
Distributed Computing manuscript No.
(will be inserted by the editor)

Randomized Self-stabilizing and Space Optimal Leader Election under
Arbitrary Scheduler on Rings

Joffroy Beauquier1, Maria Gradinariu⋆2, Colette Johnen1

1 LRI, Univ. Paris-Sud, CNRS, Bat 490, F-91405 Orsay, France jb,colette@lri.fr
2 LIP6, Univ. Paris 6, CNRS, INRIA, France, maria.gradinariu@lip6.fr

The date of receipt and acceptance will be inserted by the editor

Summary. We present a randomized self-stabilizing leader
election protocol and a randomized self-stabilizing to-
ken circulation protocol under an arbitrary scheduler on
anonymous and unidirectional rings of any size. These
protocols are space optimal. We also give a formal and
complete proof of these protocols.
To this end, we develop a complete model for proba-
bilistic self-stabilizing distributed systems which clearly
separates the non deterministic behavior of the sched-
uler from the randomized behavior of the protocol. This
framework includes all the necessary tools for proving
the self-stabilization of a randomized distributed system:
definition of a probabilistic space and definition of the
self-stabilization of a randomized protocol.
We also propose a new technique of scheduler manage-
ment through a self-stabilizing protocol composition (cross-
over composition). Roughly speaking, we force all com-
putations to have a fairness property under any sched-
uler, even under an unfair one.

keywords: self-stabilization, randomized protocol, pro-
tocol composition, scheduler, leader election.

1 Introduction

Self-stabilization is a framework for dealing with channel
or memory failures. After a failure the system is allowed
to temporarily exhibit an incorrect behavior, but after
a period of time as short as possible, it must behave
correctly, without external intervention. For distributed
systems, the self-stabilization feature can be viewed as an
element of transparency with respect to failures, because
the user is not supposed to notice a major change in the
quality of service he or she receives, or at least not for a
long time.

⋆ This work was done while the author was working at LRI,
Univ. Paris-Sud, CNRS
Correspondence to: Colette Johnen, LRI, Univ. Paris-Sud,
CNRS Bat 490, F-91405 Orsay, France. fax: +33 1 69 25 65
86, e-mail: colette@lri.fr, web: www.lri.fr/∼colette/

Another type of transparency for distributed systems is
the transparency to the dynamic evolution of the net-
work. It is mandatory that the connection of a new sub-
network to the main one does not interact with the con-
figuration of a particular user. This type of transparency
is not satisfied when the system - i.e. the protocols con-
stituting it - have to be scaled to the size of the network.
That is the reason why the study of constant space pro-
tocols has received a lot of attention. A protocol uses
only constant space if the memory space needed by each
processor is constant per link. Then in the case where
the network is extended (or reduced) the majority of
processors have not to change hardware nor software.

In this paper, we address a basic task for distributed sys-
tems, leader election, having in mind to obtain solutions
both self-stabilizing and using constant space memory.
When a system is in a symmetrical configuration, no
deterministic protocol can break symmetry and elect a
leader [2]. This impossibility result also applies to self-
stabilizing system therefore randomization is used in or-
der to circumvent this apparently dead-end situation.
We present a space optimal randomized self-stabilizing
leader election protocol for anonymous and unidirectional
rings of any size, under any scheduler (in particular no
fairness assumption is required). Its space complexity is
O(mN). mN is the smallest integer not dividing the ring
size(N); it should be noticed that mN is constant on
average. The space optimality of our protocol is proven
in [6]. However our protocol is not silent. In [16] the au-
thors prove that a silent self-stabilizing leader election on
anonymous ring requires at least N1/2 processors state.

Proving the protocol formally needs a proper model for
randomized self-stabilizing protocols. Therefore, we de-
velop a complete model for probabilistic self-stabilizing
distributed systems This framework includes all the nec-
essary tools for proving the self-stabilization of a ran-
domized distributed system: definition of a probabilistic
space and definition of the self-stabilization of a random-
ized protocol. An important issue is that the model must
make a clear distinction between what is non-deterministic
(the scheduler/adversary) and what is randomized (the
protocol). Some papers consider that the scheduler, when

2 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

choosing a process to be activated in a given configura-
tion, obeys some probabilistic rule. Although it could be
argued that such an hypothesis corresponds generally to
the reality, we won’t adopt this approach here, mainly
because a probabilistic scheduler is a very feeble adver-
sary. In order to obtain the strongest result we consider
the strongest adversary (i.e. non-deterministic). The dif-
ference between a probabilistic and a non-deterministic
scheduler can be pointed out by a very simple example.
Consider a unidirectional ring with two tokens (no mat-
ter how tokens are represented). If a process in the ring
holds a token and is chosen by the scheduler, with prob-
ability 1/2 it passes the token to its successor and with
probability 1/2 it keeps the token. It appears (and will
be easily provable after we have developed our model)
that if the scheduler is non-deterministic, it can avoid
forever (with certainty) the gathering of the two tokens,
while if the scheduler is probabilistic (each process hold-
ing a token is chosen in a step with probability 1/2),
the two tokens gather with probability 1. Another im-
portant issue for the model is to make clear the end part
of the previous sentence: What does it mean to say that
the two tokens gather with probability 1 ? The first step
is to relate the probabilistic laws of the random vari-
ables that appear in the rules of the randomized proto-
col, to a probability measure defined on the set of (finite
and infinite computations) of this protocol. The second
step consists in proving that, for this probability mea-
sure and for any ”behavior” of the scheduler (obviously
what a ”behavior” of the scheduler is, must be defined),
the set of computations in which the two tokens gather
has probability 1 (or equivalently that the (non empty)
set of computations in which the tokens never gather has
probability 0).

Lastly, it should be mentioned that, for the sake of clar-
ity, we decompose the leader election protocol into two
sub-protocols related by a new composition, that we
name cross-over composition. An interesting point with
cross-over composition is that, when protocol W is com-
posed with protocol S, the composite has the same prop-
erties in term of fairness than the protocol S. In other
words, if for some particular reasons, the computations
of S under an unfair scheduler are in fact fair, then the
computations of the composite under this same unfair
scheduler, are also fair. We show how this property of
the cross-over composition yields an automatic technique
for transforming a protocol, designed and proved for a
fair scheduler, into an equivalent protocol for an unfair
scheduler, making the task of the designer/prover sim-
pler.

1.1 Related works

Some results are known concerning self-stabilizing ran-
domized leader election. In [3] a self-stabilizing leader
election protocol on bidirectional id-based networks pre-
sented, requiring lg∗(N) states per process (N being the
network size). A basic protocol is given, requiring N
states per process, and the result is obtained by using

a data structure that stores distributively the variables.
In an appendix, [28] uses another data structure based on
the Thue-Morse sequence, requiring O(1) bits per edge
to store in a distributed manner variables having possi-
bly N values. These two last results require bidirectional
networks. When the deadlock freedom property is guar-
anteed externally, a randomized self-stabilizing, constant
space leader election protocol is given in [33] in the mes-
sage passing model.

Probabilistic I/O automata were presented in [41]
and [12]. This work was improved by Wu, Smolka and
Stark [44]. In [40], Lynch and Segala introduced a method
including the adversary in the probabilistic automaton
which models a distributed system. They made a dis-
tinction between the protocol which is probabilistic and
the adversary which is non deterministic. In [39] Segala
considers the model from [44] with the scheduler defined
in [40]. In [36], the authors apply the model to verify for-
mally the time properties of randomized distributed pro-
tocols. The case study is the randomized dining philoso-
phers protocol of Lehman and Rabin. The main restric-
tion of this model is that it manages only schedulers
that have a probabilistic behavior as explained in [36].
Even, if most of the schedulers have a probabilistic be-
haviors, this model does not allow a complete analysis
of a randomized protocol. In particular, it does not al-
low to analyze a randomized protocol under the worst
conditions: an unfair scheduler.

In the self-stabilization area, the first randomized pro-
tocols were proposed by Israeli and Jalfon in [27] and
by Anagnostou and El-Yaniv in [1]. The notion of self-
stabilization for a randomized protocol is defined with-
out presenting any probabilistic space. Therefore, no for-
mal proof is given.

In [19] Dolev, Moran and Israeli introduced the idea of
a two players games (scheduler-luck game) to analyze
the performance of randomized self-stabilizing protocol
under Read/Write atomicity. The scheduler is an adver-
sary of the protocol that tries to keep away the protocol
from legitimate configurations. Sometimes, the luck in-
tervenes to influence the output of the binary random-
ized variables. Their framework is not designed to es-
tablish the self-stabilization of the protocol: in fact they
assume that the protocol is self-stabilizing. In contrast,
our framework is designed to prove the self-stabilization
of a protocol that uses any type of random variables (bi-
nary or not).

Hierarchical composition was presented in [24], and in
[18]: the (k + 1)th component stabilizes to the desired
behavior after stabilization of first k components. In [24],
a selective composition is presented. Composition of in-
dependent components interacting with each others was
presented in [43]. In [17], the parallel composition is pre-
sented, designed to improve the convergence time. Sev-
eral protocols independently perform the same task, in
parallel; a specific protocol selects one output as the com-
position output (it chooses the output of the fastest pro-
tocol).

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 3

Several protocol transformers preserving the self-stabilization
property exit. The output is generally a protocol working
under more powerful scheduler that the inital protocol
[31]. Some of them are based on local mutual exclusion
protocol [11], alternator [23], or dining philosopher pro-
tocol [34].

Outline. The paper is organized as follows. The formal
model of a distributed system is given in section 2. In
section 3, we define the framework used to prove for-
mally randomized self-stabilizing protocols. The cross-
over composition is defined in section 4. Space optimal,
randomized self-stabilizing token circulation and leader
election protocols are presented and proven in section 5.
Finally, the paper ends with some concluding remarks.

2 Model

A distributed system is the collection of processors (Proc)
computing protocol P . A protocol has a collection of
variables (internal and/or field) and has a code part.

A processor communicates only with its neighbors (a
subset of Proc). Communication among neighbors is car-
ried out by field variables. A processor can read the field
variables of its neighbors; but it cannot read their inter-
nal variables. A processor can read and update its own
variables.

Local and global configuration versus state and configura-
tion. The state of a processor is the collection of values
of the processor’s variables (internal or field). A config-
uration of a distributed system is a vector of processor
states. A local configuration is the part of a configuration
that can be “seen” by a processor (i.e. its state and the
field variables of its neighbors).

Randomization. In a randomized protocol, each proces-
sor has a random variable. The domain and the distri-
bution of this variable depend on the protocol the only
constaint on this variable is that the domain has to be
finite. The output of an action of a processor p depends
on the value of p random variable. The processor random
variables are independent, thus the output of a p action
is independent of the output of an action of another pro-
cessor.

Actions. The code is a finite set of guarded actions (i.e.
label:: guard → statement). The guard of an action on
p is a boolean expression involving p local configuration.
The statement of a P action updates the p state. If the
action is randomized, several statements are possible,
and each of them has a probability.

We assume that no processor of a distributed system sat-
isfies the guards of two actions in the same configuration.

Thus, at most one guard is enabled per processor in any
configuration.

A processor p is enabled at a configuration c, if an ac-
tion guard of p is satisfied in c. The set of enabled pro-
cessors for c is denoted by Enabled(c).

