
Self-Stabilizing weight-based Clustering Algorithm for Ad hoc

sensor Networks

Colette Johnen, Le Huy Nguyen
LRI{Universit�e Paris Sud, CNRS UMR 8623
Bâtiment 490, F91405, Orsay Cedex, France

E-mail: colette@lri.fr, lehuy@lri.fr

June 2, 2006

Abstract

Ad hoc sensor networks consist of large number of wireless sensors that communicate with
each other in the absence of a �xed infrastructure. Fast self-recon�guration and power e�ciency
are very important property on any sensor network management. The clustering problem con-
sists in partitioning network nodes into groups called clusters, thus giving at the network a
hierarchical organization. Clustering increase the scalability and the energy e�ciency of com-
munication among the sensors. A self-stabilizing algorithm, regardless of the initial system state,
converges to a set of states that satisfy the problem speci�cation without external intervention.
Due to this property, self-stabilizing algorithms are adapted highly dynamic networks. In this
paper we present a Self-stabilizing Clustering Algorithm for Ad hoc sensor network. Our algo-
rithm adapts faster than other algorithms to topology changes.

Keywords: Self-stabilization, Distributed algorithm, Clustering, sensor network.

1 Introduction

An ad hoc sensor network consists of a number of sensors spread across a geographical area. Each
sensor has wireless communication capability and some level of intelligence for signal processing and
networking. Given the large number of nodes and their potential placement in hostile locations, it is
essential that the network be able to self-organize; manual con�guration is not feasible. Moreover,
nodes may fail at any time (either from lack of energy or from physical destruction), and new
nodes may join the network. Therefore, the network must be able to recon�gure itself so that
it can continue to function. The lifetime of a sensor is determined by the battery life, thereby
requiring the minimization of energy expenditure for network management procedure. Therefore,
fast self-recon�guration has to be the main feature of a sensor network management.

Clustering means partitioning network nodes into groups called clusters, giving to the network a
hierarchical organization. A cluster is a connected graph composed of a clusterhead and (possibly)

1

some ordinary nodes. Each node belongs to only one cluster. In addition, a cluster is required
to obey to certain constraints that are used for network management, routing methods, resource
allocation, etc. By dividing the network into non-overlapped clusters, intra-cluster routing is admin-
istered by the clusterhead and inter-cluster routing can be done in reactive manner by clusterhead
leaders and gateway. Clustering has the following advantages. First, clustering facilitates the reuse
of resource, which can improve the system capacity. clustering-based routing reduces the amount of
routing information propagated in the network. Clustering reduces the amount of information that
is used to store the network state. The clusterhead will collect the state of nodes in its cluster and
built an overview of its cluster state. Distant nodes outside of the cluster usually do not need to
know the details of speci�c events occurring inside the cluster. Hence, an overview of the cluster's
state is su�cient for those distant nodes to make control decisions. Clustering is vital for e�cient
ressource utilization and load balacing in large scale networks as sensor networks.

For these reasons, it is not surprising that several distributed clustering algorithms have been
proposed during the last few years [12, 18, 2, 3, 1, 11, 8]. The clustering algorithms appeared
in [1, 11] build a spanning tree. Then on top of the spanning tree, the clusters are constructed.
In these papers, the clusterheads set is not a dominating set (i.e., a processor can be at distance
greater than 1 of its clusterhead). Two network architectures for MANET (Mobile Ad hoc Wireless
Network) are proposed in [12, 18] where nodes are organized into clusters. The built clusterheads set
is an independent (i.e., clusterheads are not neighbors) and also a dominating set. The clusterheads
are selected according to the value of their IDs. In [3], a Distributed and Mobility-Adaptive
Clustering algorithm, called DMAC, is presented; the clusterheads are selected according to a
node's parameter (called weight). The higher is the weight of a node, the more suitable this node
is for the role of clusterhead. An extended version of this algorithm, called Generalized DMAC
(GDMAC), was proposed in [2]. In the latter algorithm, the clusterheads set does not have to be an
independent set. This implies that, when, due to mobility of the nodes, two or more clusterheads
become neighbors, none has to resign. Thus, the clustering management with GDMAC requires less
overhead than the clustering management with DMAC in highly mobile environment. The DMAC
and GDMAC algorithms are analyzed respectively in following papers [7, 6], with respect to their
convergence time and message complexity. In [8], a weight-based distributed clustering algorithm is
presented; also the computation of the node's weight according several parameters (node's degree,
transmission power, battery power, :::). In [14, 23] probabilistic clustering constructions for ad hoc
sensor network are presented.

