Computational complexity of commutative
grammars

Jéréme Kirman Sylvain Salvati

Bordeaux | University - LaBRI
INRIA

October 1, 2013

Motivation

Free word order

Some languages allow free placement of several words or phrases:
e Fully non-configurational languages (Latin)

@ Scrambling phenomenon (German)

Case marking or pragmatics give information on syntactic roles

Grammatically, all the possible word orders are equally valid, while
the sentence’s meaning and syntactic roles stay the same.

Motivation

Scrambling in German subordinate clauses [BNR92]

1 2 3 4 5
...daB eine hiesige Firma meinem Onkel die Mobel vor drei Tagen ohne Voranmeldung zugestellt hat.

..that a local company to my uncle the furniture three days ago without warning has delivered.

...that a local company has delivered the furniture to my uncle three days ago without warning.

All the possible orderings of the constituents (1,2,3,4,5) are possible

Arguments of nested subordinate clauses can also be scrambled

Motivation

Words modulo commutation

There is a single sentence, which has many representations.

One structure «— Many strings

Motivation

Words modulo commutation

There is a single sentence, which has many representations.

One structure «— Many strings

= We need an object that represents a word modulo commutation
of some of its letters/factors (sub-sequences) and a way to parse it

The algebra

An algebra for words modulo commutation

Words modulo commutation over an alphabet ¥ will be constructed
as terms of an algebra com(X)

Atomic terms are letters of the alphabet ¥ and the empty word ¢

Terms are constructed by means of two operators:
e Concatenation of subterms (associative, as usual)
©@ Commutative combination of subterms (assoc + comm)

The algebra
Terms and associated languages

Ranked signature:

com(X) := {a%a € T} U {&%; o?; @2}

The algebra

Terms and associated languages

Ranked signature:

com(X) := {a%a € T} U {&%; o?; @2}

relation for terms (=):

Equivalence
° = ° R = ® R = ®
/ N\ / N\ 2N / / N
o X e ® =z X & X Yy Yy x
/N /\ AR RN
X Yy y z X Yy y z
& commutativity

® associativity & associativity

The algebra

Terms and associated languages

Ranked signature:

com(X) := {a%a € T} U {&%; o?; @2}

relation for terms (=):

Equivalence
° = ° R = ® R = ®
/ N\ / N\ 2N / / N
o X e ® =z X & X Yy Yy x
/N /\ AR RN
X Yy y z X Yy y z
& commutativity

® associativity & associativity

Language of a term:

L(t) := {yield(t)|t' = t}

The algebra

Examples of terms

o L(t1) = {abc, acb}

The algebra

Examples of terms

o L(t1) = {abc, acb}
e L(tp) = {abc, acb, bac, bca, cab, cba}

The algebra
Examples of terms

o L(t1) = {abc, acb}
e L(tp) = {abc, acb, bac, bca, cab, cba}
o L(t3) = {abc, acb, bca, cha}

The algebra

Packed representation

Using this algebra, we get objects to represent free word orders:

_ daB 1 2 3 4 5 zugestellt hat
t= L4 daB 1 2 35 4 zugestellt hat
daB 1 2 4 3 5 zugestellt hat

/

daB zugestellt hat daB 25 4 3 1 zugestellt hat

.. that elivered has daB 312 4 5 zugestellt hat
‘ L(t) = .

° daB 4 5 3 2 1 zugestellt hat

%

. . .

daB 5 1 2 3 4 zugestellt hat
eine hiesige Firma meinem Onkel die Mébel vor drei Tagen ohne Voranmeldung daB 5 4 3 1 2 zugestellt hat
a local company to my uncle the furniture three days ago without warning daB 54 3 2 1 zugestellt hat

5! = 120 word orders

Commutative grammars

Towards commutative grammars

N o {wlwe L)

sentence with free order set of representations

Commutative grammars

Towards commutative grammars

AN o {wlwe L)

sentence with free order set of representations

Commutative grammars are defined as term grammars, with:

= (J ue

teL(G)

Commutative grammars

Towards commutative grammars

AN o {wlwe L)

sentence with free order set of representations

Commutative grammars are defined as term grammars, with:

= (J ue

teL(G)

LG) =X /1, \: /[t \i-e p — Lu(G) = L(t) U L(t2) U

Commutative grammars

Commutative context-free grammars

The first natural class of grammars we consider is CCFG:
@ Regular term grammars on the terminal signature com(X)
e CCFG generalize CFG (without the ® operator)

G = (N,com(X),R,S)

The rules of R have the form N — ii , with t € com(N U X)

Commutative grammars
Example of CCFG

G = ({S,W},com({a, b,c,#}),R,S)

