −→ su v ob c

subordinate(t) ∧ ¬controlled(t) ∧ ¬control_verb(v) −→ su ob c v

subordinate(t) ∧ controlled(t) ∧ ¬control_verb(v) −→ 〈ob c,v〉
subordinate(t) ∧ controlled(t) ∧ control_verb(v) −→ 〈ob c.1,v c.2〉
subordinate(t) ∧ ¬controlled(t) ∧ control_verb(v) −→ su ob c.1 v c.2

independent(t) ∧ control_verb(v) −→ su v ob c.1 c.2

where ob=

� ext_obj(o) −→ ϵ

else −→ o

and su=

� ext_suj(s) −→ ϵ

else −→ s

Having to deal with the linear ordering of the clause arguments,
this production uses different linearization rules for each target lan-
guage. We use different labels e, g, d for each one in the figure, which
stand for English, German, and Dutch, respectively.

First, we take the linearization of empty optional leaves (⊥) to be
the empty string for all non-terminals.

Then, consider the final where statements, which are the same in
all three linearizations (we have only written them once in order to
clear up the figure). They describe two variable constructs (su,ob),
which are slightly more abstract versions of the arguments they cor-
respond to (s,o): these constructs denote the local realizations of the
subject and object arguments which can be either the empty string ϵ, if
the subject or object is a wh-pronoun marked for extraction, or simply
the realization of the argument itself otherwise. We use this abstrac-
tion in place of the actual subject and object variables everywhere else
in the linearization rules.

[122]

A logical approach to grammar description

Now, the linearization rule for English simply concatenates the
verb and its arguments in the usual SVO order, with the complement
clause at the end.

The linearization rule for German, on the other hand, relies on the
context to pick an appropriate word order: when the current clause
is an independent clause, it uses the same SVO word order as En-
glish; however, if it is a subordinate clause, then the verb is rejected at
the end, as expected in German sentences. Note that this linearization
does not account for the scrambling phenomenon that occurs in Ger-
man subordinate clauses. A possibility for modelling this phenomenon
would be to define linearization in the algebra for free word orders
proposed in Kirman and Salvati (2013).

Finally, we turn to the more complex linearization rule for Dutch.
The first two cases, which cover independent or subordinate clauses in
which no control is involved, have the same realization as in German.
The third logical clause builds a realization in the case of a subordi-
nate clause which is controlled by its parent clause. Controlled clauses,
rather than being realized as a string, are realized as a pair of strings so
as to produce the expected cross-serial word order of Dutch. The first
element of the pair accumulates object arguments, while the second
one stacks the verbs. The next logical clause covers the case of a verb
in a subordinate clause which exerts a control while being controlled
itself; this is the “intermediate” step in cross-serial constructions. It
builds up the stack of objects by concatenating its object argument
before the first projection of the realization of its argument clause,
and does the same for verbs on the second projection, producing a
pair of strings similar to the one it received from its argument clause.
Finally, the last two clauses of the linearization complete a cross-serial
construct by concatenating both projections of the pair of strings they
receive in the expected order, according to whether the topmost clause
in the series is an independent or subordinate clause.

As a last remark, note that it is easily verified that the given set of
linearization rules provides a linearization for all valid abstract struc-
tures.

Semantic linearization
We now turn to the semantic linearization rules. Let us recall the se-
mantic types given in the vocabulary from Table 2. We work with

[123]

Lionel Clément et al.
Figure 12:

Semantic linearization
rules for productions p2

through p5

..A : l2 −→ .•.

A : a

.

hea
d

.

M : m

. mod

..A : l3 −→ .•.

determiner : d

.
det

.

noun : n

. head

l2 := λP.a λx. ∧ (m x) (P x) l3 := λP.d λx. ∧ (n x) (P x)

A : l4 −→ proper_noun : pn A : l5 −→ pronoun : p

l4 := λP.P pn l5 := pro_rel(p) −→ λP.P Ωp

simple types built from the basic types e, which denotes entities, and
p which denotes propositions. We add two constants Ωe and Ωp to the
object language, which are empty semantic values for these base types.
We follow a straightforward version of the usual Montague-style in-
terpretations of syntactic categories. We take the semantic value of
nouns and modifiers to have type e→ p, building a proposition from
an entity. The interpretation of proper nouns simply refers directly
to the entity they correspond to (type e). Determiners have the type
of a quantifier (e → p) → p. The type of verbs depends on the type
and number of arguments they expect: they can be either e → p (for
intransitive verbs), e → e → p (transitive), e → p → p (expecting a
complement clause), and e → e→ p → p (both transitive and expect-
ing a complement clause). Finally, the type of a clause can be either
p for an independent clause, e → p for controlled clauses, e → p for
clauses on an extraction path, or e→ e→ p for clauses both controlled
and on an extraction path. These four types account for all the possible
cases of missing arguments; including a missing subject (in the case of
a control or a subject relative clause), or a possibly distant object (in
the case of an object relative clause). These abstracted arguments will
be provided either by the parent (controlling) clause or the antecedent
of the relative clause. Finally, we take the convention that the upper-
case letter variables bound in our semantic λ-terms have type e→ p,
while lower-case letter ones have type e.