In 1973, Dijkstra [9] introduced to computer science the notion of self-stabilization in the context
of distributed systems. He de�ned a system as self-stabilizing when \regardless of its initial state,
it is guaranteed to arrive at a legitimate state in a �nite number of steps". A system which is not
self-stabilizing may stay in an illegitimate state forever. The design of self-stabilizing distributed
algorithms has emerged as an important research area in recent years [21, 10]. The correctness
of self-stabilizing algorithms does not depend on initialization of variables, and a self-stabilizing
algorithm converges to some prede�ned stable state starting from an arbitrary initial state. Self-
stabilizing algorithms are thus inherently tolerant to transient faults in the system. Many self-
stabilizing algorithms can also adapt dynamically to changes in the network topology or system

2

parameters (e.g., communication speed, number of nodes). A state following a topology changes
is seen as an inconsistent state from which the system will converge to a state consistent with the
new topology. [13] presents a self-stabilizing algorithm that builds a maximal independent set (i.e.,
members of the set are not neighbors, and the set cannot contains any other processors). Notice
that a maximal independent set is a good candidate for the clusterheads set because a maximal
independent set is also a dominating set (i.e., any processor is member of the dominating set or has
a neighbor that is member of the set). In [22], a self-stabilizing algorithm that creates a minimal
dominating set (i.e., if a member of the set quits the set, the set is not more a dominating set) is
presented. Notice that a minimal dominating set is not always an independent set.

Both algorithms DMAC and GDMAC are not self-stabilizing, i.e., they work assuming correct
initialization. They cannot cope with the wake up problem. Sensors to conserve energy sleep a
large portion of the time. During the sleeping period of a sensor, the network topology may have
drastically changed. The sensor has to automatically adapt to the new situation. We present
in this paper a self-stabilizing version of DMAC and GDMAC algorithm: they cope with any
initial con�guration. They also adapt to arbitrary topology changes due to node crash failures,
communication link crash failures, node recovering or link recovering, merging of several networks,
and so on.

The paper is organized as follows. In section 2, the formal de�nition of self-stabilization and
clustering is given. The self-stabilization version of the DMAC algorithm is presented in section
3; self-stabilization proof is also presented. In section 4, the self-stabilizing GDMAC algorithm
is presented with its proof. The time complexity is analyzed in section 5. The paper ends with
concluding remarks in section 6.

2 Model

2.1 Distributed System

In this paper, we consider the state model [4, 16, 15]. A distributed system S is a set of state
machines called processors. Each processor can communicate with a subset of other processors
called neighbors. We model a distributed system by an undirected graph G = (V;E) in which V ,
jV j = n, is the set of nodes and there is an edge fu; vg 2 E if and only if u and v can mutually
receive each others' transmission (this implies that all the links between the nodes are bidirectional).
In this case we say that u and v are neighbors. The set of neighbors of a node v 2 V will be denoted
by Nv. We assume the locally shared memory model of communication. Thus, each processor i
has a �nite set of local variables such that the variables at a processor i can be read by i and any
neighbors of i, but can only be modi�ed by i. Each processor has a program and the processors
execute their programs asynchronously. We assume that the program of each processor i consists
of a �nite set of guarded statements of the form Rule : Guard! Action, where Guard is a boolean
predicate involving the local variables of i and the local variables of its neighbors, and Action is an
assignment that modi�es the local variables in i. The rule R is executed only if the corresponding
guard Guard evaluates to true, in which case we say guard Guard is enabled. The execution by