Computation step. Let c be a configuration, and CH be
a subset of enabled processors at c. We denote by < c :
CH > the set of configurations that may be obtained
from c after that the processors of CH have performed
simultaneously an action. A computation step (c, CH ,
c′) is defined as follow : (1) an initial configuration: c, (2)
a set of enabled processors: CH , and (3) a configuration
of < c : CH >: c′.

In the case of a deterministic protocol, a computation
step is totally defined by the initial configurations and
the set of enabled processors: there is only one final cor-
responding configuration. But in the case of randomized
protocol, the final configuration depends on the output of
each processor action. The output of a processor action
depends on the value of the processor’s random variable.
Therefore, in the case of randomized protocols, the com-
putation step has a fourth characteristic element : the
probabilistic value associated to the computation step.

A computation is a sequence of consecutive computa-
tion steps. We denote last(e) the final configuration of
the computation e. Formally, [e(c, CH, c′)] is a compu-
tation if and on if e is a computation and last(e) = c.
A computation is maximal, if the computation is either
infinite, or finite and no processor is enabled in the final
configuration. In this case, the configuration is said to
be terminal. The set of all maximal computations of the
distributed protocol, P , is denoted by EP . The set of all
computations of P that are not maximal is denoted by
PAR EP .

2.1 Scheduler

At each step of a computation, a scheduler selects a
(non-empty) subset of enabled processors which will be
activated during the next computation step. There are
two ways to view a scheduler: first as a result, subset of
all possible computations of the distributed system; sec-
ondly as a dynamic selecting process called at each step
of a computation.

Definition 1. In a distributed system, a scheduler is a
predicate over maximal computations.

From the dynamic point of view, a scheduler chooses a
subset of enabled processors. These processors will be
the only ones to perform an action during the next com-
putation step. The choice of the scheduler is done ac-
cording to the reached configuration but also according
to the computation past (the computation steps that
have been performed). A scheduler is completely defined
if one knows for every sequence of computation steps,
all possible scheduler choices (several subsets of enabled
processors).

4 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

Notation 21 Procs is the set of subsets of Proc.

Definition 2. Let P be a protocol. A function f is said
to be a function of Choice if f is a function from PAR EP

to Procs such that ∀e ∈ PAR EP we have f(e) ⊂ Enabled(last(e))
and f(e) 6= ⊘.

Let f be function of Choice. Let e be a computation. If
for every prefix of e defined as [e1(c, CH, c′)], we have
CH = f(e1), then we say that e adheres to f .

f adheres to D if and only if all computations that adhere
to f satisfy the predicate D.

The dynamic aspect of a scheduler D on P is the col-
lection of Choice functions that adhere to D. We call
ChoicePD this set of Choice functions.

2.2 Strategy

One can imagine schedulers having no regular behavior.
For instance, a scheduler that is well-disposed to the pro-
cessor p: as soon as p is enabled then it chooses p. Or a
scheduler that avoids to select q - it chooses q only if q
is the only enabled processor. To analyse a protocol, the
scheduler has to be considered as an adversary: the pro-
tocol must work properly in spite of the “bad behavior”
of the scheduler. The interaction between the scheduler
and the protocol can be seen as a game. In this game,
the goal of the scheduler is to prevent the protocol doing
its job.

In this game the scheduler has different strategies to win
according to some “rules”. Figure 1 presents a strategy.
Initially, the scheduler chooses some enabled processors
in the initial configuration. This first step in the sched-
uler strategy gives all the computation steps that can
occur according to the scheduler choice (in a random-
ized protocol, the choice of the scheduler determines sev-
eral computation steps). For each obtained computation
step, the scheduler makes one choice. This second step in
the scheduler strategy gives all the sequences of 2 com-
putation steps that can be obtained after the two first
choices of the scheduler. For each of these sequences, the
scheduler makes one and only one choice, if it can (if the
configuration is not terminal), and so on.

The concept of strategies is closely related to the con-
cepts of policies of de Alfaro [14], adversaries of Segala
and Lynch [40] and to the schedulers of Lehman and
Rabin [32], Vardi [42], and Pnueli and Zuck [35].

Definition 3. Let c be a configuration of protocol P, and
f be a function of Choice of P. The strategy st = (c, f)
of protocol P is the set of maximal computations of P
adhering to f and whose the initial configuration is c.
The strategy st = (c, f) of protocol P is a strategy un-
der the scheduler D if and only if f adheres to D.

Observation 21 Let st be a strategy of the protocol P.
Let e1 be a prefix of a computation of st such that e1(c, CH, c′)
is also a prefix of a computation of st. If c′′ ∈ < c :
CH > then e1(c, CH, c′′) is also a prefix of a computa-
tion of st.

CH3

CH2

CH1

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��������

����
����
����
����

����
����
����
����
����
����
����

����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

p11

1−p11

1−p12

p13

1−p13

1−p14
p15

CH9

CH6

CH4

CH7

CH10c10

c4

c5

c6

c7

c8

c9

p4
c1

c2

c3

CH0

p1

p2

1−p1 −p2

c12

c13

c15

c16
c17

c20

c19

c18

c14

c11

terminal configuration

p7

p6
p5

1−p4

p12

p14

1−p15
1−p7

1 − p5 −p6

c0

Fig. 1. A strategy with the probabilities of the com-
putation steps

Observation 22 In the case of a deterministic protocol,
a strategy is a maximal computation.

Observation 23 Let P be a protocol under the sched-
uler D. Each couple (c, f) where c ∈ C and f ∈ ChoicePD

defines a strategy of P under D. Thus the number of
strategies of P under D is |C|.|ChoicePD| which is usu-
ally infinite.

3 Probabilistic model

In a probabilistic distributed system, each processor has
a random variable. The fundamental problem solved in
this section is the definition of a probability on the sys-
tem computations related to the random variables (thus
defining a probabilistic space). Once this probability de-
fined, we will be able to give a definition of the self-
stabilization of a randomized protocol.

3.1 Field on a strategy

The basic notion that we will use to define a probabilis-
tic space on the computations of a given strategy is the
cone. Cones have been introduced in [39]. We construct
a field (a class of subsets of strategy’s cones closed by
finite unions and by complementary) on strategy com-
putations.

In the sequel of this section, we will always refer to a
protocol P under a scheduler D.

Definition 4. Let st be a strategy. A cone Ch of st is
the set of all st’s computations with the common prefix
h. h is called the history of the cone. The number of
computation steps in the history h is denoted by |h|.

Ch is a singular cone, if last(h) is a terminal configu-
ration (i.e. no processor is enabled at last(h)).

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 5

The subcone Ch′ of the cone Ch is the set of all compu-
tations of Ch having h′ as a prefix.

Example: See Figure 1, h = [(c0, CH0, c1)(c1, CH1, c4)],
the |h| = 2. last(h) is the configuration c4.

Remark. Let st be a strategy. st is a particular cone with
an empty history. This cone is denoted by Cst.

Definition 5. Let st be a strategy. Let S be a class of
subsets of st. S is a field of st if and only if (1) st ∈ S,
(2) A ∈ S implies A ∈ S, and (3) ∀i ∈ [1, n] :: Ai ∈ S
implies

⋃
1≤i≤n Ai ∈ S.

The proof of the following lemma is given in appendix
A.

Theorem 1. Let st be a strategy. Fst is a field.

3.2 Strategy - probabilistic space

A probabilistic space is by definition a triple (Ω,F , P)
where Ω is a set, F is a σ-field of Ω and P is a prob-
abilistic measure. A σ-field is a class of subsets of Ω
containing Ω, closed by complementary and by count-
able unions. A probabilistic measure is defined from F
to [0, 1] and verifies the following properties: P(Ω)=1
and if A1, A2, . . . , is a disjoint sequence of F sets then
P (

⋃∞
k=1 Ai) =

∑∞
k=1 P (Ak). According to the proper-

ties of P , if A is an element of F , then we have P (A) =
1 − P (A).

3.2.1 Probability of a computation step

In a randomized protocol, each processor has a random
variable. The output of an action of a processor p de-
pends on the value of p random variable. The random
variables are independent, thus the output of a p ac-
tion is independent of the output of an action of another
processor. The probability of a computation step is the
product of probability of every output of actions that
have been performed during the computation step.

Definition 6. The probabilistic value associated to a com-
putation step, pr(c, CH, c′) is defined by: pr(c, CH, c′) =∏

p∈CH pr(Xp = valp), where Xp is the random variable

of the processor p, valp is a value of Xp, and c′ is the
obtained configuration after that all processors of CH
have set their Xp variable to valp and have performed
an action.

Observation 31 It is easy to prove that

∑

c′∈<c:CH>

pr(c, CH, c′) = 1

where c is not a terminal configuration.

3.2.2 Probabilistic space on a strategy

In this section, we equip a strategy st with a probabil-
ity space. The construction of the probability measure
will be made hierarchically using results of the classi-
cal theory of probabilities. We will define a probabilis-
tic measure on Fst (a field of st). Well-known results
of probabilistic theory establish that a field can be ex-
tended by closure to a σ-field. The probabilistic measure
defined on the field can be also extended to the σ-field.
Also, we will construct a probabilistic space on top of st.

Let st be a strategy. We associate to the cone Ch a value,
function of its history, by extending the probability pr
defined on computation steps. The value of Ch is the
product of the probabilities of each computation step of
h (the computation step probabilities are independent).
From these values, we will build a probability measure
on Fst.

Definition 7. Let st be a strategy. Let Pst be the func-
tion defined as follow:

Pst(Ch) =
∏|h|

k=0 pr(ck, CHk, ck+1), where
h = [(c0, CH0, c1)(c1, CH1, c2) . . . (c|h|, CH|h|, c|h|+1)].

Pst(A) =
∑n

i=1 Pst(Ci) where A =
⋃n

i=1 Ci and the
cones Ci are pairwise independent.

Example: See Figure 1, h1 = [(c0, CH0, c1)(c1, CH1, c5)],
Pst(Ch1) = p1.(1 − p4). Ch1 is a singular cone. h2 =
[(c0, CH0, c2)(c2, CH2, c7)(c7, CH7, c16)], Pst(Ch2) = p2.p6.(1−
p13).

Some properties of Pst are proven in B. These properties
are needed to establish that Pst is a probability measure
on the field Fst.

Observation 32 Pst is effectively a function, because
the image of an element of Fst by Pst is unique (lemma
25).

Lemma 1. Let st be a strategy. Let A be an element of
Fst. We have Pst(A) + Pst(A) = 1

Proof. Let M be the set of of pairwise independent cones
whose history length is equal to 1. According to the
corollary 8, we prove that Pst(

⋃
C∈M C) = 1. We have⋃

C∈M C = st = A ∪ A. As A and A are pairwise inde-

pendent, 1 = Pst(A ∪ A) = Pst(A) + Pst(A). 2

Theorem 2. Let st be a strategy. The function Pst is a
probabilistic measure defined on the field Fst.

Proof. Pst is a probabilistic measure because the follow-
ing properties are verified:

According to the corollary 8, Pst(st) = 1.

Let A be an element of Fst. we have Pst(A)+Pst(A) = 1
(lemma 1). By definition of Pst, Pst(A) ≥ 0 and Pst(A) ≥
0. Thus Pst(A) ∈ [0, 1]. 2

6 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

Definition 8. Let st be a strategy. Let S be a class of
subsets of st. S is a σ-field of st if and only if (1) Cst ∈
S, (2) A ∈ S implies A ∈ S, and (3) ∀i :: Ai ∈ S implies⋃∞

i=0 Ai ∈ S.