We consider first the linearization rules that produce an argu-
ment, that is those depicted in Figure 12. The left-hand side of each
production pi in the figure is labelled with li to help identify them.

[124]

A logical approach to grammar description

First we consider production p4: its linearization constructs an
argument from an element by abstracting the predicate to which it
will eventually be applied, using the type-raising construction usual
in Montague semantics. Production p5, when realizing a relative pro-
noun, produces an “empty” argument with no semantic value. As the
corresponding argument in the clause will have to be linked with the
relative’s antecedent, the corresponding term will be deleted during
the linearization of the clause that dominates l5. Finally, productions
p2 and p3 construct the semantics of noun-phrase using the continua-
tion passing style that is usual in Montague semantics.

Next, we consider the linearization of p6, given below:
M : l −→ C : r

l := r

This linearization rule builds a modifier from a clause. Since a rel-
ative clause must contain exactly one extracted pronoun and cannot
be controlled (as it is not an argument of a controller verb), the result-
ing realization has the type of a predicate. This element will later be
used to modify the meaning of its antecedent with the rule p2.

Last, we consider the linearization rule for p1, given in Figure 13.
This linearization rule takes into account all the possible contexts and
arguments of a clause, and builds a realization accordingly. It relies
on the reification of several concepts that are described separately
using where statements, then plugged together as needed to build the
realization. These constructs are denoted by the variables su, ob, cl; in
addition, the variable fcl is used to avoid repetitions by factorizing a
major part of the term that constitutes the final realization.

First, the variables su and ob correspond respectively to the sub-
ject and object type-raised arguments of the clause. In most cases,
these arguments are simply the realization of the subj and obj argu-
ments of the clause, that is s,o. However, either of them may actually
be a relative pronoun, and the corresponding element should be left
abstract, so as to allow the antecedent to use the relative clause as
a modifier. In such cases (ext_suj, ext_obj), the actual subject or object
element is left as a free variable e; and su or ob are obtained with a
simple type-raising construction, thus behaving exactly as a normal
subject or object argument would. Finally, it may also be that the subj

[125]

Lionel Clément et al.
Figure 13:

Semantic linearization
rule for p1

..C : l −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

l :=

¬ext_cl(t)−→
�¬controlled(t)−→ fcl Ωe Ωe

controlled(t)−→ λs′. fcl s′ Ωe

ext_cl(t)−→
�¬controlled(t)−→ λe. fcl Ωe e

controlled(t)−→ λs′.λe. fcl s′ e

where fcl= λs′.λe.su λx .ob λy.

¬transitive(v)−→

�¬clause_verb(t)−→ v x
clause_verb(t)−→ v x cl

transitive(v)−→
�¬clause_verb(t)−→ v x y

clause_verb(t)−→ v x y cl

where cl=

ext_cl(c)−→
ctr_subj(v)−→ c x e
ctr_obj(v)−→ c y e

else −→ c e

else −→
ctr_subj(v)−→ c x
ctr_obj(v)−→ c y

else −→ c

where su=

 ext_suj(s) −→λP.P e
controlled(t)−→λP.P s′

else −→ s

and ob=

�ext_obj(o)−→λP.P e
else −→ o

argument is non-existent when the current clause is controlled. The
construct in this case is the same as for an extracted subject, except
that the free variable corresponding to a controlled subject is, by con-
vention, s′ instead of e.

Then, the cl construct denotes the clause argument of a verb that
requires one (clause_verb). Such verbs expect an argument of type p,
corresponding to a proposition; however, as we have seen, a clause
may have a more abstract type, with one or two missing elements.
There are two independent reasons for a subordinate clause to ex-
pect an element. The first one is if the clause is on an extraction path
(ext_cl). If this is the case, the expected element corresponds to the
missing object at the end of the extraction path, and it is provided

[126]

A logical approach to grammar description

to the argument clause in the form of a free variable e. The sec-
ond reason for subordinate clauses to expect an argument is control
(ctr_subj, ctr_obj): indeed, a controlled clause has a missing subject,
which is identified with the subject or object of the controller clause.
Depending on the type of control, the missing element is supplied as
either x or y, which are free variables denoting respectively the sub-
ject or direct object element of the verb in the current (controlling)
clause. Finally, note that the construction of cl also covers the case
where an argument clause is present without the head of the current
clause being a control verb; this cannot currently be the case in our
valid abstract structures, as we have currently defined that the verbs
which expect a complement clause (clause_verb) are exactly the control
verbs. Nevertheless, we decided to add a default rule (using else) for
the sake of completeness. Should we decide to introduce verbs that
expect other forms of complement clauses in our vocabulary and alter
our definition of clause_verb, this linearization rule would yield the
expected semantics for the corresponding sentences.

Using these three constructs, we can now build fcl, that is the
(factorized) λ-term that represents the meaning of the clause. This
term abstracts the free variables s′ and e that denote a missing subject
(in the case of a control) and an extracted element (in the case of a
relative clause), regardless of whether or not they occur in the term.
The su and ob constructs are then applied to the verb cluster, with
abstracted variables x and y for the subject and object elements; these
constructs behave exactly as normal, type-raised arguments. The verb
cluster itself is constructed according to the valency properties of the
verb (transitive, clause_verb), by applying the verb to its arguments x ,
y, and cl.