S— e S, W—g W-=e¢
/ \ 7/ N\

Commutative grammars
Example of CCFG

G = ({S,W},com({a, b,c,#}),R,S)

S— e S, W—g W-=e¢
/ \ 7/ N\

Ly(G) = {m#...wp#|n € NA|w|, = |wi|p = |wilc}

Commutative grammars
Example of CCFG

G = ({S,W},com({a, b,c,#}),R,S)

S— e S, W—g W-=e¢
/ \ 7/ N\

S ./ \Xl — S(x) W(x): W ®/ \® +— W(x1)

Commutative grammars

Commutative regular grammars

CREG are a more constrained version of CCFG:

@ Right-hand sides are restricted to right-branching terms with a
single non-terminal at the end (rightmost leaf)

o CREG generalize right-linear (regular) word grammars

c B
A typical CREG production

Commutative grammars

Commutative multiple regular grammar

CMREG extend CCFG by allowing multiple terms:
@ Productions have the form:
Aty ... ta) < Bi(xt1, - x1m)s -, Bp(Xp,1, -+ s Xpyny)
Where tj € com (ZU {xij | 1Z/27 }).
e Nonterminals are typed for consistency, with 7(S) = [o].

o CMREG generalize multiple context free word grammars.

&® ®
A /A /A — B(x1,1,x12) C(x0,1,%0,2)
X110 X1, X12 X2

Example of a CMREG production.

Commutative grammars

Commutative macro grammars

CMG are another generalization of CCFG:
e Nonterminals construct contexts (not just ground terms).

o Nonterminals are typed to enforce arities, with 7(S) = [o].
@ CMG generalize well-nested MCFGs.

A e [] |+ B(x1) C(x)

Example of a CMG production.

Commutative grammars

Commutative multiple context-free grammars

CMCFG generalize the other classes:
@ Nonterminals construct tuples of contexts.
@ Intuitively the “meet” of CMG and CMREG.

e Nonterminals are also typed with 7(S) = [o].

A . . /A /N — A(x1, x2, x3)

Example of a CMCFG production.

Commutative grammars
QOutline of commutative grammar hierarchy

CMCFG
/ i
—
MCFGwn — CMG CMREG

N S

CCFG — CFG

T

CREG — RG

MCFG

Hierarchy of mildly context-sensitive commutative grammars

(arrows denote inclusion)

Commutative grammars
QOutline of commutative grammar hierarchy

CMCFG
’ N \
? 7
7N — MCFG
MCFGwn —— CMG CMREG

N S

CCFG — CFG

T

CREG — RG

Hierarchy of mildly context-sensitive commutative grammars

(arrows denote inclusion)

Complexity results

Two decisions problems for parsing

We consider two classes of decision problems related to parsing:

@ Universal membership problem

Input A word w and a grammar G.
Answer YES iff w € L, (G).

@ Membership problem for G

Input A word w.
Answer YES iff w € L, (G).

Solving both problems involves parsing w according to G; however,
for membership, G is a fixed-size parameter (part of the constant).

Complexity results
Overview of results

Universal membership

Class Membership ND Eull
Terms 0(1) NP-C
CREG NLOGSPACE NP-C
CCFG LoGcrL-C NP-C
CMG NP-C Pspace-C EXPTIME
CMREG NP-C Pspace-C | EXPTIME-C
CMCFG NP-C Pspace-C | EXPTIME-C

Complexity results
NP-completeness of universal term membership

Universal membership

Class Membership ND Eull
Terms 0(1) NP-C
CREG NLOGSPACE NP-C
CCFG LoGcrL-C NP-C
CMG NP-C Pspace-C EXPTIME
CMREG NP-C Pspace-C | EXPTIME-C
CMCFG NP-C Pspace-C | EXPTIME-C

Complexity results

NP-hardness of UTM (1/2)

3-PART problem:

k k
Input A set S of 3m integers (4 <n < 2)

(L=l »] S

(e m I w]
m

s) [P] [T]

[Fon 2] [Pom=1][7om]

~ k

Complexity results

NP-hardness of UTM (1/2)

3-PART problem:

-2
Answer YES iff there is a partition S1...S,, of S that satisfies:

k k
Input A set S of 3m integers (4 <n <)

/\ an =k

S; njES,'

[(m JL = [=] § =0 1=][0 15
(I T | (=@ [=6 [=6]S,

m o part. 7T;

[mm—s] [m—a][m=5] [PrGm=5)] [FxGm=a)] [=Gm=3)] Sm—1

[For 2] [Pon—1][_mom] [P=6n—2)] (=m0 | P=on)] S,

~ k n k

m n mm—1 m3m
w = ()"
w=a...a a ... a a a
: i ; Kid T #

Complexity results

Outline of NP algorithm for UTM

To check wether w € L(t):
@ Guess a term t’ (s.t. t/ =t in com(X) by assoc/comm of ®)
o Check that yield(t') = w
o Check that t' =t

w = acb € L(t)?