Notation 31 Let σ(Fst) be the σ-field generated by Fst.

Theorem 3. There is a unique extension, P ∗
st, of the

probabilistic measure Pst to σ(Fst).

Proof. The extension is made according to the classical
theory of probabilities. This function is a probabilistic
measure on the σ(Fst). For more details see chapter 1 of
[10]. 2

Let st be a strategy. The triple (st, σ(Fst), P
∗
st) defines

a probabilistic space on st.

In the following sections, we denote by Pst: P ∗
st -the ex-

tension of Pst to σ(Fst)-.

3.3 Self-Stabilization of a randomized protocol

In this section, we define the self-stabilization for the
probabilistic protocols with respect to the probabilistic
model defined in the previous section. This section in-
troduces also the probabilistic version of the attractor
and the definition of probabilistic self-stabilization using
probabilistic attractors.

Notation 32 Let X be a set. x ⊢ Pred means that the
element x of X satisfies the predicate Pred defined on
the set X .

Let st be a strategy of a protocol under a scheduler D.
Let PR be a predicate over configurations. We note by
EPRst the set of st computations reaching a configura-
tion that satisfies the predicate PR.

Lemma 2. Let st be a strategy. Let PR be a predicate
over configurations. There is a countable union of pair-
wise independent cones (A =

⋃
i∈N Ci) so that EPRst =

A.

Proof. Let Mn be defined as Mn = {Ch:: |h| = n and
last(h) ⊢ PR}. The number of the cones in the set Mn

is finite.
Let M be defined as M =

⋃
i∈N Mi. By definition of

PRst, EPRst =
⋃

C∈M C.
M is the countable union of finite sets, thus M is a count-
able set. Then EPRst is a countable union of pairwise
independent cones (lemma 18). 2

In the following we will define the self-stabilization for a
probabilistic protocol under a scheduler D.

Definition 9 (Probabilistic self-stabilization). A prob-
abilistic distributed protocol P is self-stabilizing under a
scheduler D for a specification SP if and only if there is
a predicate L on configurations (defining the legitimate
configurations) such that:

• probabilistic convergence In any strategy st of P
under D the probability of the set of computations
reaching a legitimate configuration is equal to 1. For-
mally, ∀st, Pst(ELst) = 1.

• correctness In any strategy st, the probability for
the set of computations reaching a legitimate config-
uration and then from this legitimate configuration
verifying SP is 1. Formally, ∀st, Pst({e ∈ st : e =
[e1, e2], last(e1) ⊢ L, and e2 ⊢ SP}) = 1.

Definition 10 (Probabilistic Attractor). Let L1 and
L2 be two predicates defined on configurations. L2 is a
probabilistic attractor for L1 on a protocol P under a
scheduler D (L1 ⊲prob L2) if and only if the following
condition holds:

• probabilistic convergence for all strategies st of P
under D such that Pst(EL1) = 1, we have: Pst(EL2) =
1, Formally, ∀st, Pst(EL1) = 1 ⇒ Pst(EL2) = 1.

Theorem 4. (Probabilistic Self-stabilization) A ran-
domized protocol P is self-stabilizing for a specification
SP , if there exists a sequence of predicates true = L1,L2,
. . ., Ln), where Ln is the legitimate predicate, such that
the following conditions hold:

• probabilistic convergence ∀i ∈ [1, n−1] :: Li⊲prob

Li+1.
• probabilistic correctness ∀st, Pst({e ∈ st :: e =

[e1, e2], last(e1) ⊢ Ln, and e2 ⊢ SP}) = 1.

Observation 33 We denote as L12 the following pred-
icate on configurations L1∧L2. If L1 ⊲prob L2 and if L1
is closed then L1 ⊲prob L12.

3.4 Proving the convergence of self-stabilizing protocols

In this section, we present a theorem that helps to build
convergence proofs of randomized protocols. This theo-
rem can be used in case of a proof via attractors, but
also in case of a direct proof.

Informally the next definition is introduced for dealing
with such a statement: “in a cone where the predicate
PR1 is satisfied, the probability to reach a configura-
tion satisfying the predicate PR2 in less than n steps is
greater than δ”.

Definition 11. (Local convergence) Let st be a strategy.
Let Ch be a cone in the strategy st. The cone Ch holds
the property Local Convergence(PR1, PR2, δ, n) if and
only if:

• last(h) ⊢ PR1;
• M is the set of pairwise independent subcones of Ch

(Chh′) such that (1) |h′| ≤ n, and (2) last(hh’) ⊢
PR2;

• Pst(
⋃

C∈M C) ≥ δ.Pst(Ch).

On a strategy st, if it exists δst > 0 and nst > 1 such that
any cone of st satisfies Local Convergence (PR1, PR2,
δst, nst) then we said that st verifies the Convergence
(PR1, PR2, δst, nst) property or Convergence (PR1, PR2)
property.

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 7

Theorem 5. Let st be a strategy of the protocol P under
a scheduler D. Let PR1 be a closed predicate on config-
urations such that Pst(EPR1) = 1. Let PR2 be a closed
predicate on configurations. Let us note PR12 the pred-
icate PR1 ∧ PR2. If ∃ δst > 0 and ∃ nst > 1 such that
st verifies the Convergence(PR1, PR2, δst, nst) property
then Pst(EPR12) = 1.

Proof. Let ELk be the set of computations reaching a
configuration satisfying PR1 and, after that, in at most
k.nst steps they reach a configuration satisfying the pred-
icate PR2. We prove that Pst(ELk) ≥ 1 − (1 − δ)k and
ELk ∩ EPR1 is a countable union of pairwise indepen-
dent cones where Pst(ELk ∩ EPR1) = 1 − Pst(ELk).
Let Ch be a cone of st. We define M2′h as M2′h = {Chh′ ::
|h′| ≤ nst, and last(hh’) ⊢ PR2}. We define M1′h as
M1′h = {Chh′ :: |h′| ≤ nst, last(hh’) does not verify
PR2, and either last(hh’) is a terminal configuration or
|h′| = nst}. M2′h (M1′h) being a set of cones, according
to lemma 18, there is a set of pairwise independent cones
M2h (M1h) such that M2h = M2′h (M1h = M1′h).
The cones of M2h contain all computations of Ch that
reach PR2 in less than nst steps. The cones of M1h

contain the other computations. By hypothesis

Pst(
⋃

C∈M2h

C) ≥ Pst(Ch).δst

.

• Basic step (n=1). EPR1 is a countable union of
pairwise independent cones (lemma 2). EPR1 =

⋃
C∈M1

C
where M1 is a countable set of pairwise indepen-
dent cones. From the hypothesis, Pst(

⋃
C∈M1

C) =∑
C∈M1

Pst(C) = 1.

We have EL1 =
⋃

Ch∈M1
(
⋃

C∈M2h
C); thus Pst(EL1) ≥

δst.
∑

Ch∈M1
Pst(Ch).

So, Pst(EL1) ≥ δst.Pst(EPR1) ≥ δst = 1− (1− δst).
All computations of a cone of M1h belongs to EL1,
all computations of Ch that belongs to EL1 are in a
cone of M1h. Thus, EL1∩EPR1 =

⋃
Ch∈M1

(∪C∈M1h
C).

Then EL1 ∩ EPR1 is a countable union of pairwise
independent cones (lemma 18). As Pst(EPR1) = 0,
we have Pst(EL1 ∩ EPR1) = 1 − Pst(EL1)

• Induction step. We suppose the hypothesis are true
for k-1.
By hypothesis, ELk−1 ∩ EPR1 is a countable union
of pairwise independent cones. We call Mk the set
of independent cones whose the union is equal to
ELk−1 ∩ EPR1. Thus, ELk−1 ∩ EPR1 =

⋃
C∈Mk

C,

and Pst(ELk−1 ∩ EPR1) =
∑

C∈Mk
Pst(C).

We name Diffk the computations set such that (1)
ELk = ELk−1∪Diffk, and (2) diffk ∩ELk−1 = ⊘.
Diffk =

⋃
C∈Dk

C where Dk = {Chh′ :: Ch ∈ Mk,

and Chh′ ∈ M2h}.
We have Diffk =

⋃
Ch∈Mk

(
⋃

C∈M2h
C); thus

Pst(Diffk) ≥ δst.
∑

Ch∈Mk

Pst(Ch)

So Pst(Diffk) ≥ δst.(1 − Pst(ELk−1)). Pst(ELk) ≥
1 − (1 − δst)

k.

We have (ELk ∩ EPR1) ⊂ (ELk−1 ∩ EPR1), thus,
we prove as in the basic step that ELk ∩ EPR1 =⋃

Ch∈Mk
(∪C∈M1h

C). Then, EL1∩EPR1 is a count-

able union of pairwise independent cones (lemma 18).
As Pst(EPR1) = 0, we have Pst(ELk ∩ EPR1) =
1 − Pst(ELk).

Pst(ELn) ≥ 1 − (1 − δ)n. Therefore,

P (EPR12) = lim
n→∞

P (ELn) = 1

. 2

According to the precedent theorem, in a given strategy
st, to prove the converge toward L, one has to prove the
Convergence (true, L) property. This proof technique
has been used in [25,5,29,13,30].

Corollary 1. Let PR1 and PR2 be two closed predi-
cate on configurations. If each strategy st of a protocol P
under a scheduler D, verifies Convergence(PR1, PR2)
then (PR1 ⊲prob PR2).

Corollary 2. Let PR2 be a closed predicate on configu-
rations. If each strategy st of a protocol P under a sched-
uler D verifies Convergence(true, PR2) then

∀st, Pst(EPR2) = 1

.

4 Cross-over composition

This composition is designed as a tool for scheduler man-
agement. An incipient form of this composition was pre-
sented in [6] and further developed in [8]. Here a formal
definition of this composition is provided and an exam-
ple of scheduler controlling through this quite particular
composition is given. In a cross-over composition, the
actions of an initial protocol W are synchronized with
the actions of a second protocol S: the W actions are
performed only when a S action is performed too. Thus,
the computations of the composite protocol under any
scheduler have the same properties as the computations
of S in term of fairness.

Definition 12. Let W and S be two arbitrary protocols
having no common variable. The cross-over composi-
tion between W and S (denoted by W♦S) is the protocol
defined as:

• For every action of W : < l W >::< g W > → <
s W >, and for every action of S < l S >::< g S > → <
s S >, the composite protocol contains the following
action:

< lW , lS >:: < g W > ∧ < g S > −→ <
s W >; < s S >

• For every action of S < l S >::< g S > → <
s S >, the composite protocol contains the following
action (enabled when any G guard is not satisfied):

< l S >::< g S >
∧
¬ < g W > −→ < s S >

8 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

In W♦S, W is called the ”weaker” protocol and S is
called the ”stronger” .

W♦S has the following properties:

• the actions of composite protocol are constructed ac-
cording to the actions of its parents;

• an action of W is performed, if an action guard of S is
satisfied and if the W ’s action guard is also satisfied
(simultaneously the both actions are performed);

• an action of S is performed even if no action guard of
W is satisfied (but the guard action of S is satisfied).

For example, the protocol SSCTC (protocol 5.3) is the
cross-over composition of the protocol CTC (protocol
5.2) and the protocol DTC (protocol 5.1).

4.1 Projection

The influence of each parent on the child can be seen by
projecting the child computation on its parents.