Finally, the linearization of the whole clause, depending on
whether there is an ongoing extraction or control (ext_cl, controlled),
provides empty elements to fcl, or abstracts the corresponding vari-
ables again in order to yield the expected type for the realization. The
logical preconditions ensure that the empty elements Ωe are provided
exactly when the term fcl does not depend on that argument. We thus
obtain the intended meaning of a clause.

The semantic linearization of a clause may, at first sight, look
rather involved. However, it still represents a shorter representation
over the mere enumeration of all the possible cases covered by the

[127]

Lionel Clément et al.
Figure 14:

Abstract structure abs
..•.

•
.

book

.

hea
d

.

a

.

det

.
head

.

•
.

lets

.

head

.

John

.

sub
j

.

Mary

.

obj

.

•

.

help

.

hea
d

.

Ann

.

obj

.

•

.

read

.

hea
d

.

that

.
obj

.

arg_cl

.

arg_cl

. mod

linearization. The grammar indeed covers 39 different cases (taking
into account the interactions between valency, relevant classes of con-
text, control, and extraction). Compared to a direct implementation of
all the cases with an actual grammar, this model is arguably simple.
Moreover, the abstraction provided by logic makes the model rather
intuitive.
3.2 Example
We now construct an example sentence for the synchronous grammar
we have just described, and show how the grammar asserts its gram-
maticality and assigns it a realization according to the linearization
rules.

In order to demonstrate the interaction between the different phe-
nomena covered by the grammar, we consider a “worst-case” example
phrase that exhibits long-distancemovement in a relative clause across
a sequence of control verbs. Though its acceptability may be question-
able, it should serve as a good support for describing the inner works
of our formalism.

The abstract structure abs of the example we consider is depicted
in Figure 14. It consists of an argument formed by a common noun
and a determiner modified by a relative clause where the relative ob-
ject pronoun is reached across two nested subordinate clauses. The
antecedent (a book) is thus identified with the object of the last con-
trolled verb (read). The subject of this verb is provided by the object
control verb above (help), which is itself controlled by the head of the
relative clause above (lets).

[128]

A logical approach to grammar description

..A : x0

.

•
.

A : x1

.

•

.

book

.
hea

d
.

a

.

det

.

p3

.

head

.

M : x2

.

C : x3

.

•

.

lets

.

head

.

A : x4

.

John

.

p4

.

sub
j

.

A : x5

.

Mary

.

p4

.

obj

.

C : x6

.

•

.

help

.

head

.

A : x7

.

Ann

.

p4

.

obj

.

C : x8

.

•

.

read

.

hea
d

.

A : x9

.

that

.

p5

.

obj

.

p1

.

arg_cl

.

p1

.

arg_cl

.

p1

.

p6

.

mod

.
p2

Figure 15:
Derivation tree of abs

For the purpose of the example we consider that the starting sym-
bol of the regular over-approximation is A instead of C . Indeed, all the
interesting phenomena we wish to illustrate in the example can arise
in noun-phrases and embedding this noun-phrase example in a com-
plete sentence would only lengthen our explanations with unnecessary
details.

Regular tree grammar derivability
First, we will show that abs is in the language of the regular over-

approximation of our synchronous grammar. The corresponding der-
ivation is depicted in Figure 15. The non-terminals are written as (la-
belled) nodes in the derivation tree, and rewrites are represented as
dashed edges, labelled with the name of the production used to rewrite
the non-terminal. The corresponding right-hand side is then drawn di-
rectly below, without the unused optional nodes. We recall that the

[129]

Lionel Clément et al.

full definition of our synchronous grammar is summed up in Figures 17
and 18.

Note that, though there is only one derivation for this abstract
structure abs, the regular over-approximation of our grammars need
not be unambiguous. Had there been several different derivations that
produced the given abstract structure, we would have considered all
of them.

Satisfaction of logical constraints
To verify that the tree abs is valid, we need to ensure that, in ad-
dition to the regular over-approximation, the abstract structure tree
also satisfies the logical constraints associated with the productions.
Traversing the abs tree in prefix order, we consider the logical condi-
tions associated with each production and instantiate them with the
corresponding positions in the tree.

The first production used in the derivation of abs is p2. It has an
associated logical constraint, stated as:

¬pro_rel(a)
This constraint ensures that the modified noun phrase is not just a rel-
ative pronoun, with a being the head argument of the right-hand side
of the production. As can be seen in Figure 16, the node corresponding
to a is not a lexical entry and hence cannot have the pro_rel property,
so the constraint is satisfied, and the structure remains grammatical.