3

processor i of an action rule with enabled guard is called a step of i. The state of a processor is
de�ned by the values of its local variables. A con�guration of a distributed system G is an instance
of the states of its processors. The set of con�gurations of G is denoted as C. A computation e
of a system G is a sequence of con�gurations c1; c2; ::: such that for i = 1; 2; :::; the con�guration
ci+1 is reached from ci by a single step of one or several processors. A computation is fair if any
processor in G that is continuously enabled along the sequence, will eventually perform an action.
Maximality means that the sequence is either in�nite, or it is �nite and in this later case no action
of G is enabled in the �nal con�guration. Let C be the set of possible con�gurations and E be the
set of all possible computations of a system G. Then the set of computations of G starting with
a particular initial con�guration c1 2 C will be denoted Ec1 . Every computation e 2 Ec1 is of the
form c1; c2; ::: The set of computations of E whose initial con�gurations are all elements of B 2 C
is denoted as EB.

In this paper, we use the notion attractor [17] to de�ne self-stabilization. Intuitively, an attractor
is a set of con�gurations of a system G that \attracts" another set of con�gurations of G for any
computation of G.

De�nition 1 (Attractor). Let B1 and B2 be subsets of C. Then B1 is an attractor for B2 if and
only if:

1. 8e 2 EB2; (e = c1; c2; :::);9i � 1 : ci 2 B1 (convergence).

2. 8e 2 EB1 ; (e = c1; c2; :::);8i � 1; ci 2 B1 (closure).

The set of con�gurations that matches the speci�cation of problems is called the set of legitimate
con�gurations, denoted as L. CnL denotes the set of illegitimate con�gurations.

De�nition 2 (Self-stabilization). A distributed system S is called self-stabilizing if and only if
there exists a non-empty set L � C such that the following conditions hold:

1. L is an attractor for C.

2. 8e 2 EL; e veri�es the speci�cation problem.

2.2 Clustering for network

Every node v in the network is assigned an unique identi�er (ID). For simplicity, here we identify
each node with its ID and we denote both with v.

Clustering an ad hoc sensor network means partitioning its nodes into clusters, each one with
a clusterhead and (possibly) some ordinary nodes. In order to meet the requirements imposed
by the wireless, mobile nature of these networks, ordinary nodes has to be at distance 1 of their
clusterhead. Thus, the following clustering properties have to be satis�ed:

1. Every ordinary node has at least a clusterhead as neighbor (dominance property).

2. A clusterhead has not clusterhead neighbors (independence property).

We consider weighted networks, i.e., a weight wv is assigned to each node v 2 V of the network.
In ad hoc sensor networks, amount of bandwidth, memory space or battery power of a processor
could be used to determine weight values.

4

The choice of the clusterheads will be based on the weight associated to each node: the higher
the weight of a node, the better this node is suitable to be a clusterhead. Thus the following
property has also to be veri�ed:

3. Every ordinary node a�liates with the neighboring clusterhead that has the highest weight.

3 Self-stabilizing DMAC algorithm

In the rest of this paper, we will refer to the guard of statement of process v as Gi(v) and the rule
of statement of process v as Ri(v).

Constants
wv : N; // the weight of node v

Local variables of node v
Chv: boolean; // indicate that v is or is not a clusterhead
Clusterheadv: IDs // the clusterhead of node v

Predicates
G1(v) � (8z 2 Nv : (Chz = F) _ (wv > wz));
G2(v) � (Chv = F) _ (Clusterheadv 6= v);
G3(v) � (Chv = T) _ (Clusterheadv 6= maxwzfz 2 Nv : Chz = T));

Rules
R1(v) : G1(v) ^G2(v)! Chv := T ;Clusterheadv := v;
R2(v) : :G1(v) ^G3(v)! Chv := F ;Clusterheadv := maxwzfz : Chz = Tg;

Algorithm 1 Self-stabilizing DMAC algorithm

v is a clusterhead i� Chv = T otherwise v is an ordinary node. If v has not a clusterhead in
its neighborhood whose weight is higher than its weight then v will become a clusterhead by
performing the rule R1(v). Otherwise, v will be an ordinary node by performing the rule R2(v); v
chooses its clusterhead by selecting the node having the highest weight among its neighbors which
are clusterhead. If Clusterhead value on v is not correct according to v'status (i.e., clusterhead or
ordinary) then a rule is enabled. The rule R1(v) (resp. R2(v).) is enabled if v is a clusterchead
(resp. if v is not a clusterhead).