Let c be a configuration of W♦S. The protocols W and
S have no common variable; so c is the product of a con-
figuration of W and a configuration of S. The projection
of c = cW cS on W (S) is the product of the values of
W ’s variable (S’s variable) on each processor in c and is
equal to cW (cS).

Let (c, CH, c′) be a computation step of W♦S. The pro-
jection of (c, CH, c′) on S is (cS , CH, c′S) (all processors
of CH perform an S’s action in this computation step).
We call CHW the set of CH ’s processors that perform an
W ’s action in the computation step (c, CH, c′). If CHW

is not empty, then the projection of (c, CH, c′) on W is
(cW , CHW , c′W); otherwise the projection is empty.

Let ω be a computation of W♦S. We call ωS (ωW) the
projections of ω on the protocol S (W). These projec-
tions are obtained by projecting every computation step
of ω on the selected protocol.

Example: Let e be the computation W♦S defined as
[(c0wc0s, CH0, c6wc1s) (c6wc1s, CH6, c6wc2s) (c6wc2s,
CH4, c6wc4s) (c6wc4s, CH3, c14wc5s)] (see the figure 2).
The projection of e on W is [(c0w, CH0w, c6w) (c6w,
CH3w, c14w)]. The projection of e on S is [(c0s, CH0, c1s)
(c1s, CH6, c2s) (c2s, CH4, c4s)(c4s, CH3, c5s)].

Observation 41 Every maximal no-empty computation
of W♦S under the scheduler D has a maximal, non
empty projection on S under the scheduler D.

Definition 13 (Total fairness property). Let P be a
protocol. P is total fair if all P maximal computations
under any scheduler contains an infinity of actions of
each processor.

The following theorem introduces a general feature of
the cross-over composition - preservation of the stronger
properties.

Theorem 6. Let W and S be two protocols. Let P be a
property of maximal computation of S. W♦S holds the
property P .

Proof. Let ω be a maximal computation of W♦S. From
the observation 41 any maximal computation of W♦S
has a maximal projection on S. Hence, ωS (projection
ω on S) is a maximal computation of S. ωS holds the
property P . 2

Corollary 3. Let W and S be two protocols. If S is total
fair then W♦S is total fair.

The properties of the projection of W♦S on W depend
on the properties of S. We give a necessary condition on
S to ensure that the maximality of the projection on W
of any computation of W♦S.

Lemma 3. Let W and S be two protocols. If S is to-
tal fair then every maximal computation of W♦S has a
maximal projection on W .

Proof. Let ω be a maximal computation of W♦S. Let
ωW be the projection of ω on W . Suppose that ωW is
finite and its final configuration is not terminal. We call
cW the final configuration of ωW . cW is the projection of
a configuration of ω that we call c. In ω, from c no action
of W is performed. In c, there is at least one processor
having a W guard verified. Let p be such a processor.
The processor p, due to the total fairness property of
the composite (corollary 3), will perform an action in ω.
According to the cross-over composition definition, when
p performs an action of S, if p holds an action guard of
W then p performs in the same computation step the
W action. In this case, ω contains an action of W after
reaching c. When p performs an action of S, it is possible
that the processor p does not hold any action guard of
W . But in this case, one of p’s neighbors has performed
an action of W . Therefore, ω contains an action of W
after reaching c. 2

4.2 Scheduler managing by cross-over composition

Some protocols are self-stabilizing under some specific
schedulers. For instance, under a k-bounded scheduler
(i.e. selecting computations verifying the following prop-
erty “until a processor p is enabled another processor can
perform at most k actions”). In this section, we study
the necessary and sufficient conditions to transform a
self-stabilizing protocol under a k-bounded scheduler in
a self-stabilizing protocol under an arbitrary scheduler.
The idea of the transformation is the cross-over compo-
sition between the initial protocol, playing the “weaker”
role and a specific protocol. In this paper, we only present
this type of transformation but the power of cross-over
composition is not limited to this particular case.

Before presenting this transformation in the case of de-
terministic and probabilistic protocols; we give some ba-
sic notations.

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 9

Definition 14. A computation ω is k-fair if and only
if (1) any processor p infinity often performs an action,
and (2) between two actions of p, every other processor
performs at most k actions.

An arbitrary protocol is k-fair, if all its computations
under any scheduler are k-fair.

Remark. A k-fair protocol is a total fair protocol but the
reverse is not true.

Lemma 4. Let W and S be two protocols. If S is k-fair
then W♦S is k-fair.

Proof. This lemma is a corollary for the theorem 6. 2

In the following, we consider a special type of sched-
uler called k-bounded scheduler. The scheduler consid-
ered in [4] is memory k-bounded scheduler. k-bounded
and memory k-bounded schedulers have been compared
in [9].

Definition 15. Let ω be a computation. ω is k-bounded
if and only if along ω, till a processor p is enabled an-
other processor can perform at most k actions.

A scheduler is called k-bounded if and only if it selects
only k-bounded computations.

Remark. A k-fair computation is k-bounded; but the
converse is not true.

Lemma 5. Let W and S be two protocols. Let ω be a
maximal computation of W♦S under any scheduler. ωW

is the projection of ω on W . If S is k-fair then ωW is a
maximal k-bounded computation of W .

Proof. ωW is maximal because S is total fair (lemma 3).
Suppose that ωW does not satisfy the k-bounded pred-
icate. Hence, there is a fragment FW of ωW such that
the processor q performs k + 1 actions, p performs no
action and p is always enabled. FW is the projection of
a fragment of ω called F . According to the definition of
W♦S, F has the following property (i) p performs no
action in F (ii) q performs at least k + 1 actions in F . F
is part of an fragment of p called Fpp verifying the fol-
lowing properties: (1) Fpp begins and ends by an action
of p; (2) Fpp contains only two actions of p; and (3) in
Fpp, q performs at least k + 1 actions. Fpp cannot exist
because W♦S is k-fair (lemma 4). 2

We prove that W♦S is self-stabilizing to SP , if S is k-
fair and W is self-stabilizing to SP under a k-bounded
scheduler.

Theorem 7. Let S be a deterministic and k-fair proto-
col. Let W be a deterministic protocol self-stabilizing to
SP under a k-bounded scheduler. W♦S is self-stabilizing
for the specification SP under any scheduler.

Proof. Let ω be a maximal computation of W♦S. ωW is
the projection on W of ω. From the lemma 5, the com-
putation ωW is maximal and it satisfies the k-bounded
predicate. The weaker protocol is self-stabilizing under
k-bounded scheduler, then a suffix of ωW satisfies SP .
Thus, the computation ω has a suffix satisfying the pred-
icate SP . 2

4.2.1 Projection of a strategy

In this section, we present the properties of the projec-
tion of a strategy of W♦S on W when S is deterministic
and k-fair. Figure 2 displays an example of such a pro-
jection.

Let S be a deterministic and k-fair protocol. Let W be
a randomized protocol. Let st be a strategy of W♦S.
stW is the projection of st on W . Formally, stW = {e ∈
EW :: ∃e′ ∈ st such that the projection of e′ on W is
e}. As S is k-fair, the computations of stW are maximal
and k-bounded (lemma 5). In what follows, we prove that
stW is a strategy of W under a k-bounded scheduler.

Lemma 6. Let e1W and e2W be two computations of
stW . If e1W = [eW (c1W , CH1W , c3W) e12W] and e2W =
[eW (c2W , CH2W , c4W)e22W] then c1W = c2W and CH1W =
CH2W .

Proof. e1W (e2W) is the projection of a computation of
st that we call e1 (e2). If e1 = e2 then by definition of a
projection e1W = e2W .

If e1 6= e2 then it exists e such that e1 = [e(c1, CH1, c3)e12]
and e2 = [e(c2, CH2, c4)e22] where (c1, CH1, c3) 6= (c2, CH2, c4).
According to the computation definition, c1 = c2. Ac-
cording to the strategy definition, CH1 = CH2. Thus
c3 6= c4, as S is deterministic, we have c3W 6= c4W . Thus

e1W = [eW (cW , CHW , c3W)e12W]

and
e2W = [eW (cW , CHW , c4W)e22W]

where c3W 6= c4W . 2

Lemma 7. Let fW be the function defined by: if eW ∈
stW and if eW = [e1W (cW , CHW , c2W) e2W] then fW (e1W) =
CHW . fW is a function of Choice

Proof. fW is effectively a Choice function: (1)fW is a
function from PAR EW to Procs; (2) the lemma 6 proves
that fW is a function; we have (3) ∀e ∈ PAR EW ::
f(e) ∈ Enabled(last(e)) and (4) f(e) 6= ⊘. 2

Lemma 8. Let st1W = (cW , fW) be a strategy of W
where (1) cW is the projection on W of the initial config-
uration of st; and (2) fW is the Choice function defined
by if eW ∈ stW and if eW = [e1W (cW , CHW , c2W)e2W]
then fW (e1W) = CHW . Then, we have st1W = stW and
st1W is a strategy.

Proof. According to the lemma 7, st1W is a strategy of
W . By construction, all computations of stW belongs to
st1W .

We prove that all computations of stW belongs to st1W

by contradiction. Let eW ∈ st1W and eW 6∈ stW . It exists
e1W such that (1) eW = [e1W (c1W , CH1W , c3W)e3W],
(2) e1W is the projection of a prefix of e, a computa-
tion of W♦S, and (3) e1W (c1W , CH1W , c3W) is not the
projection of any prefix of any computation of st.

The projection of e on W is e1W (c2W , CH2W , c4W)e4W .
We have c1W = c2W and CH1W = CH2W = fW (e1W).

10 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

Call e1′ the prefix of e such that (1) its projection on
W is e1W , (2) e1′(c2, CH2, c4) is a prefix of e, and (3)
e1W (c2W , CH2W , c4W) is the projection of e1′(c2, CH2,
c4) on W . There is a configuration c3 (c3 = c3W c4S)
such that (1) c3 ∈< c2 : CH2 >, and (2) the projection
of c3 on W is c3W . By Observation 21, e1(c2, CH2, c3) is
the prefix of a computation of st. Thus e1W (c1W , CH1W , c3W)
is the projection of a prefix of a st’s computation. 2

Theorem 8. Let S be a deterministic and k-fair proto-
col. Let W be a randomized protocol. Let st be a strat-
egy of W♦S. We name stW the projection of st on W .
Let AW be a predicate on computations of W . stW is a
strategy of W and we have Pst({e ∈ st :: eW ⊢ AW }) =
PstW

({e′ ∈ stW :: e′ ⊢ AW }).

Proof. Lemma 8 proves that stW is a strategy of W .
Let ChW

be a cone of stW . As S is deterministic, hW

is the projection of only one computation of st, called
h. Therefore, ChW

is the projection of only one cone of
st called Ch. And, we have Pst(Ch) = PstW

(ChW
). By

extension, we have Pst({e ∈ st :: eW ⊢ A}) = PstW
({e′ ∈

stW :: e′ ⊢ A}). 2

CH2

wc17c6
s

sc5

sc5

wc0 sc0

�
�
�
�terminal configuration

CH2

wc0

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

CH4

p6
p5

1 − p5 −p6

w sc2

w sc1

w s

w s

w s

c1

1

c3

c7

c3

c3
1−p12

p12
wc16

CH5

c6

1

s

c6 CH6

c3

c4

w sc2
w
c4

s
c6 c6

1−p15 w

wp15 c14

c15

CH3

p1

1−p1

CH0

A strategy of W <> S

c2

w

w

Projection on W of the strategy

c6

p6
p5

1 − p5 −p6

w

w

wc7

w

w

1−p15 w

wp15 c14

c15

CH3

c3

c4

p1

1−p1

CH0

1−p12

p12

wc17

wc16

CH5w

Fig. 2. The projection of a strategy of W ♦ S on W
(S being deterministic and k-fair)

Theorem 9. Let S be a deterministic and k-fair pro-
tocol. Let W be a probabilistic protocol self-stabilizing
for the specification SP under a k-bounded scheduler.
W♦S is self-stabilizing for the specification SP under
any scheduler.