The production p3 on the left branch has no associated con-
straints, so it is trivially valid. On the right branch, on the other hand,
the first production used in the rewrite is p6, which expects that there
exists a unique relative pronoun p at the end of a valid extraction path
starting at the current position r:

∃!p.pro_rel(p)∧ ext_path(r, p)

Figure 16:
Instantiation of the logical

constraint for p2

..•.
• : a

...
head

[130]

A logical approach to grammar description

..C : e, g, d, s −→ .• : t.

verb : v

.
head

.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

transitive(v)⇔ some(o)
clause_verb(v)⇔ some(c)
controlled(t)⇔ none(s)
controlled(t)⇔ infinitive(v)

e := su v ob c

g :=

� independent(t) −→ su v ob c

subordinate(t) −→ su ob c v

d :=

independent(t) ∧ ¬control_verb(v) −→ su v ob c

subordinate(t) ∧ ¬controlled(t) ∧ ¬control_verb(v) −→ su ob c v

subordinate(t) ∧ controlled(t) ∧ ¬control_verb(v) −→ 〈ob c,v〉
subordinate(t) ∧ controlled(t) ∧ control_verb(v) −→ 〈ob c.1,v c.2〉
subordinate(t) ∧ ¬controlled(t) ∧ control_verb(v) −→ su ob c.1 v c.2

independent(t) ∧ control_verb(v) −→ su v ob c.1 c.2

where ob=
�ext_obj(o) −→ ϵ

else −→ o

�
and su=

�ext_suj(s) −→ ϵ

else −→ s

s :=

¬ext_cl(t) −→
�¬controlled(t) −→ fcl Ωe Ωe

controlled(t) −→ fcl s′ Ωe

ext_cl(t) −→
�¬controlled(t) −→ fcl Ωe e

controlled(t) −→ fcl s′ e

where fcl= λs′.λe.su λx .ob λy.

¬transitive(v) −→

�¬clause_verb(t) −→ v x
clause_verb(t) −→ v x cl

transitive(v) −→
�¬clause_verb(t) −→ v x y

clause_verb(t) −→ v x y cl

where cl=

ext_cl(c) −→
ctr_subj(v) −→ c x e

ctr_obj(v) −→ c y e
else −→ c e

¬ext_cl(c) −→
ctr_subj(v) −→ c x

ctr_obj(v) −→ c y
else −→ c

where su=

 ext_suj(s) −→ λP.P e
controlled(t) −→ λP.P s′

else −→ s

and ob=

�ext_obj(o) −→ λP.P e
else −→ o

Figure 17:
First part
of the full
synchronous
grammar,
with logical
constraints and
linearizations

[131]

Lionel Clément et al.
Figure 18:

Second part
of the full

synchronous
grammar,

with logical
constraints and
linearizations

..A : e, g, d, s −→ .•.

A : a

.

hea
d

.

M : m

. mod

..A : e, g, d, s −→ .•.

determiner : d

.
det

.

noun : n

. head

¬pro_rel(a) true

e,g,d := a m e,g,d := d n

s := λP.a λx. ∧ (m x) (P x) s := λP.d λx. ∧ (n x) (P x)

A : e, g, d, s −→ proper_noun : pn A : e, g, d, s −→ pronoun : p

true

pro_rel(p)⇒∃!r.relative(r) ∧ ext_path(r, p)

pro_rel(p)⇒
∃ant.antecedent(ant, p) ∧ gd_agr(ant, p)

e,g,d := pn e,g,d := p

s := λP.P pn s := pro_rel(p) −→ λP.P Ωp

M : e, g, d, s −→ C : r

∃!p.pro_rel(p) ∧ ext_path(r, p)

e,g,d := ext_path(r,p) ∧ pro_rel(p) −→ p r

s := r Ωe

Figure 19 shows in solid edges all the paths that link r to another
node x such that ext_path(r, x) is true. Of all these candidate nodes,
only the one labelled with p satisfies pro_rel(x), ensuring its existence
and uniqueness and thus satisfying the constraint.

The next production to occur in the derivation tree is p1. This
production has four constraints:

transitive(v)⇔ some(o)
control_verb(v)⇔ some(c)
controlled(t)⇔ none(s)
controlled(t)⇔ infinitive(v)

[132]

A logical approach to grammar description

...

• : r

.

John

.

sub
j

.

Mary

.

obj

.

•

.

Ann

.

obj

.

•

.

that: p

.

obj

.

arg_cl

.

arg_cl

Figure 19:
Instantiation of the logical
constraint for p6

These four constraints ensure that the verb valency corresponds to
the arguments provided by the abstract structure, and that the con-
trolled verbs are in an infinitive form and have no redundant subject.
As shown in Figure 20, in this case, all three arguments subj, obj, and
arg_cl are present. Looking at the head “lets”, we can check that it has
the properties transitive and ctr_obj, satisfying the two first constraints.
Since the edge above t is labelled with mod, we can infer from the def-
inition of controlled that ¬controlled(t), which verifies the third con-
straint. Finally, since “lets” does not have the property infinitive, the
fourth constraint is also satisfied.

..•.

• : t

.

lets: v

.

head

.

John: s

.

sub
j

.

Mary: o

.

obj

.

• : c

.

arg_cl

.

mod

Figure 20:
Instantiation of the logical
constraints for the first
occurrence of p1

The next two rewrites use the production p4, which has no addi-
tional constraints. Then, the production p1 is used to rewrite the non-
terminal labelled x6, with the same four constraints as before. The
valency constraints are satisfied in the same way (the verb expects –
and gets – its optional arguments obj and arg_cl as it is both transi-
tive and a control verb). On the other hand, the controlled predicate is

[133]

Lionel Clément et al.

true for the node t, and hence the verb must be in the infinitive form
and the subj argument should be ⊥. As both these conditions are veri-
fied, all the constraints are again satisfied. The corresponding subtree
(including the ⊥ leaf for s) is drawn in Figure 21.