3.1 Proof of convergence

Denote Decidedi; i 2 N a set of nodes which have certainly selected the clusterhead at end of its
step and this clusterhead stays unchange. The convergence is done in step. During the ith step,
8p 2 Decidedi will choose their clusterhead. We de�ne Decidedi; i 2 N as the following recursive
rule.

1: Decided0 = ;.
2: Denote vHi the node with the highest weight in V �Decidedi.

Decidedi+1 = Decidedi [fvHi +NvHi g.
We denote Li; L0

i; i 2 N a set of predicates on processor state. L0
0 = True. We will prove that at

the end of ith step, L0
i+1 is veri�ed.

5

Lemma 1 Once L0
i is reached, then vHi becomes a clusterhead and stays forever a clusterhead.

(Li+1 � L0
i and fvHi is a clusterhead g) is an attractor.

Proof: Notice that the guard G1(vHi) is always veri�ed because wvHi > wz; 8z 2 NvHi . If vHi
is not actually a clusterhead, then vHi veri�es G1(vHi) and G2(vHi) up to the time where vHi
performs the rule R1(vHi). As all computations are fair vHi will eventually perform R1(vHi). After
the execution of R1(vHi), vHi becomes a clusterhead. If vHi is actually a clusterhead then vHi will
stay forever a clusterhead because vHi can never perform R2(vHi). �

Lemma 2 Once Li+1 is reached, all vHi's neighbors in Vi choose vHi as their clusterhead and keep
it.
(L0

i+1 � Li and f8u 2 (NvHi \ Vi) : Clusterheadu = vHi g) is an attractor.

Proof: Let u be a vHi 's neighbor in Vi. Once Li+1 is veri�ed, u will never verify the guard
G1(u) because ChvHi = T and wvHi > wu. If Clusterheadu 6= vHi then u veri�es G3(u), the rule
R2(u) is enabled forever thus u will eventually perform R2(u). Once u have performed R2(u), the
clusterhead of u is vHi , R2(u) becomes disabled and will never be enabled again. �

Theorem 1 The system eventually reaches a terminal con�guration.

Following Lemma 1 and Lemma 2, we have that there exists k 2 N : Decidedk = V . When
Decidedk = V , no rule is executed in the system. Thus a terminal con�guration is reached. �

3.2 Proof of correctness

Theorem 2 Once the terminal con�guration is reached, the clustering properties are satis�ed.

Proof: In the terminal con�guration, for every processor v we have G1(v) = T ^ G2(v) = F or
G1(v) = F ^G3(v) = F .
Case 1. G1(v) = T ^G2(v) = F .
G2(v) = F means that v is a clusterhead. Hence, we need now to prove that v satis�es the property
3. Assume that there exits a processor z 2 Nv : Chz = T . Since G1(v) = T then wv > wz, thus
G1(z) = F . Since R2(z) is not executable, we have then G3(z) = F . G3(z) = F implies that
Chz = F , that is contrary. So there is no processor z 2 Nv : Chz = T , thus v satis�es the property
3.
Case 2. G1(v) = F ^ G3(v) = F . (G1(v) = F) � (9z 2 Nv : (Chz = T) ^ (wz > wv)). Thus
v has a clusterhead with higher weight than its weight in its neighbors (property 1 is veri�ed).
(G3(v) = F) � ((Chv = F) ^ (Clusterheadv = maxwzfz 2 Nv : Chz = T)). That means v is an
ordinary processor which a�liates with a clusterhead that has the highest weight. Thus v satis�es
the property 2. �

6

4 Self-stabilizing GDMAC algorithm

In the previous algorithm, we have requirement that the clusterheads are bound to never be neigh-
bors. This implies that, when due to the mobility of the processors two or more clusterheads
become neighbors, those with the smaller weights have to resign and a�liate with the now higher
neighboring clusterhead. Furthermore, when a clusterhead v becomes the neighbor of an ordinary
processor u whose current clusterhead has weight smaller than v's weight, u has to a�liate with
(i.e., switch to the cluster of) v. These \resignation" and \switching" processes due to processor's
mobility are a consistent part of the clustering management overhead that should be minimized in
ad hoc sensor networks. To overcome the above limitations, we introduce in this section a general-
ization of the previous algorithm. This algorithm is used to partition the nodes of the networks so
that the following three requirements (called ad-hoc sensor clustering properties) are satis�ed.

