

Edsger W. Dijkstra [1974]

 Edsger W. Dijkstra: Self-stabilizing Systems in Spite of Distributed Control. Commun. ACM 17(11): 643-644 (1974)

<u>Task :</u> « one circulating token in the ring » is eventually reached from any initial configuration

Self-Stabilization

Self-stabilizing systems

Self-stabilizing system is now a subfield of distributed systems:

lohnen's HdR

 9th International Symposium on Stabilization, Safety, and Security of Distributed Systems 14th -16th November 07, Paris

CiteSeer references ±500 papers

• O(lg(N)) bits – N is the number of nodes

Johnen's HdR

Johnen's HdR

Several tracks to explore

Benchmark of distributed systems: Token Circulation Leader Election

Johnen's HdR

on anonymous rings

[Dijkstra 74] : Self-stabilizing Deterministic token circulation on semi-uniform rings (unidirectional or bidirectional)

Several contributions to self-stabilization- outline

Preamble

Johnen's HdR

 Complexity in memory space Unidirectional rings Deterministic Algorithms

$\begin{array}{c|c} \hline \textbf{Deterministic Leader Election} \\ on Unidirectional Rings \\ \hline \textbf{System requirement :} \\ centralized schedules, prime-size rings \\ \hline \textbf{[J. Beauquier, M. Gradinariu, C. Johnen, 1999]} \\ \hline \textbf{[F. Ellen Fich, C. Johnen, 2001]} \\ \hline \textbf{Ig(N) bits \leq $$ Leader \\ Election $$ \leq $ Ig(N) + 4$ bits \\ $$ Leader Election by a \\ deterministic algorithm : $\Theta(Ig(N)) $$ 10} \\ \hline \textbf{Mathematical Schedules} $$ 100 \ \text{Mathematical Schedules} $$$

Johnen's HdR

Probabilistic Token Circulation	Service Time	Memory space
2000-2004, A. Datta,	(N+1)N ²	2lg(N.m _N)
M. Gradinariu, S. Tixeuil		
2002, H. Kakugawa,	2N	lg(N)+1
M. Yamashita		
2002, C. Johnen	N - <u>optimal</u>	lg(N+1)+1
2004, C. Johnen	N ²	2lg(m _N)+2

Token Circulation	Service Time	Memory Space
2000. J. Durand-Lose	unbounded	2lg(m _N)+c
[IJ90] - convergence time: N ²		
2002, C. Johnen	N	lg(N+1)+11
1993 A. Israeli, M. Jalfon		
2004, C. Johnen	N ²	2lg(m _N)+12
1993 A. Israeli, M. Jalfon		
Conjecture	2N	4lg(m _N)+c'

25

Johnen's HdR

Single-Writer Atomic Registers [Lamport 1986]

 Regular register such that if a READ operation returns the value written during the overlapping WRITE operation then any subsequence READ <u>cannot</u> return the most recent preceding written value (v1)

				_	
Self-stabilizing compilers					
	1 Atomia	Regular	Safe		
	ALOUITC	Regutat	5420		
State	Silent, obstrue	tion-free			
multi- reader	C. Jonnen, L.	Higham 07			
Link	L. Higham, C. Johnen				
Single reader	¦06 ↓				
Johnen's HdR				35	

Several contributions to self-stabilization - outline

Preamble

Johnen's HdR

39

- Complexity in memory space
- Model of communication by registers
- Algorithmic for ad-hoc networks

Ad-Hoc Networks

- A temporal, independent multi-hops network that provides peer-to-peer connectivity
- Network's topology may change rapidly and unpredictably
- Needs for an efficient management
 - -Self-configuration
 - -Self-maintenance
 - -Self-healing
- Self-stabilizing network management

Clustering for Ad-Hoc networks

- Easy inter-cluster management : o Cluster-head, 1-hop cluster
- Maintaining stable clusters :
 - o Weight-based clustering : Cluster-head selection is based on node's weight –
 - o The cluster-head is the node of the cluster having the highest weight

Time to build the weight-based clusters is O(D), where D is the network diameter

GDMAC

GDMAC [S. Basagni 1999] is a generic algorithm building weight-based 1-hop clusters

Computation of a suitable weight can be done by several technique: [GT95, BKL01, CDT02, MBF04, BKAGB06, RRGA06]

- power battery of the node
- node mobility
- node degree/transmission power

ohnen's HdR

Robust and self-stabilizing version of GDMAC [L. Nguyen, C. Johnen 2006]

• In a Safe configuration, the network is correctly partitioned :

o Each cluster has a node acting as a cluster-head o Each node belongs to a 1-hop cluster

- Convergence time to a safe configuration is 1 round
- The safety predicate is still verified even if nodes change their weight Johnen's HdR

Project : robust and self-stabilizing network management Cluster based routing protocol : - Robust and SS clustering [L. Nguyen, C. Johnen 2006] - Robust and SS routing schema [C. Johnen, S. Tixeuil 2003] • In safe configuration, guarantee the packet's transporting from any node to any nodes • Robustness to changes of node's weights

and link's cost.

Projects

- Complexity in memory space
 - Token circulation and leader election on Bidirectional anonymous rings
- Model of communication by registers

 Wait-free and self-stabilizing Compilers
- Algorithmic for ad-hoc networks

 Robust and self-stabilizing network management

Johnen's HdR