Figure 21:
Instantiation of the logical
constraints for the second

occurrence of p1

..•.

lets: ctr

.
hea

d
.

• : t

.

help: v

.

head

.

⊥ : s

.

sub
j

.

Ann: o

.
obj

.

• : c

.

arg_cl

.
arg_cl

The next production, being p4, has no associated constraints. Then
there is one last occurrence of the production p1 which is satisfied in
the same fashion as before, except that the arg_cl argument is absent
as the leaf node v does not satisfy the control_verb predicate. The cor-
responding tree is found in Figure 22.

Figure 22:
Instantiation of the logical

constraints for the last
occurrence of p1

..•.

help: ctr

.
hea

d
.

• : t

.

read: v

.

head

.

⊥ : s

.

sub
j

.

that: o

.

obj

.

⊥ : c

.

arg_cl

. arg_cl

Finally, the last production in the derivation tree is p5 which has
two constraints to satisfy:

pro_rel(p)⇒∃!r.relative(r)∧ ext_path(r, p)

pro_rel(p)⇒∃ant.antecedent(ant, p)∧ gd_agr(ant, p),

where the variable p is instantiated with the leaf “that” which has
the pro_rel property. For the first constraint we consider the candidate
nodes for r along the path described by ext_path, to find that only the
topmost one (labelled r in Figure 23) satisfies the predicate relative

[134]

A logical approach to grammar description

(being a modifier of a noun phrase). Then, for the second constraint,
the node labelled with ant in the figure constitutes a valid candidate
for the existential quantifier, and verifies both relations with p (since
ant and p are both lexical entries that have the neuter property).

..•.

•

.

book: ant

.

hea
d

.
hea

d
.

• : r

.

•

.

•

.

that: p

.

obj

.

arg_cl

.

arg_cl

.

mod

Figure 23:
Instantiation of the logical
constraints for p5

Linearization towards Dutch
Since the constraints of the productions used in the derivation are
satisfied, then abs is a valid abstract structure. We can thus look at the
linearization rules associated with the productions in its derivation,
and construct the realization that our grammar associates with abs.
We consider in this example the phonological linearization towards
Dutch.

We construct the realization bottom-up, describing the realization
associated with the left-hand side of each production by referring to
the labels x i that we have attached to the non-terminals in Figure 15.

We first consider the non-terminal node labelled with x9. It is
rewritten using the production p5, whose attached linearization rule
simply yields the string representation of the terminal lexical entry in
the right-hand side, namely dat. The realization attached to the nodes
x4, x5, and x7 is obtained similarly, considering the linearization rule
attached to the production p4, and yields respectively the realizations
Jan, Marie, and Anna.

Then we consider the non-terminal node labelled with x1, rewrit-
ten with the production p3. The attached linearization rule combines

[135]

Lionel Clément et al.

the realizations of the two resulting lexical entries, with the det argu-
ment first and the head argument next, yielding the string een boek

for x1.
We now describe the linearization of the successive clauses along

the derivation tree. We recall the corresponding production p1 and the
associated linearization rule for Dutch in Figure 24.

Figure 24:
Dutch linearization for

production p1

..C : d −→ .• : t.

verb : v

.
head

.

(A) : s

.

sub
j

.

(A) : o

.
obj

.

(C) : c

.
arg_cl

d :=

independent(t)∧¬control_verb(v) −→ su v ob c

subordinate(t)∧¬controlled(t)∧¬control_verb(v) −→ su ob c v

subordinate(t)∧ controlled(t)∧¬control_verb(v) −→ 〈ob c,v〉
subordinate(t)∧ controlled(t)∧ control_verb(v) −→ 〈ob c.1,v c.2〉
subordinate(t)∧¬controlled(t)∧ control_verb(v) −→ su ob c.1 v c.2

independent(t)∧ control_verb(v) −→ su v ob c.1 c.2

where ob=
�ext_obj(o) −→ ϵ

else −→ o

�
and su=

�ext_suj(s) −→ ϵ

else −→ s

The first clause we consider is the one labelled with x8. Its subj and
arg_cl arguments are missing, as depicted in Figure 22. We consider
the logical preconditions for the linearization, starting with the where
statements. The condition ext_obj(o) is true (since the obj argument of
the current clause has the property pro_rel), while ext_suj(s) is not (the
subj argument of the clause is ⊥). Hence, we get su= s and ob= ϵ.

Looking at the context, the other logical conditions have the fol-
lowing values: independent(t) is false but subordinate(t) is true (there
is another clause directly above in abs); controlled(t) is true (as the
clause above t has the object control verb “help” as its head); and
control_verb(v) is false (the verb “read” does not have the ctr_subj or
ctr_obj property). Hence, the only possible linearization for this clause
is the third one, which yields the pair of strings 〈ob c,v〉. We have seen
that ob= ϵ, and the optional argument c is not present, and therefore
its realization is also taken to be the empty string ϵ. Hence, d has ex-
actly one possible value that satisfies the linearization rule, which is:
〈ϵ,lezen〉.