Proof. Let st be a strategy of W♦S. Let stW be the
projection of this strategy on W . stW is a strategy of W
(see theorem 8). As S is k-fair, the computations of stW
are k-bounded (lemma 5). The probability of the set of
computations of stW that will eventually satisfy SP is
1. According to theorem 8, the probability of the set of
computations of st that will eventually satisfy SP is 1.
2

The cross-over composition is used in this paper to trans-
form a protocol self-stabilizing under a quite particular
scheduler (the k-bounded scheduler) into a protocol self-
stabilizing under an arbitrary scheduler. This technique
can be also used to transform a protocol self-stabilizing
under a central scheduler into a protocol self-stabilizing
under an arbitrary scheduler. We can imagine other ap-
plications for our technique in the field of scheduler man-
agement but the result depends always on the properties
of the stronger protocol.

5 Randomized self-stabilizing token circulation
and leader election

In section 5.1, we present a protocol that is (N-1)-fair (N
being the size of the ring) on anonymous, unidirectional
rings. In section 5.2, we present a space optimal random-
ized token circulation protocol under any scheduler on
anonymous and unidirectional rings. The protocol is ob-
tained by cross-over composition. Finally, in section 5.3,
a space optimal randomized self-stabilizing leader elec-
tion protocol under any scheduler for anonymous and
unidirectional rings of any size is presented.
The space complexity of our token circulation and leader
election protocols are O(lg mN) bits per processor where
mN is the smallest integer not dividing N (N being the
ring size). Notice that the value of mN is constant on
average. For example, on odd size rings, 4 (2) bits per
processor are necessary and sufficient for leader election
(token circulation). The optimality of our protocols was
proven in [6].

These protocols are self-stabilizing under any scheduler.
There is no restriction on the scheduler except that it
has to choose enabled processors. But the scheduler may
be unfair by avoiding to choose some specific processors.

5.1 Deterministic token circulation

Remark. All operations are made modulo mN .

Notation 51 We said that a processor has a token if
and only if it satisfies the Deterministic token predicate
(defined in the protocol 5.1).

Lemma 9. In a ring, there is always a token.

Proof. Assume there is a terminal configuration. Call c
such a configuration where no processor has a token. Let
p0, p1, p2 . . . pN−1 be the processors of the ring. On c,
∀i ∈ [0, N − 1] dti+1 = (dti + 1) mod mN On c, dtN−1 =
(dt0 + N − 1) mod mN or dt0 = (dtN−1 + 1) mod mN =
(dt0 + N) mod mN . It is not possible because N mod
mN 6= 0. 2

When a processor performs an action, it loses its token. It
will perform again an action only after receiving a token
(after that its left neighbor has performed an action).

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 11

Protocol 5.1 Deterministic token circulation on anony-
mous and unidirectional rings: DTC

Field variables on p:
dtp is a variable taking value in [0, mN - 1]. (the variable

represents the deterministic token)

Predicate:
Deterministic token(p) ≡ dtp − dtlp 6= 1 mod mN

Macro:
Pass Deterministic token(p) : dtp := (dtlp + 1) mod mN

Action on p:
A:: Deterministic token(p) −→

Pass Deterministic token(p)

Corollary 4. The protocol DTC is without termination
under any type of scheduler.

Notation 52 The distance between two processors i and
j is denoted by dist(i, j). We have dist(j, i) = N −
dist(i, j).

Theorem 10. The protocol DTC is (N-1)-fair.

Proof. Let p be a processor. We name pk the processor
such that dist(p, pk) = k. We prove by induction that
the processor pk (k ∈ [1, N − 1]) will perform at most k
actions before that p performs an action.

Basic step. The processor p1 may perform only one
action. After losing its token, it cannot perform any ac-
tion before an action of p.

Induction step. Suppose that the processor pk−1

performs at most k − 1 actions before an action of p. pk

will get at most k − 1 tokens from pk−1. The processor
pk will perform at most k actions (k−1 actions, if it gets
k − 1 tokens; plus one action, if it has initially a token).

Between two actions of p, another processor can perform
at most N-1 actions. Therefore p performs an infinite
of actions along a maximal computation (each maximal
computation is infinite). 2

5.2 Token circulation under an arbitrary scheduler

The randomized token circulation protocol (CTC) pre-
sented by Beauquier, Cordier and Delaët in [4] is self-
stabilizing under a memory k-bounded scheduler on uni-
directional and anonymous rings. We compose this pro-
tocol with DTC, the obtained protocol is self-stabilizing
token circulation protocol under an arbitrary scheduler.

A processor is privileged, if its verifies the privilege pred-
icate (defined in the protocol. 5.2). A round for a priv-
ilege in the protocol CTC is a fragment computation
starting in a configuration c and ending in a configura-
tion c′, having the following properties: (1) in c and c′

, only p holds a privilege; and (2) in the fragment each
processors holds the privilege one and only one time. Let
SPME be the following predicate over computations: “in

Protocol 5.2 token circulation on anonymous and uni-
directional rings: CTC

Field variables on p:
tp is a variable taking value in [0, mN -1]. (the variable

represents the privilege)

Random Variables on p:
rand boolp taking value in {1, 0}. Each value has a

probability 1/2.

Predicate:
Privilege(p) ≡ tp − tlp 6= 1 mod mN

Macro:
Pass privilege(p) : tp := (tlp + 1) mod mN

Action on p:
A:: Privilege(p) −→ if (rand boolp = 0) then

Pass privilege(p);

each configuration, there is only one privileged proces-
sor and the computation contains an infinity of rounds”.
Let LME be the following predicate over configurations:
“ there is only one privileged processor in the system”. A
legitimate configuration for the protocol CTC is a con-
figuration which satisfies the predicate LME .

Lemma 10. In the protocol CTC under any scheduler
the predicate LME is closed.

Proof. During a computation step, either the processor
holding the privilege does not pass the privilege, hence
it stays the only privileged processor. Or this processor
passes its privilege; then its neighbor becomes the new
privileged processor. 2

For proving the convergence of the protocol CTC we
use the direct verification of the self-stabilization defini-
tion.

Lemma 11. Let k be an integer. Let st be a strategy of
the protocol CTC under a k-bounded scheduler. There
exist ǫst > 0 and nst ≥ 1 such that any cone of st satis-
fies Local Convergence(true, LME, δst, nst).

Proof. Let Ch be a cone of st. Assume that in last(h),
there are several privileged processors. Let p1, p2, . . . pm

be the privileged processors in last(h). Let d1 be the
distance between p1 and p2.
We exhibit a history where (1) the privileged processors
(p3, . . . , pm) stay privileged; and (2) other processors are
not privileged (except may be p2). At that point, at least
one privilege has disappeared. By extension, we present
a history, where all privileges except one are similarly
removed.
Let Chh′ be a subcone of Ch where h′ verifies the follow-
ing properties: (1) h′ ends with an action of p1 where it
passes its privilege; (2) h′ contains one action of p1; and
(3) no other processor has passed its privilege. As the
scheduler is k-bounded, h’ exists and other privileged
processors perform at most k actions in h’. Each time

12 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

Protocol 5.3 Randomized token circulation protocol
under any scheduler: SSCTC

Field variables on p:
dtp is a variable taking value in [0, mN -1]. (the variable

represents the deterministic token)
tp is a variable taking value in [0, mN -1]. (the variable

represents the privilege)

Random Variables on p:
rand boolp taking value in {1, 0}. Each value has a

probability 1/2.

Predicate:
Deterministic token(p) ≡ dtp − dtlp 6= 1 mod mN

Privilege(p) ≡ tp − tlp 6= 1 mod mN

Macro:
Pass Deterministic token(p) : dtp := (dtlp + 1) mod mN

Pass privilege(p) : tp := (tlp + 1) mod mN

Action on p:
A1:: Deterministic token(p) ∧ ¬Privilege(p) −→

Pass Deterministic token(p)

A2:: Deterministic token(p) ∧ Privilege(p) −→
Pass Deterministic token(p); if (rand boolp = 0)

then Pass Privilege(p)

that a privileged processor performs an action in h′ its
rand bool variable takes the value 1, when p1 performs
its action, its rand bool variable takes the value 0. We

have |h′| ≤ k(m−1)+1 and Pst(Chh′) ≥ Pst(Ch). 12
k(m−1)+1

.
According to the definition of h′, in last(hh’), the right
neighbor of p1 (p’) is privileged and p1 is no more privi-
leged (the privilege of p1 has reached p′).
Step by step, we build a subcone of Ch1

, Chh1
where

h1 verifies the following properties: (1) h1 ends with
an action of the left neighbor of p2 where it passes its
privilege to p2 (after this action, p2 may or may not be
privileged); (2) p2, p3, . . ., pm have kept their privilege;
(3) in last(hh1), the privilege of p1 has reached p2. In
last(h1), there are at most m − 1 privileges. We have
|h1| ≤ d1(k(m − 1) + 1) ≤ kN2 + N , and

Pst(Chh1
) ≥ Pst(Ch). 12

d1(k(m−1)+1)
≥ Pst(Ch). 12

kN2+N
.

Finally, we build a subcone of Ch, ChH where in last(hH),
there is only one privileged processor. We have |H | ≤
(m − 1)(kN2 + N) ≤ kN3 + N2, and

Pst(ChH) ≥ Pst(Ch).
1

2

(m−1)(kN2+N)

≥ Pst(Ch).
1

2

kN3+N2

. ǫst = 1
2

kN3+N2

, nst = kN3 + N2. 2

Lemma 12. Let st be a strategy of the protocol CTC.
Let Ch be a cone of st so that in last(h), there is only
one privilege. The probability of the subcone Chh1 of the
cone Ch where h1 is a round and |h1| = N is Pst(Ch). 12

n
.

Proof. Let p be the processor holding the privilege in the
configuration last(h). There is a probability 1/2 that the

privilege passes to the p’s right neighbor, in one com-
putation step. The previous reasoning is repeated until
the privilege goes back to p. Let Chh1 be the subcone of
Ch where in last(hh1), p holds again the privilege after
that all other processors have held the privilege in h1.

The probability of this cone is P (Chh1) = P (Ch). 12
N

and
|h1| = N .

Lemma 13. The protocol CTC is correct.

Proof. Let st be a strategy. Let Ch be a cone of st end-
ing by a legitimate configuration. We call ǫ′k the prob-
ability of the subcones of Ch, Chh′ , where |h′| ≤ kN
and during the history h′ the privilege completes at least
one round. Applying the lemma 12, we found that ǫ′1 ≥

Pst(Ch).(1− (1− 1
2

N
)). Set ǫk = 1− (1− 1

2

N
)k. Suppose

that ǫ′k ≥ Pst(Ch).ǫk. In the same way as the proof of the-

orem 5, we prove that ǫ′k+1 ≥ Pst(Ch).(ǫk +(1−ǫk). 12
N

).
Hence, ǫ′k+1 ≥ Pst(Ch).ǫk+1. The probability of the set
of computations of Ch in which the privilege completes
at least one round is 1. By induction, we prove that for
any integer n, the probability of the set of computations
of Ch in which the privilege completes at least n rounds
is 1. 2

Theorem 11. The protocol CTC is self-stabilizing for
the specification SPME under a k-bounded scheduler.