1. Every ordinary node always a�liates with (only) one clusterhead which has higher weight
than its weight (a�liation condition).

2. For every ordinary node v, for every clusterhead z 2 Nv : wz � wClusterheadv+h (clusterhead
condition).

3. A clusterhead has at most k neighboring clusterheads (k being an integer, 0 � k < n)
(k-neighborhood condition).

The �rst requirement ensures that each ordinary node has direct access to at least one clusterhead
(the one of the cluster to which it belongs), thus allowing fast intra and inter cluster communica-
tions. The second requirement guarantees that each ordinary node always stays with a clusterhead
that gives it a \good" service. By varying the threshold parameter h it is possible to reduce the
switching overhead associated to the passage of an ordinary node from its current clusterhead to a
new neighboring one when it is not necessary. With this requirement we want to incur the switching
overhead only when it is really convenient. When h = 0 we simply obtain that each ordinary node
a�liates with the neighboring clusterhead with the highest weight. Finally, the third requirement
allows us to have up to k neighboring clusterheads, 0 � k < n. When k = 0 we obtain that two
clusterhead can not be neighbors. Notice that the case with k = h = 0 corresponds to the previous
algorithm.

4.1 GDMAC algorithm description

Similarly to the algorithm 1, the rule R1 sets up the performing node as a clusterhead; after the
R2 action, the performing node is ordinary. A clusterhead v checks the number of its neighbors
that are clusterheads. If they exceed k, then it sets up the value of SRv to the weight of the �rst
clusterhead (namely, the one with the (k+1)th highest weight) that violates the k -neighborhood
condition (R4 action). Otherwise, SRv is assigned to 0 (R3 action). SRv value of an ordinary node
is 0 or R3 is enabled to set the value to 0.

We split the possibles cases where a node v has to change its role (i.e., to become ordinary or
clusterhead) in the following mutually exclusive ones:

7

Case 1. v is an ordinary node and v cannot select any neighbors as clusterhead - otherwise the
a�liation condition will be violated -. G11(v) is veri�ed. v will become a clusterhead (R1 action).

Case 2. v is a clusterhead. v does not violate the k -neighborhood condition but the value v's
clusterhead is incorrect. G12(v) is veri�ed: v will correct the value of its clusterhead (R1 action).

Case 3. v is an ordinary node and v violates the clusterhead condition. G21(v) is veri�ed: v
will become an ordinary node (R2 action).

Case 4. v is a clusterhead and v violates the k -neighborhood condition. G22(v) is veri�ed: v
will become an ordinary node (R2 action).

Constants
wv : N; // the weight of node v

Local variables of node v
Chv: boolean; // indicate that v is or is not a clusterhead.
Clusterheadv : IDs // the clusterhead of node v.
SRv : N // the highest weight which violates the 3th condition in v's neighbor.

Macros
N+
v = fz 2 Nv : (Chz = T) ^ (wz > wv)g; // the set of v's neighboring clusterhead

which has higher weight than v's weight.
Clv = jN+

v j; // the number of v's neighboring clusterhead which has higher weight
than v's weight.

Predicates
G1(v) = G11(v) _G12(v)
G11(v) � [(Chv = F) ^ (N+

v = ;)]
G12(v) � [(Chv = T) ^ (Clusterheadv 6= v) ^ (8z 2 N+

v : wv > SRz) ^ (Clv � k)]

G2(v) = G21(v) _G22(v)
G21(v) � [(Chv = F) ^ f(9z 2 N+

v : wz > wClusterheadv + h) _ (Clusterheadv =2 N+
v)g]

G22(v) � [(Chv = T) ^ f(9z 2 N+
v : (wv � SRz)) _ (Clv > k)g]

G3(v) � (Chv = F) ^ (SRv 6= 0)
G4(v) � (Chv = T) ^ (SRv 6= max(0; k + 1thfwz : z 2 Nv ^ (Chz = T)g))

Rules
R1(v) : G1(v)! Chv := T ;Clusterheadv := v;

SRv := max(0; k + 1thfwz : z 2 Nv ^ (Chz = T)g);
R2(v) : G2(v)! Chv := F ;Clusterheadv := maxwz

fz 2 Nv : Chz = Tg;SRv := 0;

// update the value of SRv

R3(v) : G3(v)! SRv := 0;
R4(v) : G4(v)! SRv := max(0; k + 1thfwz : z 2 Nv ^ (Chz = T)g);

Algorithm 2 Self-stabilizing GDMAC algorithm

4.2 Proof of convergence

We �rst prove that the system reaches a terminal con�guration.