[136]

A logical approach to grammar description

The next clause, labelled with x6, is rewritten using the same pro-
duction and linearization rule. We recall that its instantiated labels
and its context in abs are depicted in Figure 21.

There is no extraction ext_obj or ext_suj involved, hence ob= o and
su= s. The node t corresponds again to a clause that satisfies both
the subordinate and controlled predicates; however, the head argument
“help” has the ctr_obj property and hence verifies control_verb(v). The
selected linearization will therefore be 〈ob c.1,v c.2〉, where c.1 and
c.2 denote the first and second projection of the pair that constitutes
the realization of c. Building on our previous observations, we have
o= Anna and c= 〈ϵ,lezen〉. Hence, the realization associated with x6

is
Anna,helpen lezen
�.

The last clause, labelled with x3 and depicted in Figure 20, has the
same logical preconditions as x6 except for the fact that it is not con-
trolled (the edge that dominates t is labelled with mod). The selected
realization is then the fourth one in Figure 24, that is: su ob c.1 v c.2,
with su= s and ob= o. The realization associated so far with the
right-hand side non-terminals is such that s= Jan, o= Marie, and
c=

Anna,helpen lezen

�. Thus, the topmost clause in the relative
clause is realized as Jan Marie Anna laat helpen lezen, with the ex-
pected Dutch cross-serial ordering.

To carry on the linearization process, we now establish the real-
ization associated with x2. It is constructed with the following rule:

d := ext_path(r,p)∧ pro_rel(p) −→ p r,

where r corresponds to the clause labelled with x3 that we have just
linearized, and p is any external node that satisfies the given logical
precondition. As imposed by the logical constraint depicted in Fig-
ure 19, there is exactly one candidate node that satisfies this con-
dition, that is the lexical entry “that”, which rewrites x9. Note that
its realization was not used in the construction of the realization of
the node x8. The realization of p is then dat, and the full realiza-
tion associated with x2 is obtained by concatenating p and r, yielding:
dat Jan Marie Anna laat helpen lezen.

Finally, the realization of the whole abs subtree, which does not
depend on the context above x0, is obtained by concatenating those of
the nodes x1 and x2 as demanded by the linearization rule for p2. The
resulting string is: een boek dat Jan Marie Anna laat helpen lezen.

[137]

Lionel Clément et al.

4 conclusion

This paper explores the possibility of designing high-level grammars
by means of Model Theoretic Syntax. We try to anchor high-level de-
scriptions in formal methods and more particularly in logic. This al-
lows us to obtain a precise meaning for the grammatical descriptions.
Moreover, our whole methodology is favoured by the wealth of dif-
ficult results that the literature provides. Indeed, informed by those
results, we have designed a logical language that seems to suit the
needs of linguistic descriptions and that is also weaker than Monadic
Second-Order Logic ensuring that the properties expressed by that log-
ical language can be captured by finite state automata. Moreover, in-
spired by the work of Courcelle (1994), we use the flexibility of logical
transduction so as to obtain an arguably simple model of extraction.
Finally, all these design choices make the languages described with
our system belong to the class of mildly context sensitive languages.
More specifically, the grammars we obtain are 2-ACGs. We chose this
grammatical model for the fact that, in their linear version, they ex-
actly capture mildly context sensitive languages and that they allow
one to model both syntax and semantics with the same set of primi-
tives.

After Rogers (2003a), our methodology offers another way for
Model Theoretic Syntax to describe languages that are outside the
class of context free grammars. It can be seen as a refinement of the
two step approach of Kolb et al. (2003) and Morawietz (2003). More-
over, this methodology can be adapted to define other formalisms: it
is possible not to use a regular approximation and encode recursion
directly in the logic; the logical language can be changed as long as
it is weaker than MSO; and one can use grammars based on other op-
erations and objects (such as graphs or hypergraphs). As an example,
free-word order languages can be modeled within this framework by
using an adapted algebra allowing one to represent free-word ordering
as proposed in Kirman and Salvati (2013).

We illustrate our formalism with a small subset of interleaved
phenomena that deal with extraction. The formalisation is still techni-
cal, but we argue that this technicality is mostly of linguistic nature.
Indeed, the interplay of these phenomena raises a number of particular
cases one eventually needs to describe. The advantage of our approach

[138]

A logical approach to grammar description

is that it reduces the difficulty of describing this set of situations. The
small macro language we have designed to deal with the parts that
are common to various situations seems to be sufficient to provide
linguistic generalisations.

On the semantic side, the traditional continuation passing style
used in the Montagovian approach to semantics makes it hard to ex-
press the semantics in a natural way. Indeed, one would wish to simply
use the logical relations on the abstract structure so as to find the ar-
gument of each predicate. But this would amount to seeing formulae
as graphs and would thus break down an interesting feature of Mon-
tague semantics: the fact that it gives semantics for each constituent of
a sentence. A possible way out could be the result of Kanazawa (2011)
which demonstates a link between hypergraphs and λ-calculus. Tak-
ing into consideration the result of Courcelle and Engelfriet (1995)
that shows that hyperedge replacement grammars are closed under
MSOL transductions, it could be the case that the formulae generated
as graphs could then give rise to a 2-ACG providing a semantics to
each constituent, and thus recovering compositional semantics.