Proof. The convergence is proven by lemma 11 and corol-
lary 2. The correctness is proven by lemma 13. 2

The cross-over composition between protocol CTC and
protocol DTC is called SSCTC and presented in proto-
col 5.3. SSCTC = CTC♦DTC.

Theorem 12. The protocol SSCTC is self-stabilizing for
the specification SPME under an arbitrary scheduler.

Proof. The protocol SSCTC is the result of the cross-
over composition between the protocol CTC which is
self-stabilizing under a (N-1)-bounded scheduler for spec-
ification SPME (theorem 11) and protocol DTC which is
a (N-1)-fair protocol (theorem 10). Using theorem 9, we
prove that protocol SSCTC is self-stabilizing for speci-
fication SPME under an arbitrary scheduler. 2

5.3 Leader election under an arbitrary scheduler

5.3.1 Leader election under a k-bounded scheduler

We present the randomized protocol LE (see protocol
5.4). We prove, using the attractor technique, that pro-
tocol LE is self-stabilizing for the leader election speci-
fication under a k-bounded scheduler.

Notation 53 A processor has a privilege, if it verifies
the Privilege predicate. A processor is a leader, if it veri-
fies the Leader mark predicate. These predicates are de-
fined in the protocol 5.4.

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 13

Protocol 5.4 Randomized leader election on anonymous
and unidirectional rings: LE

Field variables on p:
lmp is a variable taking value in [0, mN -1]. (the variable

represents the leader mark)
tp is a variable taking value in [0, mN -1]. (the variable

represents the privilege)
cp is a boolean. (0 = blue and 1 = green)

Random Variables on p

(The two independent variables, are the two fields of
the unique processor random variable.)

rand boolp taking value in {1, 0}. Each value has a
probability 1/2.

rand colorp taking value in {blue, green}. Each value has
a probability 1/2.

Predicate:
Leader mark(p) ≡ lmp − lmlp 6= 1 mod mN

Privilege(p) ≡ tp − tlp 6= 1 mod mN

Macro:
Pass Leader mark(p) : lmp := (lmlp + 1) mod mN

Pass privilege(p) : tp := (tlp + 1) mod mN

Action on p:
A1:: Leader mark(p)∧ (cp 6= clp) ∧ Privilege(p) −→

if (rand boolp = 0) then {cp := clp;
Pass Leader mark(p); Pass privilege(p)}

A2:: Leader mark(p)∧ (cp = clp) ∧ Privilege(p) −→
if (rand boolp = 0) then {cp := rand colorp;

Pass privilege(p)}

A3:: ¬Leader mark(p) ∧ Privilege(p) −→
if (rand boolp = 0) then {cp := clp;

Pass privilege(p)}

The goal of the color is to freeze the leader when it is
unique, but also to ensure the circulation of leader when
the ring contains several ones. When a processor is priv-
ileged and leader, it randomly selects a color. During the
circulation of the privilege this color will be communi-
cated to every processor of the ring (A3). The leader
waits until becoming privileged again. At that time, if
the color of its left neighbor is the same as its color,
then it stays leader and starts the checking again by
randomly selecting a new color (action A2). In this case,
it “assumes” that it is the only leader in the ring.

Since the color is randomly selected, when there are sev-
eral leaders in the ring, a leader will eventually become
privileged when its left neighbor does not have the right
color (i.e. its color, called co). In this case, the leader
passes its leadership (action A1) to its right neighbor. It
“assumes” that several leaders coexist in the ring. The
leadership do several moves in the rings up to catch the
next leader. More precisely, the leadership moves until it
reaches a processor that does not have the co color (usu-
ally this processor is a leader). As after an A1 move, a
processor takes the co colors; in all cases, the leadership
will do at most N moves.

Once the ring is stabilized, there is one frozen leader and
one privilege that circulates. We prove that LE is a self-
stabilizing leader election protocol under a k-bounded
scheduler.

Theorem 13. The predicate LME is a probabilistic at-
tractor of true on protocol LE under a k-bounded sched-
uler.

Proof. Similarly to the proof of lemma 11, we prove that
the predicate LME is a probabilistic attractor of true on
the protocol LE under a k-bounded scheduler. 2

Once, a computation of LE has reached a configuration
satisfying LME ; only one processor is enabled (the privi-
leged one) at each computation step, whatever the com-
putation performed. Thus the scheduler has no choice: it
must select the enabled processor. After the next compu-
tation step, according to rand bool value, either this pro-
cessor still has the privilege or the privilege has moved
to its right neighbor. In all cases, the scheduler has no
choice. Therefore, all computations have the same pat-
tern: a processor perform several actions till it has the
privilege then its right neighbor gets the privilege and
performs several actions, and so on. There is another pat-
tern: “the privileged processor stays privileged forever”;
but on any strategy, the probability of this pattern is
zero.

Let coherent color(p) be the following predicate over
configurations: “ p verifies coherent color(p) predicate
if (1) all processors between p and q have the p’s color
(q being the first privileged processor at p right), or (2)
all processors between p and the first leader to the p
right have the p’s color”. Let coherence(k) be the fol-
lowing predicate over configurations: “ there are at least
k coherent color processors in the ring”.

The specification for the leader election problem is the
following predicate SPLE : “there is only one leader and
its stays leader forever”. Let LLE be the following pred-
icate over configurations: “(1) coherence(N) is verified,
(2) there is only one leader, and (3) there is only one
privileged processor”. A legitimate configuration for the
protocol LE is a configuration satisfying the predicate
LLE .

Observation 51 Coherence(0) is equal to the predicate
true.

The proof for self-stabilization of the protocol LE will
be made using the attractor technique. In fact, we prove
that the predicate LLE is a probabilistic attractor for
the predicate LME .

Lemma 14. For any processor p, coherent color(p) is a
closed predicate.

Proof. Let p be a coherent color processor. We name as
q the first privileged processor at p’s right. If there is a
leader q′ on the path from p to q where q′ 6= q and q′ 6= p
then after any action, p still verifies the coherent color

14 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

predicate (only privileged processors may perform an ac-
tion). Otherwise, all processors between p and q have the
p’s color and are not leaders (i.e. the left neighbor of q has
the p’s color). After any action of a privileged processor
other than q, p still verifies the coherent color predicate.
We study the action of q. First case, q is a leader that
has the p’s color: to pass the privilege, it performs the
action A2, thus it stays leader. Second case, q is a leader
that does not have the p’s color: when it passes its priv-
ilege, it passes the leadership and takes p’s color (action
A1). Third case, q is not a leader, after passing its priv-
ilege by the action A3, q gets the p’s color. In all cases,
p still verifies the predicate coherent color(p), after the
q’s action. 2

Corollary 5. For all k ∈ [0, N], coherence(k) is a closed
predicate.

Corollary 6. On the protocol LE under any scheduler,
the predicate LME and LLE are closed (see the proof of
lemma 10).

Lemma 15. Let st be a strategy of the protocol LE un-
der a k-bounded scheduler. Let i be an integer less than
N . There exist ǫst > 0 and nst ≥ 1 such that any cone of
st satisfies Local Convergence (LME∧coherence(i), LME∧
coherence(i + 1), δst, nst).

Proof. Let Ch be a cone of st where last(h) ⊢ LME .
Assume that there are exactly i processors that verify
the predicate coherent color on last(h). We name q the
privileged processor. We name p the first processor at q’s
right that does not verify the coherent color predicate.

We will build a subcone of Ch, Chh′ such that at last(hh′),
p verifies the coherent color predicate. As the coherent color
predicate is closed then last(hh′) verifies the coherence(k+
1) predicate.

We exhibit a scenario where (1) the rand bool variable
of all processors between q and p takes the value 0 (i.e
they pass the privilege in one computation step); (2)
the rand color variable of all processors between q and
p takes the value blue; and (3) the scenario ends with
an action of p. The leaders between q and p perform
either the action A1 or A2, but in all cases, they pass
the privilege in one computation step.
Thus, we build a subcone of Ch, Chh′ where on last(H1H),
p’s right neighbor is privileged, Moreover, we have |h′| ≤

N , and Pst(Chh′) ≥ Pst(Ch). 12
2N

. On last(h), the priv-
ilege is held by the right neighbor of p. Thus p is a
coherent color processor.

nst = N and ǫst = 1
2

2N
. 2

Lemma 16. Let st be a strategy of the protocol LE un-
der a k-bounded scheduler. There exist ǫst > 0 and nst ≥
1 such that any cone of st satisfies Local Convergence(LME∧
coherence(N), LLE, δst, nst).

Proof. Let Ch be a cone of st where last(h) ⊢ LME ∧
coherence(N). If there is one leader in last(h), then last(h)
⊢ LLE. Assume that there are several leaders in last(h).

Let us denote by q the privileged processor. We name as
p the first leader at q’s left.

1. on last(h), the privilege processor is not a leader.
The privilege reaches p, after that each processor be-
tween q and p passed the privilege in one computation
step (i.e. the rand bool variable of all processors between
q and p takes the value 0). In the cone Ch, we exhibit the
subcone, Chh′ , where in last(hh′), p is privileged; and, we

have |h′| ≤ N , Pst(Chh′) ≥ Pst(Ch). 12
N

.

We name as H1 the history hh′.On last(H1), (1) the priv-
ileged leader has the same color as its left neighbor, or
(2) the privileged leader has a different color from its left
neighbor. In the last case, we call H2 the history H1.

2. on last(H1), a leader is privileged, and has the
same color as its neighbor. We name as p the priv-
ileged leader and s the next leader at p’s right. Let us
study the scenerio where (1) p performs the action A2
and does not get the s’ color; and (2) processors between
p and s pass the privilege in one computation step. Thus,
we build a subcone of CH1, CH1H′ where on last(H1H ′),
s is a privileged leader and the color of s is not equal
to the color of its left neighbor (p’s color). Moreover, we

have |H ′| ≤ N , and Pst(CH1H′) ≥ Pst(CH1).
1
2

N+1
. Now,

we call H2 the history H1H ′.

3. On last(H2), a leader is privileged and has dif-
ferent color from its left neighbor. We name as t
the privileged leader, and r the first leader at t right. As
t verifies the coherent color predicate, all processors be-
tween t and r have the p’s color. There is a scenario
where the privilege and the leadership reach r, after
that each processor between p and r passed the privi-
lege and the leadership in one computation step by the
action A1 (their rand bool variable has taken the value
0). The leadership that was on t is now on r; in the cone
CH2, there is a subcone, CH2H′′ , where |H ′′| ≤ N and

Pst(CH2H′′) ≥ Pst(CH2).
1
2

N
. On last(H2H ′′), thus there

are less leaders than on last(H2) (the leadership on t is
now amalgamated with the leadership in s).

By repeating the step 1, 2 and 3 at most m − 1 times
(where m is the number of leaders in last(h)); we get a
configuration where there is one leader. There is a sub-
cone of Ch, ChH where (1) there is only one leader, (2)

|H | ≤ 3N2, and (3) Pst(ChH) ≥ Pst(Ch). 12
N(3N+1)

. 2

Theorem 14. The protocol LE is self-stabilizing for the
SPLE specification under a k-bounded scheduler.