Lemma 3 A1 = fC j 8v : G12(v) = Fg is an attractor.

8

Proof: If v veri�es predicate G12(v) then v is enabled and will stay enabled up to the time where
v performs R1(v). As all computations are fair, v eventually performs R1(v). After that G12(v) is
never veri�ed (see the rule action). �

Lemma 4 In A1, once v had performed a rule R1(v) or R2(v), the guard of statements Gi(v) : i =
1; 2 remain false unless there exists a node u, wu > wv, that performs a rule R1(u) or R2(u).

Proof: In A1, G12(v) is never true.
Case 1. Once v had performed the rule R1(v), we have that Chv = T and Clusterheadv = v.
Thus, the next rule performed by v will be R2(v).
Before doing R1(v), G11(v) is veri�ed, we have N+

v = ;. At time where v performs R2(v), G22(v)
is veri�ed, implies that N+

v 6= ;, thus there is a node u 2 Nv, wu > wv that performed the rule
R1(u) in meantime.
Case 2. Once v had performed the rule R2(v), we have that Chv = F and Clusterheadv :=
maxwzfz 2 Nv : Chz = Tg , next time v would perform a rule only if G11(v) or G21(v) is veri�ed.
Denote u the clusterhead of v, then after doing R2(v) we have u 2 N+

v and wu = max(wz; 8z 2 N+
v):

Case 2.1. v will performs R1(v) because G11(v) is veri�ed. At time where v performs R1(v),
G11(v) is veri�ed then N+

v = ;, implies that u performed the rule R2(u) in meantime.
Case 2.2. v will performs R2(v) because G21(v) is veri�ed. G21 is veri�ed, means that (9z 2

N+
v : wz > wu + h) _ (u =2 N+

v), implies that there exists a node z 2 Nv; wz > wu + h > wu
performed R1(z) or u performed R2(u) in meantime. �

Lemma 5 A2 = A1 [fCj8v : (G1(v) = F) ^ (G2(v) = F)g is an attractor.

Proof: We will prove by contradiction. Assume that A2 is not an attractor. A processor cannot
verify forever G1 _G2 (this processor would be enabled forever and never performs a rule). Thus
along a maximal computation there is a processor v that in�nitely often veri�es G1(v) or G2(v) and
also in�nitely often does not verify G1(v) or G2(v). Meaning that v executes in�nitely often R1(v)
or R2(v). Following Lemma 4, once v have performed a rule R1(v) or, R2(v) it would perform R1(v)
or R2(v) again if there exists a processor u (wu > wv) that performs R1(u) or R2(u). Since the set
of processors is �nite, then v performs R1(v) or R2(v) in�nity often only if there exists a processor
u (wu > wv) that performs R1(u) or R2(u) in�nity many times. Using a similar argument we have
a in�nite sequence of processors having increasing weight that performs R1 or R2 in�nity often.
Since the number of processors is �nite, this is a contrary. Hence our hypothesis is false, and for
every node v, Gi(v) : i = 1; 2 becomes eventually false and stay false. �

Theorem 3 The system eventually reaches a terminal con�guration.

Proof: By Lemma 5, A2 is an attractor. In A2, processor v would only update of SRv one time if
necessary. �

4.3 Proof of correctness.

Theorem 4 Once a terminal con�guration is reached, the ad-hoc sensor clustering properties are
satis�ed.

9

Proof: In a terminal con�guration, for every processor v, we have Gi(v) = F : i = 1; 2.
Case 1. v is an ordinary node.
G1(v) = F implies N+

v is not empty. G2(v) = F implies (@z 2 N+
v : (wz > wClusterheadv + h)) and

(Clusterheadv 2 N+
v). Thus v satis�es property 1 and 2.