In future work, we shall model larger fragments of natural lan-
guage, by incorporating several phenomena. Moreover, as our formal-
ism seems to adapt well to the description of synchronous grammars,
we shall see how we can refine linguistic descriptions so as to allow
a modular development of those grammars. The case of agreement,
that may greatly vary between languages that otherwise share many
syntactic constructs, as for the languages we have chosen (English,
German, and Dutch) pushes us in that direction. Moreover, another di-
rection is of course to submit our approach to experiments and more
specifically to implement a compiler from high-level descriptions to
actual grammars. It is indeed well-known that the automata verifying
whether some constraints are verified may have a non-elementary size
with respect to the size of the formula. Thus, compiling these gram-
matical descriptions to actual grammars may be quite challenging.
Nevertheless, if these descriptions are realistic, they should be ren-
dered by wide coverage grammars which, even though huge, can be
handled by modern computers.

[139]

Lionel Clément et al.

references
Henk P. Barendregt (1984), The Lambda Calculus: Its Syntax and Semantics,
volume 103, Studies in Logic and the Foundations of Mathematics,
North-Holland Amsterdam, revised edition.
Philippe Blache (2001), Les grammaires de propriétés. Des contraintes pour le
traitement automatique des langues naturelles, number 2-7462-0236-0 in
Technologies et cultures, Hermes Science Publications.
Anudhyan Boral and Sylvain Schmitz (2013), Model-Checking Parse Trees,
in Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’13, pp. 153–162, IEEE Computer Society, Washington,
DC, USA.
Joan Bresnan (2001), Lexical-functional syntax, volume 16 of Blackwell
textbooks in linguistics, Blackwell.
Norbert Bröker (1998), Separating Surface Order and Syntactic Relations in a
Dependency Grammar, in Proceedings of COLING-ACL98, pp. 174–180.
Marie-Hélène Candito (1999), Organisation modulaire et paramétrable de
grammaires électroniques lexicalisées. Application au français et à l’italien., Ph.D.
thesis, Université Paris 7.
Noam Chomsky (1981), Lectures on Government and Binding, in The Pisa
Lectures, Foris Publications, Holland.
Thomas Cornell and James Rogers (1998), Model theoretic syntax, The Glot
International State of the Article Book, 1:101–125.
Bruno Courcelle (1994), Monadic second-order definable graph
transductions: a survey, Theoretical Computer Science, 126:53–75.
Bruno Courcelle and Joost Engelfriet (1995), A Logical Characterization
of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars,
Mathematical Systems Theory, 28(6):515–552.
Bruno Courcelle and Joost Engelfriet (2012), Graph Structure and Monadic
Second-Order Logic, Encyclopedia of Mathematics and its Applications,
Cambridge University Press.
Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):591–629.
Haskell B. Curry (1961), Some Logical Aspects of Grammatical Structure, in
Roman Jakobson, editor, Structure of Language and Its Mathematical Aspects,
pp. 56–68, AMS Bookstore.
Mary Dalrymple (2001), Lexical Functional Grammar, volume 34 of Syntax and
Semantics, Academic Press, New York.

[140]

A logical approach to grammar description

Philippe de Groote (2001), Towards Abstract Categorial Grammars, in
Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, ACL ’01, pp. 252–259, Association for Computational Linguistics,
Stroudsburg, PA, USA, doi:10.3115/1073012.1073045.
Philippe de Groote and Sylvain Pogodalla (2004), On the expressive
power of Abstract Categorial Grammars: Representing context-free formalisms,
Journal of Logic, Language and Information, 13(4):421–438.
Ralph Debusmann, Denys Duchier, and Geert-Jan Kruijff (2004),
Extensible Dependency Grammar: A New Methodology, in Recent Advances in
Dependency Grammars, pp. 78–85.
John Doner (1965), Decidability of the weak second-order theory of two
successors, Notices of the American Mathematical Society, 12:365–468.
Denys Duchier, Thi-Bich-Hanh Dao, and Yannick Parmentier (2014),
Model-theory and implementation of property grammars with features., Journal
of Logic and Computation, 24(2):491–509.
Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, and Willy
Lesaint (2012), Property Grammar Parsing Seen as a Constraint Optimization
Problem., in Philippe de Groote and Mark-Jan Nederhof, editors, Formal
Grammar – 15th and 16th International Conferences, FG 2010–2012, volume
7395, pp. 82–96, Springer.
Denys Duchier, Jean-Philippe Prost, and Thi-Bich-Hanh Dao (2009), A
model-theoretic framework for grammaticality judgements, in Conference on
Formal Grammar (FG 2009), pp. 1–14.
Joost Engelfriet and Linda Heyker (1992), Context-free hypergraph
grammars have the same term-generating power as attribute grammars, Acta
Informatica, 29(2):161–210.
Kilian Foth, Wolfgang Menzel, and Ingo Schröder (2005), Robust parsing
with weighted constraints, Natural Language Engineering, 11(01):1–25.
J. Roger Hindley and Jonathan P. Seldin (2008), Lambda-Calculus and
Combinators, Cambridge University Press.
Aravind K. Joshi (1985), Tree-adjoining grammars: How much context
sensitivity is required to provide reasonable structural descriptions?, in David
Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural Language
Parsing, pp. 206–250, Cambridge University Press.
Makoto Kanazawa (2009), A lambda calculus characterization of MSO
definable tree transductions, The Bulletin of Symbolic Logic, 15(2):250–251.
Makoto Kanazawa (2011), Parsing and Generation as Datalog Query
Evaluation, Technical report, National Institute of Informatics.