Proof. • Convergence: In the protocol LE under a k-
bounded scheduler, the predicate LME is a proba-
bilistic attractor of true (theorem 13). The predi-
cate LLE is a probabilistic attractor for the predicate
LME : the hypothesis of the corollary 1 are proven by
the lemmas 15 and 16.

• Correctness: As the predicate LLE is closed, when
LLE is verified on a configuration, there is only one
leader. Whatever the computation performed, the leader
stays the leader: the action A1 is never performed.

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 15

Protocol 5.5 Randomized leader election protocol un-
der any scheduler: SSLE

Field variables on p:
dtp is a variable taking value in [0, mN -1]. (the variable

represents the deterministic token)
lmp is a variable taking value in [0, mN -1]. (the variable

represents the leader mark)
tp is a variable taking value in [0, mN -1]. (the variable

represents the privilege)
cp is a boolean. (0 = blue and 1 = green)

Random Variables on p:
rand boolp taking value in {1, 0}. Each value has a

probability 1/2.
rand colorp taking value in {blue, green}. Each value has

a probability 1/2.

Predicate:
Deterministic token(p) ≡ dtp − dtlp 6= 1 mod mN

Leader mark(p) ≡ lmp − lmlp 6= 1 mod mN

Privilege(p) ≡ tp − tlp 6= 1 mod mN

Macro:
Pass Deterministic token(p) : dtp := (dtlp + 1) mod mN

Pass Leader mark(p) : lmp := (lmlp + 1) mod mN

Pass privilege(p) : tp := (tlp + 1) mod mN

Action on p:
B1:: Deterministic token(p) ∧ Leader mark(p) ∧ (cp 6=

clp) ∧ Privilege(p) −→
Pass Deterministic token(p);

if (rand boolp = 0) then { cp := clp;
Pass Leader mark(p); Pass privilege(p)}

B2:: Deterministic token(p) ∧ Leader mark(p) ∧ (cp =
clp) ∧ Privilege(p) −→

Pass Deterministic token(p);
if (rand boolp = 0) then {cp := rand colorp;

Pass Privilege(p)}

B3:: Deterministic token(p) ∧ ¬Leader mark(p) ∧
Privilege(p) −→

Pass Deterministic token(p);
if (rand boolp = 0) then { cp := clp;

Pass Privilege(p) }

B4:: Deterministic token(p) ∧ ¬Privilege(p) −→
Pass Deterministic token(p)

The condition of theorem 4 is verified; The protocol
LE is self-stabilizing for specification SPME under a k-
bounded scheduler. 2

5.3.2 Leader election under an arbitrary scheduler

Let SSLE be the result of the cross-over composition be-
tween the protocols LE and DTC (SSLE = LE♦DTC).
The code of SSLE is given in the protocol 5.5.

Theorem 15. Protocol SSLE is stabilizing for the leader
election specification under an arbitrary scheduler.

Proof. Protocol SSLE is a protocol obtained by the
cross-over composition of LE and DTC. The protocol

LE is self-stabilizing under a (N-1)-bounded scheduler
(theorem 14) and the protocol DTC is (N-1)-fair (theo-
rem 10). The protocol SSLE is self-stabilizing under an
arbitrary scheduler according to the theorem 9. 2

6 Conclusion and Discussions

In this paper, we presented and proved a new randomized
leader election protocol for rings, that uses a minimal
amount of space.

We also proposed a framework for proving self-stabilizing
algorithms. Introducing explicitely the scheduler in the
model allowed us to exhibit the notion of strategy, which
is the key element while working with randomized algo-
rithms. It should be noticed that this model is general
and does not depend on the ring structure or the specific
constraints of stabilization. Note that our model intro-
duced in [7] served in proving the correctness of a broad
class of algorithms [26,25,5,29,30,13,21,15].

Interestingly, the techniques developed in this paper also
apply to classical distributed protocols. For instance, the
proof (informal) of Rabin’s randomized Byzantine pro-
tocol (in [37]) uses the fact that at each round there
is a positive probability to reach agreement (analogous
to probabilistic convergence for self-stabilizing systems)
and the fact that once reached, agreement persists (anol-
ogous to closure). We think that the tools that we pre-
sented allow to give a precise proof of Rabin’s protocol,
in which the behaviour of ”Byzantine Generals” is made
explicit in the notion of strategy.
Our technique is successful complemented by the work
proposed in [38,20,22] which brings into the self-stabilization
area the coupling technique. Using this technique the
authors proved the convergence time of the majority of
probabilistic self-stabilizing algorithms published so far.

We also proposed the detailed presentation of the cross-
over composition first introduced in [8]. We showed how
the cross-over composition yields an automatic technique
for transforming a protocol designed and proved for a fair
scheduler, into an equivalent protocol for an unfair one.
This technique can be used as soon as a fair token circu-
lation (albeit the scheduler is unfair) is available on the
network structure. We gave such a fair token circulation
on rings.

7 Acknowledgments

The authors thank Faith Fich for all the suggestions that
have clearly improved the paper. We thank also Laurent
Rosaz and anonymous referees who greatly contributed
in simplifying the presentation of the probabilistic frame-
work.

References

1. E. Anagnostou and R. El-Yaniv. More on the power of
random walks - uniform self-stabilizing randomized al-

16 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

gorithms. In WDAG91, Distributed Algorithms 5th In-
ternational Workshop Proceedings, Springer LNCS:579,
pages 31–51, 1991.

2. D. Angluin. Local and global properties in networks of
processors. In STOC80, the 12th Annual ACM Sympo-
sium on Theory of Computing, pages 82–93. ACM, 1980.

3. B. Awerbuch and R. Ostrovsky. Memory-efficient and
self-stabilizing network reset. In PODC94, the 13th An-
nual ACM Symposium on Principles of Distributed Com-
puting, pages 254–263, 1994.

4. J. Beauquier, S. Cordier, and S. Delaët. Optimum proba-
bilistic self-stabilization on uniform rings. In WSS95, the
2nd Workshop on Self-Stabilizing Systems, pages 15.1–
15.15, 1995.

5. J. Beauquier, J. Durand-Lose, M. Gradinariu, and
C. Johnen. Token based self-stabilizing uniform algo-
rithms. Journal of Parallel and Distributed Computing,
62(5):899–921, 2002.

6. J. Beauquier, M. Gradinariu, and C. Johnen. Memory
space requirements for self-stabilizing leader election pro-
tocols. In PODC99, the 18th Annual ACM Symposium
on Principles of Distributed Computing, pages 199–208,
1999.

7. J. Beauquier, M. Gradinariu, and C. Johnen. Random-
ized self-stabilizing and space optimal leader election un-
der arbitrary scheduler on rings. Technical Report 1225,
L.R.I, December 1999.

8. J Beauquier, M Gradinariu, and C Johnen. Cross-over
composition - enforcement of fairness under unfair ad-
versary. In WSS01, the 5th International Workshop on
Self-Stabilizing Systems, Springer LNCS:2194, pages 19–
34, 2001.

9. J. Beauquier, C. Johnen, and S. Messika. All k-bounded
policies are equivalent for self-stabilization. In SSS’06,
the 8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems, Springer LNCS,
2006.

10. P. Billingsley. Probability and Measure. John Wiley &
Sons, 1986.

11. C. Boulinier, F. Petit, and V. Villain. When graph the-
ory helps self-stabilization. In PODC04, the 23th Annual
ACM Symposium on Principles of Distributed Comput-
ing, pages 150–160, 2004.

12. I. Christoff. Testing equivalences and fully abstract mod-
els for probabilistic processes. In CONCUR90, the 1st In-
ternational Conference on Concurrency Theory, Springer
LNCS:458, pages 126–140, 1990.

13. A. K. Datta and S. Tixeuil M. Gradinariu. Self-
stabilizing mutual exclusion under arbitrary scheduler.
The Computer Journal, 47(1), 2004.

14. L. de Alfaro. Formal Verification of Probabilistic systems.
PhD Thesis, Stanford University, 1997.

15. X. Défago, M. Gradinariu, S. Messika, and P. Raipin
Parvédy. Fault-tolerant and self-stabilizing mobile robots
gathering. In DISC06, the 20th International Conference
on Distributed Computing, Springer LNCS 3274, pages
46–60, 2006.

16. S Dolev, MG Gouda, and M Schneider. Memory require-
ments for silent stabilization. In PODC96, the 15th An-
nual ACM Symposium on Principles of Distributed Com-
puting, pages 27–34, 1996.

17. S. Dolev and T. Herman. Parallel composition of sta-
bilizing algorithms. In WSS99, the 4th Workshop on
Self-Stabilizing Systems (published in association with

ICDCS99 The 19th IEEE International Conference on
Distributed Computing Systems), pages 25–32, 1999.

18. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only Read/Write atomicity.
Distributed Computing, 7:3–16, 1993.

19. S. Dolev, A. Israeli, and S. Moran. Analyzing expected
time by scheduler-luck games. IEEE Transactions on
Software Engineering, 21:429–439, 1995.

20. P. Duchon, N. Hanusse, and S. Tixeuil. Optimal ran-
domized self-stabilizing mutual exclusion on synchronous
rings. In DISC04, the 18th International Conference on
Distributed Computing, Springer LNCS 3274, pages 216–
229. Springer, 2004.

21. M. Duflot, L. Fribourg, and C. Picaronny. Randomized
dining philosophers without fairness assumption. Dis-
tributed Computing, 17(1):65–76, 2004.

22. L. Fribourg, S. Messika, and C. Picaronny. Coupling and
self-stabilization. Distributed Computing, 18(3):221–232,
2006.

23. M.G. Gouda and F. Haddix. The alternator. In WSS99,
the 4th Workshop on Self-Stabilizing Systems (published
in association with ICDCS99 The 19th IEEE Interna-
tional Conference on Distributed Computing Systems),
pages 48–53, 1999.

24. M.G. Gouda and T. Herman. Adaptive programming.
IEEE Transactions on Software Engineering, 17:911–921,
1991.

25. M. Gradinariu and C. Johnen. Self-stabilizing neighbor-
hood unique naming under unfair scheduler. In Euro-
Par’01 Parallel Processing, Springer LNCS:2150, pages
458–465, 2001.

26. M. Gradinariu and S. Tixeuil. Self-stabilizing vertex col-
oration and arbitrary graphs. In OPODIS’00, 4th Inter-
national Conference On Principles Of DIstributed Sys-
tems, pages 55–70, 2000.

27. A. Israeli and M. Jalfon. Token management schemes and
random walks yield self-stabilizing mutual exclusion. In
PODC90, the 9th Annual ACM Symposium on Principles
of Distributed Computing, pages 119–131, 1990.

28. G. Itkis and L. Levin. Fast and lean self-stabilizing asyn-
chronous protocols. In FOCS94, the 34th Annual IEEE
Symposium on Foundations of Computer Science, pages
226–239, 1994.

29. C. Johnen. Service time optimal self-stabilizing token
circulation protocol on anonymous unidrectional. In
SRDS02, the 21th IEEE Symposium on Reliable Dis-
tributed Systems, pages 80–89. IEEE Computer Society
Press, 2002.

30. C. Johnen. Bounded service time and memory space op-
timal self-stabilizing token circulation protocol on uni-
directional rings. In IPDPS’04, the 18th IEEE Inter-
national Parallel & Distributed Processing Symposium,
2004.