t =t Ayield(t') = acb = acb € L(t)

Complexity results
NP-completeness of universal CCFG membership

Class Membership Universal membership

ND \ Full
Terms 0(1) NP-C
CREG NLOGSPACE NP-C
CCFG LoagcrL-C NP-C
CMG NP-C PspAce-C | EXPTIME

CMREG NP-C PspACE-C | EXPTIME-C
CMCFG NP-C PspACE-C | EXPTIME-C

Outline of NP algorithm for CCFG

Deciding wether w € L, (G):
e Construct a compact grammar G’ s.t. L, (G’) = L, (G).
o Guess a derivation of a term t € L(G') with |t| < |w]¥.
@ Check that the derivation is valid in PTIME.
@ Check that w € L(t) in NP.

Why is there such a G’ ?

o(t,c) > t

(e t) > t } iff |t| =1 or t = e(t1, 1)

Language-preserving rewriting system for terms.

Complexity results
Loccrr-completeness of CCFG membership

Universal membership

Class Membership ND Eull
Terms 0(1) NP-C
CREG NLOGSPACE NP-C
CCFG LoGcrL-C NP-C
CMG NP-C Pspace-C EXPTIME
CMREG NP-C Pspace-C | EXPTIME-C
CMCFG NP-C Pspace-C | EXPTIME-C

Complexity results

Notations for the CCFG algorithm

Grammars are "compact” and in normal form:
[op]
Al 7 «— B(x) C(y)
x oy
A(a) —

Derivation items are unordered vectors of NT between two positions:

<‘7”7./> (1<ij<|wl)

¥(G, N) is the precomputed (semilinear) set of bags of non-terminals
that V can generate in any order according to G.

Complexity results

CCFG parsing algorithm

A(a) a= w[i,j]

— CONSTANT
<1A7 Ia.]>
<1Baiaj> <1C5j7k> A(.X}/)%B(X) C(Y)
COMBINE
<1A7 ia k>

<V15i7.j> <V27.j7k> 0<vi 0<w |V1+V2| < |W‘
COMM. COMBINE

<V1 + o, ia k>
(vii,j) vep(G,A)
(1a,i,j)

LOGCFL recognition algorithm for CCFG.

COMM. REDUCTION

NP-hardness of fixed grammars beyond CCFG

Universal membership

Class Membership ND Eull
Terms 0(1) NP-C
CREG NLOGSPACE NP-C
CCFG LoGcrL-C NP-C
CMG NP-C Pspace-C EXPTIME
CMREG NP-C Pspace-C | EXPTIME-C
CMCFG NP-C Pspace-C | EXPTIME-C

Complexity results

Yet another reduction to 3-PART

Based on 3-PART - triplets and their sum are derived in parallel

/\

a...a# a...a# a...a# b ... b#

N——
1 ni,2 n,3 1
+n1 2
+n,3
w=am.. "3m#(bk#)"’
w = a .a a b .b...b
b#..
n1 n3m k k

34

NP-hard fixed CMREG

&
/ N\
® X5
S /N — A(x1) S(x) S(e) «—
® 02y
NN

, X2, X3, /\ > — A(X15X27X37X4) A(#’ #7#)#) S

bX4

A

bX4

X1, X2, /\ VA <—A(X1,X2,X33X4)
x3 b xy

A

°
A <X1, , X /\ > <— A(Xl,X27X3,X4)

NP-hard fixed CMG

/®\ //Xl\\
S X1 X2 — A(Xl) S(XQ) A o [][] o — A(Xl)
/AN /\ I\
#H#H#H all b[]
AN
5(e) «— ALl /.\ U /.\ = Aba)
al[] »b[]
® X1
/N AN
A ® ® — Al [T] o o — A(x1)
/\ / A\ AN
(1011111 al[lpl]

Complexity results
Overview of results

Universal membership

Class Membership ND Eull
Terms 0(1) NP-C
CREG NLOGSPACE NP-C
CCFG LoGcrL-C NP-C
CMG NP-C Pspace-C EXPTIME
CMREG NP-C Pspace-C | EXPTIME-C
CMCFG NP-C Pspace-C | EXPTIME-C

Conclusion

Conclusion and perspectives

In summary, we have provided:
@ An algebraic representation of sentences with free order

@ A hierarchy of generative grammars to construct such
representations

@ A study of the associated computational complexities

Next we want to look into:
@ Closure properties : rational cones, AFL, ...

@ Relation with UVG, dependency parsing, ...

	Motivation
	The algebra
	Commutative grammars
	Complexity results
	Conclusion