[141]

Lionel Clément et al.

Jérôme Kirman and Sylvain Salvati (2013), On the Complexity of Free Word
Orders, in Proceedings of the 17th and 18th International Conferences on Formal
Grammar, FG 2012, Opole, Poland, August 2012, FG 2013, Düsseldorf, Germany,
August 2013, Revised Selected Papers, volume 8036 of Lecture Notes in Computer
Science, pp. 209–224, Springer.
Gregory M. Kobele and Sylvain Salvati (2013), The IO and OI Hierarchies
Revisited, in Proceedings of the International Colloquium on Automata, Languages,
and Programming (ICALP 2013, Part II), volume 7966 of Lecture Notes in
Computer Science, pp. 336–348, Springer.
Hans-Peter Kolb, Jens Michaelis, Uwe Mönnich, and Frank Morawietz
(2003), An operational and denotational approach to non-context-freeness,
Theoretical Computer Science, 293(2):261–289.
Markus Kracht (1995), Syntactic codes and grammar refinement, Journal of
Logic, Language, and Information, 4(1):41–60.
Richard Montague (1974), English as a Formal Language, in Richmond H.
Thomason, editor, Formal philosophy: Selected Papers of Richard Montague, Yale
University Press, New Haven.
Frank Morawietz (2003), Two-Step Approaches to Natural Language Formalism,
number 64 in Studies in Generative Grammar, De Gruyter.
Geoffrey K. Pullum (2007), The evolution of model-theoretic frameworks in
linguistics, in Proceedings of the ESSLLI 2007 Workshop on Model-Theoretic
Syntax, volume 10, pp. 1–10.
Geoffrey K. Pullum and Barbara C. Scholz (2001), On the distinction
between model-theoretic and generative-enumerative syntactic frameworks, in
Proceedings of the International Conference on Logical Aspects of Computational
Linguistics, volume Complete the number of volume of Complete the title of the
series, pp. 17–43, Springer.
Geoffrey K. Pullum and Barbara C. Scholz (2005), Contrasting applications
of logic in natural language syntactic description, in Logic, methodology and
philosophy of science: Proceedings of the twelfth international congress,
pp. 481–503.
Michael O. Rabin (1969), Decidability of Second-Order Theories and Automata
on Infinite Trees, Transaction of the American Mathematical Society, 141:1–35.
James Rogers (1996), A model-theoretic framework for theories of syntax, in
Proceedings of the 34th annual meeting of the Association for Computational
Linguistics, pp. 10–16, Association for Computational Linguistics.
James Rogers (1998), A descriptive approach to language-theoretic complexity,
Studies in Logic, Language & Information, CSLI Publications, distributed by the
University of Chicago Press.

[142]

A logical approach to grammar description

James Rogers (2003a), Syntactic Structures as Multi-Dimensional Trees,
Research on Language and Computation, 1(3–4):265–305.
James Rogers (2003b), wMSO theories as grammar formalisms, Theoretical
Computer Science, 293(2):291–320.
John Robert Ross (1967), Constraints on variables in syntax, Ph.D. thesis,
Massachusetts Institute of Technology.
Sylvain Salvati (2005), Problèmes de filtrage et problèmes d’analyse pour les
grammaires catégorielles abstraites, Ph.D. thesis, Institut National Polytechnique
de Lorraine.
Sylvain Salvati (2007), Encoding second order string ACG with Deterministic
Tree Walking Transducers, in Shuly Wintner, editor, Proceedings of the 11th
Conference on Formal Grammar (FG 2006), FG Online Proceedings, pp. 143–156,
CSLI Publications.
Sylvain Salvati (2009), A Note on the Complexity of Abstract Categorial
Grammars, in Marcus Kracht, Gerald Penn, and Ed Stabler, editors, The
Mathematics of Language, 10th and 11th Biennial Conference, MOL 10, Los
Angeles, CA, USA, July 28–30, 2007, and MOL 11, Bielefeld, Germany, August
20–21, 2009, Revised Selected Papers, pp. 266–271.
Sylvain Salvati (2010), On the membership problem for non-linear ACGs,
Journal of Logic Language and Information, 19(2):163–183.
Stuart M. Shieber (1985), Evidence Against the Context-Freeness of Natural
Language, Linguistics and Philosophy, 8:333–343.
François Thomasset and Éric Villemonte De La Clergerie (2005), Comment
obtenir plus des Méta-Grammaires, in Proceedings of TALN’05, ATALA,
Dourdan, France.
David J. Weir (1988), Characterizing mildly context-sensitive grammar
formalisms, Ph.D. thesis, University of Pennsylvania, Philadephia, PA.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[143]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Formalism
	Abstract structure
	The linearization process

	Illustration
	Synchronous grammar
	Example

	Conclusion