31. M.H. Karaata. Self-stabilizing strong fairness under weak
fairness. IEEE Transactions on Parallel and Distributed
Systems, 12(4):337–345, 2001.

32. D. Lehmann and M. O. Rabin. On the advantages of
free choice: a symmetric and fully-distributed solution to
the dining philosophers problem. In POPL81, the 8th
Annual ACM Symposium on Principles of Programming
Languages, pages 133–138, 1981.

33. A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-
stabilizing symmetry breaking in constant-space. In
STOC92, the 24th Annual ACM Symposium on Theory
of Computing, pages 667–678, 1992.

J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings 17

34. M. Nesterenko and A. Arora. Stabilization-preserving
atomicity refinement. Journal of Parallel and Distributed
Computing, 62(5):766–791, 2002.

35. A. Pnueli and L. Zuck. Verification of multiprocess prob-
abilistic protocols. Distributed Computing, 1(1):53–72,
Jan. 1986.

36. A. Pogosyants and R. Segala. Formal verification of
timed properties of randomized distributed algorithms.
In PODC95, the 14th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 174–183, 1995.

37. M. O. Rabin. Randomized byzantine generals. In
FOCS84, the 24st Annual IEEE Symposium on Foun-
dations of Computer Science, pages 403–409, 1984.

38. L. Rosaz. Self-stabilizing token circulation on asyn-
chronous uniform unidirectional rings. In PODC00, the
19th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 249–258, 2000.

39. R. Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, MIT, Departa-
ment of Electrical Engineering and Computer Science,
1995.

40. R. Segala and N. Lynch. Probabilistic simulations for
probabilistic processes. In CONCUR94, the 5th Inter-
national Conference on Concurrency Theory, Springer
LNCS:836, pages 481–496, 1994.

41. R.J. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N.
Toft. Reactive, generative and stratified models of proba-
bilistic processes. In LICS90, the 5th Annual IEEE Sym-
posium on Logic in Computer Science, 1990.

42. M. Y. Vardi. Automatic verification of probabilistic con-
current finite-state programs. In FOCS85, the 25st An-
nual IEEE Symposium on Foundations of Computer Sci-
ence, pages 327–338, 1985.

43. G Varghese. Compositional proofs of self-stabilizing pro-
tocols. In WSS97, the 3rd Workshop on Self-Stabilizing
Systems, pages 80–94. Carleton University Press, 1997.

44. S.H. Wu, S. A. Smolka, and E.W. Stark. Composition
and behaviors of probabilistic I/O automata. In CON-
CUR94, the 5th International Conference on Concur-
rency Theory, Springer LNCS:836, pages 513–528, 1994.

A Field on strategy

We mention here some properties of the union of cones,
intersection of cones, and complementary of a cone in
a strategy. Finally, we construct a field (a class of sub-
sets of strategy’s cones closed by finite unions and by
complementary) on strategy computations.

In the sequel of this section, we will always refer to a
protocol P under a scheduler D.

Lemma 17. Let st be a strategy. Let Ch1 and Ch2 be
two cones of st. The intersection of these cones is equal
to (i) Ch1, (ii) Ch2 or (iii) is empty.

Lemma 18. Let st be a strategy. Let A be a countable
union of cones of st. There is a countable set of pairwise
independent cones of st so that their union is A.

Lemma 19. Let st be a strategy. Let n ≥ 1 be an integer.
Let M be the set containing all cones of st whose history
length is n and all singular cones of st whose history
length is m where m ≤ n. We have

⋃
C∈M C = st.

Lemma 20. Let st be a strategy and let Ch be a cone
of st. Let Ch be the complementary of Ch in st. Ch is a
finite union of pairwise independent cones.

Proof. Let M1 be the set of pairwise independent singu-
lar cones whose history length is lesser than |h|. Let M2
be the set of cones whose history length is equal to |h|.
Let M2′ = {C :: C ∈ M2 and C ∩ Ch = ⊘}. Let M be
M1 ∪ M2′.
From the construction of the set M and from the lemma
19, we have Ch =

⋃
C∈M C. Then, Ch is a finite union of

cones. From lemma 18, Ch is a finite union of pairwise
independent cones. 2

Lemma 21. In a strategy, the intersection of two finite
unions of pairwise independent cones is a finite union of
pairwise independent cones.

Proof. Let A =
⋃

1≤i≤n Chi
and B =

⋃
1≤j≤m Ctj

be
two finite unions of cones.
We have A∩B =

⋃
1≤i≤n(Chi

∩B) =
⋃

1≤i≤n(
⋃

1≤j≤m(Chi
∩

Ctj
)).

As the intersection of two cones is a cone or the empty
set, A ∩ B is a finite union of cones. Then A ∩ B is a
finite union of pairwise independent cones (lemma 18).
2

Corollary 7. In a strategy, the finite intersection of fi-
nite unions of pairwise independent cones of a strategy
is a finite union of pairwise independent cones.

Lemma 22. In a strategy, the complementary of a finite
union of pairwise independent cones is a finite union of
pairwise independent cones.

Proof. The complementary of a finite union of pairwise
independent cones is the finite intersection of the union’s
complementaries. 2

Notation A1 Let st be a strategy. We note Fst the set
of all finite unions of pairwise independent cones of the
strategy st.

A field of a strategy is a class of subsets of strategy’s
cones closed by finite unions and by complementary. For-
mally:

Definition 16. Let st be a strategy. Let S be a class of
subsets of st. S is a field of st if and only if (1) st ∈ S,
(2) A ∈ S implies A ∈ S, and (3) ∀i ∈ [1, n] :: Ai ∈ S
implies

⋃
1≤i≤n Ai ∈ S.

Theorem 16. Let st be a strategy. Fst is a field.

Proof. As Cst = st, st is an element of Fst, The finite
union of finite unions of pairwise independent cones is a
finite union of cones of st. This union can be expressed as
a finite union of pairwise independent cones of st (lemma
18). Fst is closed by finite unions. Fst is closed (lemma
22). 2

18 J. Beauquier et al.: Randomized Self-stabilizing Leader Election on Rings

B Major properties of Pst

In this section, we prove some properties of Pst (defini-
tion 7). These properties allow us to establish that Pst

is a probabilistic measure on the field Fst.

Lemma 23. Let st be a strategy. Let Ch be a non singu-
lar cone of st. Let M be the set of subcones of Ch whose
history length is |h|+1. We have Pst(Ch) =

∑
C∈M Pst(C)

Proof. Let h′ be a computation step defined as (c, CH, c′).
Chh′ ∈ M if and only if (1) c = last(h), (2) CH is the
choice of st at h (fst(h) = CH), and (3) ch ∈< c : CH >.
By definition of Pst, if h′ = (c, CH, c) then Pst(Chh′) =
Pst(Ch).pr(c, CH, ch). We have

∑
Chh′∈M Pst(Chh′) =∑

ch∈<c:CH>(Pst(Ch).pr(c, CH, ch)) = Pst(Ch). 2

Corollary 8. Let st be a strategy. We have Pst(C
st) = 1

Proof. Let M be the set containing all distinct cones of st
whose history length is 1. We have

⋃
C∈M C = st = Cst

(lemma 19). According to 23, we have Pst(
⋃

C∈M C) = 1
2

Lemma 24. Let st be a strategy. Let Ch be a cone of
st. Let Ch1, Ch2, . . . be a series of pairwise independent
cones of st such that Ch =

⋃
1≤i≤n Chi. We have Pst(Ch) =∑

1≤i≤n Pst(Chi).

Proof. We prove this lemma by induction on the length
of the series Ch1, Ch2, If the series has one element,
the lemma is verified. Assume that the lemma is verified
when the series contains less than n cones.

Let Ch1, Ch2, . . . be a series of n pairwise independent
cones of st such that Ch =

⋃
1≤i≤n Chi. Ch is not sin-

gular. Let M1 be the set of independent subcones of
Ch whose history length is |h| + 1. We have Pst(Ch) =∑

C∈M1 Pst(C) (lemma 23).

Let Ch′ be a cone of M1. We define Mh′ as Mh′ =
{Ch1 ∩ Ch′ , Ch2 ∩ Ch′ , . . .}. According to the property
of cone intersection we have ∀i ∈ [1, n], Ch′ ∩ Chi = ⊘
or Chi ⊂ Ch′ ; thus, Mh′ = {Chi :: Chi ⊂ Ch′}. As
Ch =

⋃
1≤i≤n Chi, we have Ch′ =

⋃
chi∈Mh′

Chi and⋃
Ch′∈M1 Mh′ =

⋃
1≤i≤n Chi. Mh′ contains at most n−1

cones; thus Pst(C
′
h) =

∑
chi∈Mh′

Pst(Chi).

Pst(Ch) =
∑

Ch′∈M1 Pst(Ch′) =
∑

Ch′∈M1(
∑

chi∈Mh′
Pst(Chi)) =∑

1≤i≤n Pst(Chi). 2

Lemma 25. Let st be a strategy. Let A =
⋃

1≤i≤n Ca
i

be a finite union of pairwise independent cones of st.
Let B =

⋃
1≤i≤m Cb

i be a finite union of pairwise inde-

pendent cones of st. If A = B then
∑

1≤i≤n Pst(C
a
i) =∑

1≤i≤m Pst(C
b
i).

Proof. We split the cones of A into three sets: (1) a cone
of A1 is a subcone of a cone of B; (2) a cone of A2
contains a cone of B; and (3) a cone of A3 is also a cone
of B. Formally, we have A1 = {Ca

i :: ∃Cb
j : Ca

i ⊂ Cb
j and

Cb
i 6= Ca

j }; A2 = {Ca
i :: ∃Cb

j : Cb
i ⊂ Ca

j and Cb
i 6= Ca

j };

A3 = {Ca
i :: ∃Cb

j : Cb
i = Ca

j }. These three sets are

disjoint because the cones Cb
j are disjoint. Similarly, we

split the cone of B into three disjoint sets. For each cone
of A2, Ca

i , we build Ma
i the set of B1 cones that are

subcones of Ca
i . Formally, we have: Ma

i = {Cb
j ∈ B1 ::

Cb
j ⊂ Ca

i }.

Let Ca
i be a cone of A2. Let Cb

j be a cone of B2 ∪

B3. We have Ca
i ∩ Cb

j = ⊘; because the cone of A
and B are pairwise independent. Moreover A = B; thus
we have

⋃
Cb

j
∈Ma

i
Cb

j = Ca
i . We also have (lemma 24)

∑
Cb

j
∈Ma

i
Pst(C

b
j) = Pst(C

a
i).

A cone of B1 cannot be included in a cone of A1 or A3
because the cones of B are pairwise independent; thus⋃

Ca
i
∈A2 Ma

i = B1.
∑

Ca
i
∈A2(

∑
Cb

j
∈Ma

i
Pst(C

b
j)) =

∑
Cb

j
∈B1 Pst(C

b
j) =

∑
Ca

i
∈A2 Pst(C

a
i).

Similarly, we prove that
∑

Cb
j
∈B2 Pst(C

b
j) =

∑
Ca

i
∈A1 Pst(C

a
i).

Clearly, we have
∑

Cb
j
∈B3 Pst(C

b
j) =

∑
Ca

i
∈A3 Pst(C

a
i).

∑
1≤i≤n Pst(C

a
i) =

∑
1≤i≤m Pst(C

b
i). 2