Case 2. v is a clusterhead node.
(G2(v) = F) � (8z 2 N+

v : wv > SRz) ^ (Clv � k). G1(v) = F implies that Clusterheadv = v.
We now prove that v has at most k neighboring clusterheads. Since Clv � k, then v has at most
k neighboring clusterheads with higher weight than v's weight. Assume that v has more than
k neighboring clusterheads, thus there exits at least a neighboring clusterhead u of v such that
wu � SRv < wv. Hence, G22(u) = T because v 2 N+

u (wu � SRv), that is a contrary. �

5 Time complexity

Z 1

(a) : Before stabilization

: Clusterhead node : Ordinary node

X 2 X m

Y 2 Z 2 Y m Z m

X 1

Y 1 Z 1Z’

X 2 X m

Y 2 Z 2 Y m Z m

X 1

Y 1Z’

B1 B2 Bm

(b) : After stabilization

Figure 1: Stabilization time.

The stabilization time is the maximum number of rounds needed to reach a stabilized state from
an arbitrary initial state. Figure 1 presents a scenario to measure stabilization time of GDMAC for
k = 1; h = 0. Notice that the scenario can be easily generalized at any value of k and the starting
con�guration is the worst one. We have a system S composed bym blocs as depicted in Figure 1(a).
Each bloc Bi includes two clusterheads Xi, Yi and an ordinary node Zi. We assume that the weight
of nodes are ordered as the following: Xi > Yi > Zi > Yi+1. A clusterhead node Z 0, Z 0 > Y1 is also
in S. We denote N the number of nodes in the system S, N = m(k+ 2) + 1. Following Algorithm

10

2, each bloc Bi will one after another takes two rounds to reconstruct under the synchronous
schedule. Thus, 2m rounds are needed to converge under the synchronous schedule. Then, the
stabilization time is O(2N=(k+2)) in this example. We conclude that the worst stabilization time
is O(2N=(k + 2)). Notice that the worst stabilization time of DMAC is O(N), same time that
GDMAC when k = 0.

6 Concluding remarks

The presented algorithms are designed for state model. Nevertheless, our algorithms can be easily
transformed into algorithms for the message-passing model. Each node v periodically broadcasts
to its neighbors its state (i.e., a message containing the values of Chv, SRv, and wv). Based on
this message, v's neighbors decide to update or not their variables. After a change in the value of
Chv, SRv, or wv, a node v broadcasts to its neighbors its new state.

Other self-stabilizing clustering algorithms have been designed. In [5], a self-stabilizing link-
cluster algorithm under an asynchronous message-passing system model is presented (no conver-
gence proofs are presented). The de�nition of cluster is not exactly the same as ours: an ordinary
node can be at distance two of its clusterhead. The presented clustering algorithm requires three
types of messages, our algorithms adapted to message passing model require one type of message.

A self-stabilizing algorithm for cluster formation is presented in [20]. A density criteria (de�ned
in [19]) is used to select clusterhead: a node v chooses in its neighborhood the node having the
highest density. A v's neighborhood contains all nodes at distance less or equal to 2 from v.
Therefore, to choose clusterhead, communication at distance 2 is required. Our algorithms build
clusters on local information; thus it requires only communication between nodes at distance 1 of
each others.

We have presented in this paper a self-stabilizing version of DMAC and GDMAC algorithm:
they cope with any initial con�guration. They also adapt to arbitrary topology changes due to
node crash failures, communication link crash failures, node recovering or link recovering, merging
of several networks, and so on.

We have showed that the stabilization time of GDMAC is O(2N=(k + 2)). When k = 0,
the stabilization time is O(N) as DMAC algorithm. By varying the threshold parameter k, the
stabilization time can be reduced. Reducing the stabilization time is very important for ad hoc
sensor networks: topology changes happen fairly often, conservation of sensor energy is a key factor.
Thus network management procedure should be as simple as possible.

References

[1] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in multi-hop wireless
networks. In INFOCOM 2001, pages 1028{1037, 2001.

11

[2] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support in multi-
hop wireless networks. In VTC'99: Proceedings of the IEEE 50th International Vehicular
Technology Conference, pages 889{893, 1999.

[3] S. Basagni. Distributed clustering for ad hoc networks. In ISPAN'99: Proceedings of the 1999
International Symposium on Parallel Architectures, Algorithms, and Networks, pages 310{315,
1999.

[4] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements for self-stabilizing
leader election protocols. In PODC '99: Proceedings of the eighteenth annual ACM symposium
on Principles of distributed computing, pages 199{207, 1999.

[5] D. Bein, A. K. Datta, C. R. Jagganagari, and V. Villain. A self-stabilizing link-cluster algorithm
in mobile ad hoc networks. In ISPAN '05: Proceedings of the 8th International Symposium on
Parallel Architectures, Algorithms and Networks, pages 436{441, 2005.

[6] C. Bettstetter and B. Friedrich. Time and message complexities of the generalized distributed
mobility-adaptive clustering (GDMAC) algorithm in wireless multihop networks. In VTC'03:
Proceedings IEEE Vehicular Technology Conference, pages 176{180, 2003.

[7] C. Bettstetter and R. Krausser. Scenario-based stability analysis of the distributed mobility-
adaptive clustering (DMAC) algorithm. In MobiHoc'01: Proceedings of the 2nd ACM Sympo-
sium on Mobile Ad Hoc Networking & Computing, pages 232{241, 2001.

[8] M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering algorithm for mobile
ad hoc networks. Journal of Cluster Computing, Special issue on Mobile Ad hoc Networking,
5(2):193{204, 2002.

[9] E. W. Dijkstra. Selfstabilizing systems in spite of distributed control. Comm. ACM, 17,
11:643{644, 1974.

[10] S. Dolev. Self-Stabilization. MIT Press, 2000.

[11] Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks. In POMC '02:
Proceedings of the second ACM international workshop on Principles of mobile computing,
pages 31{37, 2002.

[12] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network. Wireless Networks,
1(3):255{265, 1995.

[13] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing protocols for
maximal matching and maximal independent sets for ad hoc networks. In WAPDCM'03: 5th
IPDPS Workshop on Advances in Parallel and Distributed Computational Models, 2003.

[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-speci�c protocol ar-
chitecture for wireless microsensor networks. IEEE Transactions on Wireless communications,
1(4):660{670, 2002.

12

[15] C. Johnen. Service time optimal self-stabilizing token circulation protocol on anonymous
unidirectional rings. In SRDS '02: Proceedings of the 21st IEEE Symposium on Reliable
Distributed Systems, pages 80{89, 2002.

[16] C. Johnen, L. O. Alima, S. Tixeuil, and A. K. Datta. Self-stabilizing neighborhood synchronizer
in tree networks. In ICDCS '99: Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, page 487, 1999.

[17] C. Johnen and S. Tixeuil. Route preserving stabilization. In SSS'03: Proceedings of the
6th International Symposium on Self-stabilizing System, Springer LNCS 2704, pages 184{198,
2003.

[18] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal on
Selected Areas in Communications, 15(7):1265{1275, 1997.

[19] N. Mitton, A. Busson, and E. Fleury. Self-organization in large scale ad hoc networks. In The
Third Annual Mediterranean Ad Hoc Networking Workshop, MED-HOC-NET 04, June 2004.

[20] N. Mitton, E. Fleury, I. Gu�erin. Lassous, and S. Tixeuil. Self-stabilization in self-organized
multihop wireless networks. In WWAN'05: Proceedings of the 25th IEEE International Con-
ference on Distributed Computing Systems Workshops, pages 909{915, 2005.

[21] M. Schneider. Self-stabilization. ACM Symposium Computing Surveys, 25:45{67, 1993.

[22] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-stabilizing
minimal domination protocol in an arbitrary network graph. In IWDC'03: Proceedings of the
5th International Workshop on Distributed Computing, Springer LNCS 2918, 2003.

[23] Ossama Younis and Sonia Fahmy. Distributed clustering for ad-hoc sensor networks: A hybrid,
energy-e�cient approach. In Proceedings of IEEE INFOCOM, 2004.

13

